STYLE AND LITERACY IN APL

Michael Berry
Analogic Corporation
1 Audubon Rd., Wakefield, Massachusetts 01880, USA

Roland Pesch
|.P. Sharp Associates
220 California Ave., Palo Alto, California 94306, USA

...then the strut changed to the restless walk
of a caged madman, then he whirled, and to a
clash of cymbals in the orchestra and a cry of
terror (perhaps faked) in the gallery,
Mascodagama turned over in the air and stood
on his head.

--Nabokov, Ada

"See me jump,” safd Dick.

“Oh, my! This is fun.

Come and jump.

Come and do what [do."

--Gray et al., The New Fun with Dick and Jane

There is a persistent belief in the APL community,
reflecting perhaps some of the prejudice against
APL outside that community, that "good style” in
APL involves writing very short statements, using
as few primitives as possible in each. It is easy
enough to find an example in a discussion of APL in
a general computing magazine:

Mathematicians and engineers love APL for
its conciseness and power, but there's quite
a price to pay: APL programs are almost
unreadable. It's very easy to write a
single-line program that would take an
average APL programmer a good fifteen
minutes to figure out....Typically, good
APL programmers write one line of comment
for every line of code and try to keep their
program lines short. [1]

Such opinions don't spring forth full-grown from
the forehead of Zeus; they have their origins in the
APL community (where else would an author, who
does have his objective facts about APL straight,
go for information about APL?).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of The British Informatics Society Limited. To copy
otherwise, or to republish requires specific permission.

Michael J. A. Berry

For example, a recent issue of APL Quote Quad
carried a "Style Guide" for functions submitted to
the journal, including this: "VERTICAL: Write each
function vertically with several short lines, rather
than horizontally with long lines"[2]. Another
example: an otherwise admirable document on APL
programming standards, circulated in the San
Francisco area, contains an appendix that
introduces two functions by saying "The following
are two functions which do the same thing. The
first is a one liner which is pornographic. The
second uses the same code but broken down into
more readable pieces."” [3] We will examine those two
functions later in this paper.

First, let's explore this belief. Short function
lines seem to be a crucial point. That must mean,
for example, that it should be considered better to
write

S++/uw
Cepw
Z«S:C
than
Z«(+/w)+pw
to calculate an average.

The justification is that the short statements are
easier to read. This claim has gone unexamined for
far too long. We will consider it from two
perspectives:

In what way /s a multiplicity of short statements
easier to read than a single, longer one?

For whom is this style in general easier to read?

The first question is no doubt easy to answer.
After all, if there's only one primitive (and
assignment) in an expression, there can't be too
much doubt about what that expression does, right?
In C<pw above, for instance, € is clearly the
number of elements in w. Whereas in a longer, more
complicated expression, we might be daunted by the
large number of funny squiggles, and never notice
the pw buried in there somewhere.

But does this really get us much farther in
finding out what's going on? We're calculating an
average, after all-- there are two other statements
involved. Let's see: the first statement, Se+/w, is
just as easy: we're adding up the elements in w.
Oh, and giving them the name S. Hope that's not
too complicated, two things at once; pity we
couldn’'t break it up further. Only one to go. Well,
Z«S+C is quite easy. Nothing to it either. We're
dividing S by C, of course. But, wait-- what was it
we were doing? Let's see, S was a sum, and C was,

Style and Literacy in APL

hold on a minute while we check, a count, that's
right. So we're dividing the sum of things in @ by
the number of things in w-- of course, this must be
an average. There, we're done. Easy, wasn't it?

Go ahead, laugh. We know, you don't have trouble
keeping three statements straight in your head.
But when you're done laughing, think about the
general claim in the light of this example. While
breaking up a line into short segments does indeed
produce a program whose lines are easier to read
than the original, that isn't the appropriate unit of
comparison: the /ines in the fragmented version do
nothing of interest. Comparing the two programs is
more interesting-- and here, the shoe is on the
other foot. The fragmentation of thought, and the
introduction of extra names into the calculation,
makes it harder to keep track of what's going on,
because to determine the meaning of the final result
you must be aware of definitions that exist only in
the immediate context, whereas in the brief and
obvious (+/w):pw everything is out where you can
see it, and no reference is necessary to other parts
of the expression. Consider again the example
paraphrased into English:

Instructions for computing an average (Version 1)
Add up a bunch of numbers and divide by how
many you had.

Instructions for computing an average (Version 2)

Add up s bunch of numbers, and call the result
"Ess".

Count the numbers you added up, and call the
result "Cee".

Divide Ess by Cee.

But why stop here? English is an even richer
language than APL; it can probably provide even,
ah, clearer versions of the instructions:

Instructions for computing an average (Version 3)
Some instructions follow.

The instructions are about to begin.

You have a list of numbers.

Reserve a spot called "Ess" to put sums in.
Put a zero in Ess.

Is there at least one number in the list?

If not, go to step 12.

Name the first number in the list "Ex".

Add Ex and Ess, and call the result "Ess" now.
10. Remove the first number from the list.

11. Go back to step 6.

12, ...

OCONOUDLWN=

We think we'll spare you (not to mention
ourselves) the rest. Actually we took some liberties
there; that could be a lot clearer yet.

So. Of versions 1, 2, and 3 of the /nstructions,
which do you think needs comments most? Maybe
there are people who disagree, but our own feeling
is that we'd definitely need to accompany 3 with
some descriptive text (suppose we hadn't said what
these instructions were meant to achieve?),
probably some such text would also be handy for 2,
and 1 needs it not at all. We assume none of our
readers would actually prefer version 3, so let's
leave it aside for now. But anyone who likes his
APL expressions sold short (would you believe that

Michael J. A. Berry

was a typo and we meant "told"? No? Oh well)
presumably feels utterances such as wversion 2 of
the Instructions above are somehow more natural
for human beings. We can only recommend
experiment. We'd suggest the following one: next
time you want a raise, be clear. Don't tell your
boss something confusing like "I want another
thirty thousand dollars”. Say, "Call my salary
'Ess’. Call thirty thousand dollars 'Tee'. Add Ess
and Tee, and call the result 'Ess’. Thanks!" Who
knows, it may work better that way. But we doubt
it would be because of greater clarity...

The intermediate names are only part of the story,
though. Version 3 of the /nstructions was not meant
just to amuse us; it illustrates how easy it becomes
to lose track of what's going on when a process is
broken down into ridiculously tiny steps.

It alseo illustrates a more dangerous aspect of the
"short and wvertical” style of APL programming:
carried just a little farther, it becomes scalar
thinking-- conditioning a writer of APL to use this
style risks encouraging inappropriate, inefficient
use of the language as a tool.

The following function comes from an application
in a real business environment:

V SINGLEPREMNS

{11 RPT<56 8p0 .

[2] CHARGES<'C',0pPMATAGE<«98,0pL0AD<0,
OPMODE<1,0PMATANOUNT<1000,0pLUNPSUN<0,
OPRATING<1,0PNENCORR<'Y’ ,0POPT<«'B",
0PCVINT<«0.11

[3] FACE<50,0pSTATUS<'N',0RpSEX<'M'

[u] LO:AGE<20

{5 L1:PREMAGE<AGE+1

[6] Lu4:RPTI[(AGE-~19);(+/FACE20 99)+
(4xSEX='F1')+2x(STATUS='S"')1<GPCALBA

[7] >((AGE<AGE+1)<75)/L1

[8] -»((FACE<FACE+50)s100)/L0

[9] =(STATUS='S')/L2

[10] STATUS<'S!'

[11] FACE<50

{121 »Lo

[13]1L2:>(SEX='F')/L3

[14] FACE<50,0pPSTATUS<'N',0pSEX<'F!

[15] ~LO

[161L3:
v

What's wrong with this function? Why, in one
sense, nothing at all: it ran, it gave the proper
answers, its author was happy with it for a long
time. In another sense-- well, would you like to
maintain it? Or would you rather deal with
something like the following:

V RPT<«SINGLEPREMS CVINT;AGE;MATACE
[1] RPT<0 8p'!
[2] MNATAGE<98 a GLOBAL USED BY GPCALBA
[3]1 AGE<20
[4] L1: RPT<RPT;AGE GPCALBA CVINT
[5] »(7524CE<AGE+1)/L1

v

There are, of course, a number of differences
between the two, and some of them depend upon
examination of the subfunction GPCALBA (not shown
here). One thing leaps immediately to one's notice:

Style and Literacy in APL

while there were a couple of fairly long lines in the
first version, the second was certainly not
produced by breaking them up! The two functions
are equivalent; it took careful reading of GPCALBA,
a fairly involved function, to notice that there was
no need at all for the nested loops and associated
extra parameters in SINGLEPREMS-- all the
calculations were (or could be made) parallel for all
cases, and all cases were always covered. Had the
consultant who did the work not been literate in
APL, he could scarcely have made this
simplification. Perhaps more important-- the
original form arose because scalar thinking is
pervasive. People's approach to problems is
conditioned by their habits. The first version of
SINGLEPREMS was written by an author not fluent
in APL, who found it more congenial to address
problems bit by bit. It reflects scalar thinking in
its style: despite having middling long lines 2 and
6, most of the function conforms quite nicely to the
"short and vertical” model. If you're conditioned to
look at algorithms in tiny bits, chances are you'll
ook at problems the same way-- which means you'll
lose much of the power of APL.

Consider again, for a moment, the last two
versions of the [nstructions for computing an
average given above, with attention to style. What
situation can you conceive, in which you would
express vyourself that way? Version 3, in
particular: you would never address another human
being that way (well, save maybe your boss, if you
did think that would get you a raise). You might
address a machine that way. But, we hope, only
when you didn't have any other choice. There are
indeed many situations when vyou do have to
address machines that way: when writing an APL
interpreter, for instance. The tiny steps are in fact
closer to how machines must execute our
instructions, than to how human beings conceive of
them. This is a partial answer to one of our
questions: Who finds instructions easier when
they're broken up into very short bits? Some
machines do. APL doesn't require this because of
its history: it was not originally defined to instruct
machines. It is a Auman language.

But (tempting though it might be) we don't really
feel it's fair to question the humanity of everyone
who can't read the APL we write. Fortunately, it
isn't necessary. There are human beings we might
want to address with very short sentences, made
out of a very limited vocabulary: people who don't
speak the language we're using very well. People
whose language we don't speak very well. Or, in
writing: people of marginal literacy. People just
learning to read.

Implied in these categories is the answer to our
other question: in what way are instructions easier
to understand when they're broken up into tiny
bits? They're easier to understand in that you can
focus on the meanings of the words themselves--
which you might want to do when you're not very
sure of them.

In all the cases in which people find it easier to
understand broken English, it is generally expected
that the problem is temporary. For some reason, in
the case of APL, we have trouble even admitting
that this is the problem. In APL, when the literacy
problem is recognized, it's usually attacked by

Michael J. A. Berry

limiting-- often voluntarily-- the style of those who
are literate to the comprehension level of those who
are not. The probiem is, indeed, partly one of
writing. Some people write English that's pretty
hard to foliow too. But at the level where it makes a
critical difference to comprehension, to use only
two or three words per sentence, the problem is
simply learning to read.

This is also the case with APL. The major
difference between APL and most other executable
languages is simply that APL has a syntax
sufficient to express thought; the others do not,
and must use a sequence of steps instead. Any
accompanying thoughts had better be expressed in
comments, in these other languages, even if they're
simply thoughts descriptive of the process. In APL,
the best description of the thought is in the APL
itself, and as in English, the thought can be
expressed most concisely, directly, and
meaningfully when we're not restricting ourselves
to an illiterate audience.

Comments in English or some other natural
language may still be desirable, but the useful ones
are not descriptive, they're intentional: not what is
this doing-- which the APL expresses better than
English would-- but why is it doing it; or to what
did the author expect to do it.

Let's look at a different real example, one
published to argue for the precise opposite of the
position we take in this paper. The accompanying
figure lists the two functions from [3] mentioned at
the outset.

Consider just the APL for the nonce, leaving aside
the comments. We'll come back to those. SPD may
look a little forbidding at first-- if you're not used
to reading APL, or if you think you should read it
in the order a computer will execute it. But there's
no need for reading in that direction: in the culture
APL was developed, human beings are used to
reading from left to right-- and that's a fine way of
reading APL. As Iverson remarks in a discussion of
APL parsing rules,

One important consequence of these rules is
that in an unparenthesized sentence the
right argument of any verb is the result of
the entire phrase to the right of it. A
sentence such as 3xP[Q%x|{R-5 can therefore
be read from left to right; the overall result
is three times the result of the remaining
phrase, which is the maximum of P and the
part following the [, and so on. [4]

Let's read our example, then, from left to right,
as we're accustomed to. The first thing that leaps
to our attention is a parenthesis; we don't know
much about what it encloses yet, but we notice that
immediately to its right is a . We see immediately,
then, that the result of SPD is a reshape of some
value (giving a matrix result). Since what we're
reshaping has just been transposed (reading on to
the right), the parallel between the & arguments,
and the left argument of the reshape, is very
suggestive of collapsing two axes into one. This
impression is reinforced by reading a little farther;
the object transposed was itself the result of
another reshape, and it in turn was the result of a
4 on the right argument. A glance at the

Style and Literacy in APL

V Z<COL SPD X;C;D;F

SPREADS A RIGHT ARGUMENT MATRIX X OF SHAPE <M ,N> TO A RESULT OF SHAPE
<(T<fN:COLS),COLSxN>., PLACES FIRST GROUP OF T ROWS IN THE FIRST N

FOR EXAMPLE: (3 SPD 3 up'CAN YOU SEE ')«>1 12p'CAN YOU SEE !

[1] n

[2} n

[3] mn COLUMNS AND THE NEXT GROUP OF T ROWS IN NEXT N COLUMNS, ETC.
[u} n

[51

Z<(F[21,x/F[1 31)p2 1 38(F<COL,C:COL,1)p(C<«D+(COL|COL-(D«pX)[1]),0)+X

V Z<NULT SPREAD MAT;SHP;WIDTH;XSHP;MATPLUSROWS;NEWN;F;M;TAR

n PROLOGUE:

F<«MNULT ,NEW ,NIDITH n
M<FPMATPLUSRONWS a
TAR<«2 1 38/M =

]
2<(F(2],x/F[1 3]1)PTAR n

expression to the left of the 4, though it may not
reveal exactly what the value is, shows clearly that
we're dealing with an overtake, since D is assigned
right there as the shape of X, and (reading the
parenthesized phrase also from left to right) we see
that the 4+ argument is more than that. So: that's
the whole function. We've just skimmed it, but this
skimming tells us most of the story: the result is a
matrix containing all of the argument X, but
rearranged in some way, and also some padding.

For many purposes, we could stop right there: a
little experimentation would tell us the rest we
might need to know. But we can read more
carefully, too, and discover as much detail as we
need.

Look for a moment at the other version, SPREAD.
Perhaps you can skim it as quickly as the first; we
couldn't. There are rather more temporary
variables involved to keep track of; the final
reshape is not so suggestively associated with a
transpose; the overtake is so buried and separated
from its argument that, even knowing what it is and
where it must be, we have trouble finding it.

But we didn't really finish reading the short SPD;

in particular, the expression
C<«D+(COLICOL-(D<pX)[1]),0

seemed rather mysterious. Notice, however, line
[1u4] of the long SPREAD-- it has exactly the same
expression! Slightly different variable names, and
the pX assignment has been moved, making it a
little harder to see what one of the variables is...
but no substantial difference. The rewrite, in other

Michael J. A. Berry

SHAPE OF 3 DIM. INTERMEDIATE RESULT
RESHAPE EXTENDED MATRIX TO 3 DIMENSIONS
TRANSPOSE ARRAY SO MULT AND WIDTH ARE
THE ROWS AND COLUMNS SO THAT RESULT IS
ACHIEVED BY 'RAVELING' THE LAST 2 DIN.

[1]

[2] =~ SPREADS 2 RIGHT ARGCUMENT MATRIX T0 A MULTIPLE

[3] =a OF ITS CURRENT WIDTH. THE MULTIPLE IS SPECIFIED

(U] =a BY ITS LEFT ARGUMENT.

[5] ~a

[6] ~n LEFT ARGUMENT: THE MULTIPLE DESIRED (AN INTEGER).

[7] =n RIGHT ARGUMENT: THE MATRIX TO BE SPREAD (USUALLY CHARACTER DATA).
[8] n

[9] A RESULT: THE SPREAD MATRIX.

[10] n

[11] SHP<pHAT na THE SHAPE OF THE MATRIX

[12] WIDTH<SHP[2] n THE NUMBER OF COLUMNS IN THE MATRIX
[13] n

f14] XSHP<SHP+(MULT|MULT-SHP{11),0 aXSHP IS THE SHAPE OF MAT WITH THE RONWNS
{151 a INCREASED TO A MULTIPLE OF MULT

[16] n

[17] MATPLUSROWS<«XSHP+MAT n OVERTAKE MAT TO HAVE THIS NUMBER OF ROWS
[18] m

{19] NEW<XSHP[1]:NULT n NEW THE NUMBER OF ROWS THE NEW MATRIX
[20] m WILL HAVE. (THE MULTIPLE)

[21] nm

[22]

23]

[2u]

[25]

[26]

words, did absolutely nothing to clarify the one
obscure part of this function. It is fairly clear that
breaking this up further wouldn't do it. What does
this do? Well, there are two approaches-- one could
try to simplify and analyze with no idea of where
one was going; or one could take some knowledge of
the intention of the function, together with reading
of the rest of the function, to form a conjecture,
which could then be verified. We took the second
path; here's where comments come in handy-- we
needed to know the author's intent. Knowing the
purpose of both functions (the comments on the
first seem a little more helpful here), it was easy to
conjecture that the overtake must be to pad the
originai data X to a number of rows which is an
even multiple of the number of "logical columns”
desired, CQOL-- therefore, our conjecture was that
this phrase must be equivalent to
C<(COLXT (14D):COL) ,1+D<pX

A short proof verified that this was indeed the
case. Note that the "skimming" we went through in
the first place was crucial to form the conjecture
(which made the analysis, we suspect, much
shorter than if we'd had no idea where we were
going). This skimming, as we began by showing, is
much easier when all the context is immediately in
front of us. That is, for the one part of both
functions that is hard to understand, SPD-- the
"nasty" one-liner-- makes it easier to discover the
meaning than the broken-up SPREAD.

Our central conclusion was arrived at before
examining this example: that the problem of written
communications, in APL as in English, requires
skills on the part of the reader as well as on the
part of the writer. The responsibility for

Style and Literacy in APL

communication has been laid too heavily on writers
in the APL community.

Modifying one's APL writing style to cater to an
illiterate audience has been a recommended
approach. We have tried to show, first, that
becoming accustomed to a less expressive style of
writing can hamper a writer's thinking in
approaching a problem; second, that reading skills
are valuable in themselves; and, finally, that --
assuming readers of APL are willing and able to
read -- the often-recommended "short and vertical”
style makes it harder, rather than easier, to read
APL, especially when obscure phrases are
encountered in either style.

As with any aesthetic issue, the question of good
style in APL cannot be settled prescriptively. A
final, and perhaps the weightiest, reason for
developing APL reading skills is that to read is, in
the final analysis, the most sensible advice one can
give to writers concerned with improving their own
style. lverson has remarked that

Perhaps the most important habit in the
development of good style in a language
remains to be mentioned, the habit of
critical reading. Such reading should not be
limited to collections of well-turned and
useful phrases...nor should it be limited to
topics in a reader's particular specialty.

. .one may benefit from the critical reading
of mediocre writing as well as good; good
writing may present new turns of phrase,
but mediocre writing may spur the reader to
improve upon it. [5]

Perlis and Rugaber[6] have advocated teaching the
recognitition of particular phrases (often called
"idioms" in the APL community) as a usefu! step in
teaching both reading, and writing, of APL.
Published collections of such phrases include Perlis
and Rugaber’'s report The APL Idiom List{7] and
the more recent FinnAPL |Idiom Library[8]. As
lverson remarks, such collections are certainly one
kind of useful reading matter. But by themselves
they are unlikely to make anyone literate, and in
fact careless use of such collections in teaching can
sometimes disguise illiteracy rather than promote
literacy, if students feel encouraged to simply
accept, recognize, and copy such phrases rather
than actually reading and analyzing them (see
Pesch [9] for more discussion of this issue).

We can provide no easy answers: but this much is
clear-- writers of APL must assume a literate
audience (as writers of English do) if they are to
use the language effectively; and readers of APL
(which is to say all of us) can read best by reading
more. In the end, greater literacy is its own
reward.

Michael J. A. Berry

References.

[1] Jonathan Amsterdam, "Computer Languages of
the Future", Popular Computing, September
1983

[2] "APL Quote Quad Style Guide for APL
Functions"”, APL Quote Quad 15 3, March 1985,
p. 8

{3] Eugene R. Mannacio, Standards for APL
Applications Development and Enhancement
(Fireman's Fund American Life Insurance Co.,
July 2, 1984)

[4] K. E. Iverson, A Dictionary of the APL
Language (1.P. Sharp Associates, DRAFT, 5
September 1985)

[5] K. E. lverson, "Programming Style in APL",
An APL Users Meeting (1978), Proceedings
(1.P. Sharp Associates, September 1978)

[6] Alan J. Perlis and Spencer Rugaber,
"Programming with idioms in APL", APL79
Conference Proceedings (APL Quote Quad 9 4,
June 1979)

[7] Alan J. Perlis and Spencer Rugaber, The APL
ldiom List (Yale University Technical Report
#87, April 1977)

[8] FinnAPL ldiom Library (Finnish APL
Association; second edition, 1982)

[9] Roland H. Pesch, Review of FinnAPL Idiom
Library (APL Quote Quad 13 2, December 1982)

Style and Literacy in APL

