
Programming Language APL, Extended
International Standards Organisation

DIS 8485(1997)

Leigh Clayton

Mark D. Eklof

Eugene McDonnell

Editors

1 May 1997

Contents

Contents i

List of Figures ix

0 Introduction 1

1 Scope and Field of Application 3
1.1 Purpose : 3
1.2 Scope : 3

2 References 5

3 Form of the Standard 7
3.1 Form of Definitions : 7
3.2 Named Arrays in Examples : 8
3.3 Notes : 9
3.4 Cross-References : 9
3.5 General Definitions : 9

4 Compliance 11
4.1 Conforming Implementations : 11

4.1.1 Required Behaviour for Conforming Implementations : : : : : : : 11
4.1.2 Required Documentation for Conforming Implementations : : : : 12

4.1.2.1 Documentation of Optional-Facilities : : : : : : : : : : 12
4.1.2.2 Documentation of Implementation-Defined-Facilities : : 12
4.1.2.3 Consistent Extensions : : : : : : : : : : : : : : : : : : 13

4.2 Conforming Programs : 13
4.2.1 Required Behaviour for Conforming Programs : : : : : : : : : : 13
4.2.2 Required Documentation for Conforming Programs : : : : : : : : 13

5 Definitions 15
5.1 Characters : 15
5.2 Numbers : 17

5.2.1 Elementary Operations : 17
5.2.2 Number Constants : 18

APL Extended — DIS 8485(1997) i

1 May 1997 at 23:52

CONTENTS

5.2.3 Subsets of the Set of Numbers : : : : : : : : : : : : : : : : : : : 18
5.2.4 Implementation Algorithms : 20
5.2.5 Defined Operations : 22

5.3 Objects : 24
5.3.1 Lists : 24
5.3.2 Arrays : 25
5.3.3 Defined-Functions : 27
5.3.4 Tokens : 29

5.3.4.1 Metaclasses : 30
5.3.4.2 Index-List : 33

5.3.5 Symbols : 33
5.3.6 Contexts : 33
5.3.7 Workspaces : 34
5.3.8 Sessions : 34
5.3.9 Shared-Variables : 36
5.3.10 Systems : 37

5.4 Evaluation Sequences : 39
5.4.1 Evaluation Sequence Phrases : : : : : : : : : : : : : : : : : : : 40
5.4.2 Diagrams : 41

5.5 Other Terms : 42

6 Syntax and Evaluation 43
6.1 Introduction : 43

6.1.1 Evaluate-Line : 43
6.1.2 Character-Diagrams : 44
6.1.3 Evaluate-Statement : 51
6.1.4 Bind-Token-Class : 53
6.1.5 Literal-Conversion : 54
6.1.6 Statement-Analysis Token-Diagrams : : : : : : : : : : : : : : : : 54

6.2 Reduce-Statement : 59
6.3 The Phrase Evaluators : 64

6.3.1 Diagrams : 64
6.3.2 Remove-Parentheses : 64
6.3.3 Evaluate-Niladic-Function : 64
6.3.4 Evaluate-Monadic-Function : 65
6.3.5 Evaluate-Monadic-Operator : 66
6.3.6 Evaluate-Dyadic-Function : 67
6.3.7 Evaluate-Dyadic-Operator : 69
6.3.8 Evaluate-Indexed-Reference : 70
6.3.9 Evaluate-Assignment : 71
6.3.10 Evaluate-Indexed-Assignment : : : : : : : : : : : : : : : : : : : 71
6.3.11 Evaluate-Variable : 72
6.3.12 Build-Index-List : 72
6.3.13 Process-End-of-Statement : 73

6.4 The Form Table : 74

7 Scalar Functions 79

1 May 1997 at 23:52

ii APL Extended — DIS 8485(1997)

CONTENTS

7.1 Monadic Scalar Functions : 80
7.1.1 Conjugate : 80
7.1.2 Negative : 80
7.1.3 Direction : 81
7.1.4 Reciprocal : 81
7.1.5 Floor : 82
7.1.6 Ceiling : 82
7.1.7 Exponential : 83
7.1.8 Natural Logarithm : 83
7.1.9 Magnitude : 84
7.1.10 Factorial : 85
7.1.11 Pi times : 86
7.1.12 Not : 87

7.2 Dyadic Scalar Functions : 87
7.2.1 Plus : 88
7.2.2 Minus : 88
7.2.3 Times : 89
7.2.4 Divide : 89
7.2.5 Maximum : 90
7.2.6 Minimum : 90
7.2.7 Power : 91
7.2.8 Logarithm : 92
7.2.9 Residue : 93
7.2.10 Binomial : 94
7.2.11 Circular Functions : 95
7.2.12 And/LCM : 97
7.2.13 Or/GCD : 98
7.2.14 Nand : 98
7.2.15 Nor : 99
7.2.16 Equal : 100
7.2.17 Less than : 101
7.2.18 Less than or equal to : 102
7.2.19 Not equal : 103
7.2.20 Greater than or equal to : 104
7.2.21 Greater than : 105

8 Structural Primitive Functions 107
8.1 Introduction : 107
8.2 Monadic Structural Primitive Functions : : : : : : : : : : : : : : : : : : 107

8.2.1 Ravel : 107
8.2.2 Shape : 108
8.2.3 Index Generator : 109
8.2.4 Table : 110
8.2.5 Depth : 111
8.2.6 Enlist : 112

8.3 Dyadic Structural Primitive Functions : : : : : : : : : : : : : : : : : : : 112
8.3.1 Reshape : 112

APL Extended — DIS 8485(1997) iii

1 May 1997 at 23:52

CONTENTS

8.3.2 Join : 114

9 Operators 115
9.1 Introduction : 115
9.2 Monadic Operators : 115

9.2.1 Reduction : 115
9.2.2 Scan : 119
9.2.3 N-wise Reduction : 121
9.2.4 Duplicate : 124
9.2.5 Commute : 124
9.2.6 Each : 125

9.3 Dyadic Operators : 126
9.3.1 Outer Product : 126
9.3.2 Inner Product : 127
9.3.3 Rank operator definitions : 129
9.3.4 Rank operator deriving monadic function : : : : : : : : : : : : : 130
9.3.5 Rank operator deriving dyadic function : : : : : : : : : : : : : : 131

10 Mixed Functions 133
10.1 Monadic Mixed Functions : 133

10.1.1 Roll : 133
10.1.2 Grade Up : 135
10.1.3 Grade Down : 137
10.1.4 Reverse : 138
10.1.5 Monadic Transpose : 139
10.1.6 Matrix Inverse : 140
10.1.7 Execute : 141
10.1.8 Unique : 142
10.1.9 First : 143

10.2 Dyadic Mixed Functions : 143
10.2.1 Join Along an Axis : 143
10.2.2 Index of : 146
10.2.3 Member of : 147
10.2.4 Deal : 148
10.2.5 Replicate : 149
10.2.6 Expand : 151
10.2.7 Rotate : 153
10.2.8 Base Value : 155
10.2.9 Representation : 157
10.2.10 Dyadic Transpose : 159
10.2.11 Take : 161
10.2.12 Drop : 162
10.2.13 Matrix Divide : 163
10.2.14 Indexed Reference : 164
10.2.15 Indexed Assignment : 165
10.2.16 Without : 167
10.2.17 Left : 167

1 May 1997 at 23:52

iv APL Extended — DIS 8485(1997)

CONTENTS

10.2.18 Right : 168
10.2.19 Character Grade Definitions : 168
10.2.20 Character Grade Down : 169
10.2.21 Character Grade Up : 170
10.2.22 Pick : 172
10.2.23 Identical : 173
10.2.24 Disclose : 174
10.2.25 Disclose with Axis : 174
10.2.26 Enclose : 175
10.2.27 Enclose with Axis : 175

11 System Functions 177
11.1 Introduction : 177
11.2 Definitions : 177
11.3 Diagram : 178
11.4 Niladic System Functions : 178

11.4.1 Time Stamp : 178
11.4.2 Atomic Vector : 179
11.4.3 Line Counter : 179
11.4.4 Event Message : 180
11.4.5 Event Type : 181

11.5 Monadic System Functions : 181
11.5.1 Delay : 181
11.5.2 Name Class : 182
11.5.3 Expunge : 183
11.5.4 Name List : 184
11.5.5 Query Stop : 185
11.5.6 Query Trace : 186
11.5.7 Monadic Event Simulation : 187

11.6 Dyadic System Functions : 187
11.6.1 Name List : 187
11.6.2 Set Stop : 188
11.6.3 Set Trace : 189
11.6.4 Execute Alternate : 190
11.6.5 Dyadic Event Simulation : 191
11.6.6 Transfer Form : 192

12 System Variables 193
12.1 Definitions : 193
12.2 Evaluation Sequences : 194

12.2.1 Comparison Tolerance : 194
12.2.2 Random Link : 195
12.2.3 Print Precision : 196
12.2.4 Index Origin : 197
12.2.5 Latent Expression : 198

13 Defined Functions 199
13.1 Introduction : 199

APL Extended — DIS 8485(1997) v

1 May 1997 at 23:52

CONTENTS

13.2 Definitions : 200
13.3 Diagrams : 203
13.4 Operations : 207

13.4.1 Call-Defined-Function : 207
13.4.2 Defined-Function-Control : 209
13.4.3 Function Fix : 210
13.4.4 Character Representation : 211

13.5 Function Editing : 211
13.5.1 Evaluate-Function-Definition-Request : : : : : : : : : : : : : : : 211
13.5.2 Evaluate-Editing-Request : 213
13.5.3 Diagrams : 214

14 Shared Variables 217
14.1 Informal Introduction : 217
14.2 Definitions : 221
14.3 Diagrams : 221
14.4 Operations : 221

14.4.1 Primary-Name : 221
14.4.2 Surrogate-Name : 221
14.4.3 Degree-of-Coupling : 222
14.4.4 Access-Control-Vector : 222
14.4.5 Offer : 222
14.4.6 Retract : 223
14.4.7 Shared-Variable-Reset : 223
14.4.8 Report-State : 223
14.4.9 Signal-Event : 224
14.4.10 Clear-Event : 224

14.5 Shared Variable Forms : 224
14.5.1 Shared Variable Reference : 224
14.5.2 Shared Variable Assignment : 225
14.5.3 Shared Variable Indexed Assignment : : : : : : : : : : : : : : : 226

14.6 Shared Variable System Functions : 226
14.6.1 Shared Variable Access Control Inquiry : : : : : : : : : : : : : : 226
14.6.2 Shared Variable Query : 228
14.6.3 Shared Variable Degree of Coupling : : : : : : : : : : : : : : : : 229
14.6.4 Shared Variable Offer : 230
14.6.5 Shared Variable Retraction : 231
14.6.6 Shared Variable Access Control Set : : : : : : : : : : : : : : : : 232
14.6.7 Shared Variable State Inquiry : : : : : : : : : : : : : : : : : : : 233
14.6.8 Shared Variable Event : 234

15 Formatting and Numeric Conversion 235
15.1 Introduction : 235
15.2 Numeric Conversion : 235

15.2.1 Numeric-Input-Conversion : 235
15.2.2 Numeric-Output-Conversion : 237

15.3 Diagrams : 238

1 May 1997 at 23:52

vi APL Extended — DIS 8485(1997)

CONTENTS

15.4 Operations : 240
15.4.1 Monadic Format : 240
15.4.2 Dyadic Format : 244

16 Input and Output 247
16.1 Introduction : 247
16.2 Definitions : 248

16.2.1 User Facilities : 248
16.2.2 Implementation Algorithms : 248
16.2.3 Prompts : 249

16.3 Diagrams : 250
16.4 Operations : 250

16.4.1 Immediate-Execution : 250
16.4.2 Quad Input : 252
16.4.3 Quote Quad Input : 253
16.4.4 Quad Output : 253
16.4.5 Quote Quad Output : 254

17 System Commands 255
17.1 Introduction : 255
17.2 Definitions : 255
17.3 Diagrams : 256
17.4 Operations : 256

17.4.1 Evaluate-System-Command : 256
17.5 Diagrams and Evaluation Sequences : 257

Annexes

A Component Files (normative) 263
A.1 Definitions of arguments and results : 263
A.2 Definition of functions : 264
A.3 Errors : 265

Bibliography (informative) 267

APL Extended — DIS 8485(1997) vii

1 May 1997 at 23:52

CONTENTS

1 May 1997 at 23:52

viii APL Extended — DIS 8485(1997)

List of Figures

1 Statement Evaluation. : 63
2 Shared Variable Access Rules. : 220

List of Tables

1 The Required Character Set : 16
2 Relationship between Class-Name and Content : : : : : : : : : : : : : : 31
3 The Phrase Table. : 62
4 The Form Table : 75
5 Actions for the Reduction of an Empty Vector. : : : : : : : : : : : : : : : 118
6 Actions for the N-wise Reduction of an Empty Vector. : : : : : : : : : : : 123

APL Extended — DIS 8485(1997) ix

1 May 1997 at 23:52

LIST OF FIGURES

1 May 1997 at 23:52

x APL Extended — DIS 8485(1997)

0

Introduction

APL stands for A Programming Language. It is a notation invented by K. E. Iverson
in the late 1950s for the description of algorithms, and expanded on and made into the
programming system APL\360 by Iverson and his colleagues Adin Falkoff, Larry Breed,
Dick Lathwell, and Roger Moore in the mid-1960s.

This document, Programming Language APL, Extended, is a sequel to Programming
Language APL, ISO 8485 (1989).

The principal differences that the reader will find here have to do with new features that
have been added. These topics are:

without
greatest common divisor
least common multiple
duplicate
commute
table
join along first axis
mixed arrays
overbar in names
underbar in names
replicate
character grades
grades of arrays greater than rank one
unique
alpha as a name
omega as a name
ambivalent defined functions
event handling
n-wise reduction
complex arithmetic
left

APL Extended — DIS 8485(1997) 1

1 May 1997 at 23:52

0. INTRODUCTION

right
function rank operator
defined operators
component file system
enclose
disclose
enlist
pick
depth
identical
each
first

An entry for each of these topics will be found in the index. Some new system commands
have been added. Shared variable extensions have been added. Workspace Interchange
Standard 2 is given, in which canonical representation vectors of type “E” are used to
represent generalised arrays.

1 May 1997 at 23:52

2 APL Extended — DIS 8485(1997)

1

Scope and Field of Application

1.1 Purpose

This standard defines the programming language APL and the environment in which APL
programs are executed. Its purpose is to facilitate interchange and promote portability of
APL programs and programming skills.

1.2 Scope

This standard specifies the syntax and semantics of APL programs and the characteristics
of the environment in which APL programs are executed.

It also specifies requirements for conformance to this standard, including the publication of
values and characteristics of implementation properties so that conforming implementations
can be meaningfully compared.

This standard does not specify:

– implementation properties that are likely to vary with the particular equipment or
operating system used;

– required values for implementation limits such as APL workspace size or numeric
precision;

– the data structures used to represent APL objects;

– the facilities available through shared variables.

APL Extended — DIS 8485(1997) 3

1 May 1997 at 23:52

1. SCOPE AND FIELD OF APPLICATION

1 May 1997 at 23:52

4 APL Extended — DIS 8485(1997)

2

References

a. ISO/DIS 2382/15 Data processing—Vocabulary—Part 15: Programming languages.

b. ISO/IS 2375 Registered Character Set 68—APL Character Set for Workspace
Interchange.

c. ISO/IS 8485 Programming Language APL.

APL Extended — DIS 8485(1997) 5

1 May 1997 at 23:52

2. REFERENCES

1 May 1997 at 23:52

6 APL Extended — DIS 8485(1997)

3

Form of the Standard

This standard is a formal model of an APL machine, specified as a collection of finite sets,
diagrams, and evaluation sequences, and objects constructed from finite sets, diagrams, and
evaluation sequences.

The finite sets are the implementation-defined character-set, the implementation-
defined set of numbers, and the enumerated sets array-type, class-names, keyboard-
states, mode-names, required-character-set, and workspace-presence.

Diagrams are directed graphs used to designate syntactic forms.

Evaluation sequences are formal procedures that operate on finite sets, diagrams, other
evaluation sequences and objects defined in the standard.

Objects are entities consisting of enumerated set members and other objects. The objects
are list, array, defined-function, defined-operator, token, symbol, context, workspace,
session, shared-variable, and system.

Each object has attributes describing its state. The attributes of an array, for example, are
its typical element, its shape, and its ravel.

Objects often have defined properties derived from their attributes. The rank of an array,
for example, is the shape of the shape of the array.

3.1 Form of Definitions

Defined terms in this standard are always set in bold and indexed. The index entry begins
with the page number of the definition followed by the page numbers of all references to
the term. If the definition and a use of a term occur on the same page, that page number
will occur twice in the Index.

APL Extended — DIS 8485(1997) 7

1 May 1997 at 23:52

3. FORM OF THE STANDARD

The following terms occur throughout the document and are not cross-indexed: character,
content, class, item, and number.

Note: Terms in this document include both phrases such as implementation-parameter and words
such as nil.

Each definition in this standard takes one of four forms.

1. Regular definitions consist of the term being defined followed by a colon and the body
of the definition. The term Boolean is defined in this way.

2. Members of an enumerated set are defined simply by being listed in the definition of the
enumerated set. The term nil is defined in this way, as a member of the enumerated set
class-names.

3. Diagrams are defined by directed graphs. The term expression is defined in this way.

4. Definitions of terms that designate evaluation sequences take the following form:

– The term being defined, such as scan.

– The forms that the evaluation mechanism used in the standard recognises as designating
this term, such as Z ¼f\B.

– An informal introduction indicating the purpose of the procedure. The informal
introduction is considered commentary on the standard.

– An evaluation sequence expressed in a formal, though English-like, language defined
in the subsection Evaluation Sequences. A conforming-implementation is required
to emulate the behaviour described in the evaluation sequence as modified by the
additional-requirements, if any.

– Examples, which show effects of the procedure specified by the evaluation sequence.
Examples are considered commentary on the standard.

– Additional Requirements, giving aspects of the behaviour required of this operation
that cannot conveniently be expressed in the evaluation sequence.

3.2 Named Arrays in Examples

In the examples in this standard, APL identifiers beginning withN, such as N234, represent
numeric arrays whose shape and content are specified by the digits in the identifier. Each
digit in the identifier specifies an element of the shape vector; each element of the array,
when broken down into digits, gives the index of that element.

For example,

Example:

N4
1 2 3 4

1 May 1997 at 23:52

8 APL Extended — DIS 8485(1997)

3.3. NOTES

N23
11 12 13
21 22 23

N234
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

N234[2;3;1]
231

3.3 Notes

This standard contains notes that comment on the text of the standard, pointing out the
significance of definitions, noting relationships between definitions, and otherwise making
the text approachable. These notes are set in a different type style than the text of the
standard, and are prefixed with the word “Note:”. The following is an example of a note.

Note: This is an example of a note.

Notes never set requirements for conformance. They may suggest desired properties, but
such suggestions are not mandatory for conformance.

3.4 Cross-References

The heading levels in this standard are chapter, section, and subsection. When cross-
references are given, they are always to a subsection title. In the Index, subsections are
treated like definitions: the page on which a subsection begins is always the first entry in
the Index; subsequent page numbers in the index show where references are made to the
subsection.

3.5 General Definitions

For the purpose of this standard, the definitions given in ISO/DIS 2382/15 shall apply,
together with the following:

– Program: An application.

Note: The term is used in this standard to include everything from an APL expression to a collection
of workspaces communicating via shared variables.

APL Extended — DIS 8485(1997) 9

1 May 1997 at 23:52

3. FORM OF THE STANDARD

– Implementation: A combination of computer hardware and software that processes
(APL) programs.

Note: An implementation is an instance of the object system specified by this standard.

– Facility (of an implementation): A unit of behaviour. Every facility is one of:

– Defined-Facility: A facility fully specified in this standard and not designated
optional or implementation-defined.

– Optional-Facility: A facility fully specified in this standard and designated optional.

– Implementation-Defined-Facility: A facility not fully specified by this standard that
is designated implementation-defined.

– Consistent-Extension: A facility not specified in this standard that, for a construct
this standard specifies as producing an error, gives some effect other than signalling
the specified error.

1 May 1997 at 23:52

10 APL Extended — DIS 8485(1997)

4

Compliance

4.1 Conforming Implementations

An APL implementation conforms to this standard if it meets the following requirements
for both behaviour and documentation.

4.1.1 Required Behaviour for Conforming Implementations

A conforming-implementation shall provide all defined-facilities and implementation-
defined-facilities. Each such facility shall behave as specified by this standard.

A conforming-implementationmay provide optional-facilities. If provided, an optional-
facility shall behave as specified by this standard. Attempted use of an optional-facility
that is not provided shall cause the conforming-implementation to signal an error. A
conforming-implementation shall not replace the error signalled by a missing optional-
facility with other behaviour.

A conforming-implementation may provide consistent-extensions. The presence of a
consistent-extension shall not affect the behaviour of a conforming-program.

A conforming-implementation shall use algorithms that produce results that are the same
as those produced by the evaluation sequences. Mathematical function algorithms shall
have at least the accuracy that the algorithms given in the evaluation sequences would
produce.

Note: The evaluation sequences used in this standard are intended to specify results, not
implementation techniques.

The errors produced by the absence of an optional-facility cannot be replaced by consistent-
extensions in a conforming-implementation, since this would affect the behaviour of conforming-
programs that use the optional-facility.

APL Extended — DIS 8485(1997) 11

1 May 1997 at 23:52

4. COMPLIANCE

4.1.2 Required Documentation for Conforming Implementations

A conforming-implementation shall provide a reference document that satisfies the
following requirements for the documentation of optional-facilities, implementation-
defined-facilities, and consistent-extensions:

4.1.2.1 Documentation of Optional-Facilities

A conforming-implementation shall document the presence or absence of each of the
following optional-facilities:

– Shared-Variable-Protocol. A mechanism that permits one session to exchange data
with other autonomous sessions.

– Statement-Separator-Facility. A mechanism for placing more than one statement on a
line.

– Trace-and-Stop-Control. A mechanism that assists the testing and correction of defined
functions.

– Complex-Arithmetic-Facility. A mechanism that permits the generation and
manipulation of complex-arithmetic results.

4.1.2.2 Documentation of Implementation-Defined-Facilities

A conforming-implementation shall document the following aspects of implementation-
defined-facilities:

– A description of the character-set. This shall include a table showing the correspondence
between index positions in the atomic-vector and the members of the required-
character-set. If the graphic symbols used in a conforming-implementation are
dissimilar to those in Table 1, the correspondence between the graphic symbols used in
the implementation and those in Table 1 shall be given.

– A description of the numbers. This shall include a characterisation of the internal
representation used for numbers.

– Descriptions of the characteristics of each implementation-algorithm.

– The value of each implementation-parameter.

– A description of each internal-value-set.

– A description of additional event-types.

1 May 1997 at 23:52

12 APL Extended — DIS 8485(1997)

4.2. CONFORMING PROGRAMS

4.1.2.3 Consistent Extensions

A conforming-implementationshall document all consistent-extensions it provides. The
documentation shall clearly indicate that the use of a consistent-extension prevents a
program from conforming with this standard.

Note: Implementers of conforming-implementations should, in general, be wary of replacing
limit-errors with consistent-extensions, since these errors are the only safeguards a conforming-
program has when attempting to operate in a conforming-implementation whose implementation-
parameters are inadequate to support it.

For example, if the limit-error on identifier-length-limit werenot signalled, a conforming-program
with identifiers longer than the local identifier-length-limit could malfunction without warning.

4.2 Conforming Programs

A program conforms to this standard if it meets the following requirements for both
behaviour and documentation.

4.2.1 Required Behaviour for Conforming Programs

A conforming-program shall use only those facilities specified in this standard.

A conforming-program shall not use consistent-extensions.

A conforming-program shall not depend on the signalling of any error by a conforming-
implementation.

Note: Conforming-programs cannot depend on error behaviour, since consistent-extensions that
replace errors are permitted in conforming-implementations. A conforming program may make use
of certain event handling features unreservedly (for example,²ES), and others with some restrictions.
Consider the following example:

Z¼'¨1' ²EA 'A ²SVO B'

Z¼(0 1 2 ¨1)[0 1 2°Z]

This is conforming because it only depends on the values 0, 1, and 2, which have defined meanings
when returned as the result of ²SVO. The first line can return anything, but the second line filters
out all but 0, 1, and 2, hence eliminating any subtle dependencies on error behaviour or consistent
extensions.

4.2.2 Required Documentation for Conforming Programs

A conforming-program shall document which optional-facilities it requires.

APL Extended — DIS 8485(1997) 13

1 May 1997 at 23:52

4. COMPLIANCE

A conforming-program shall document any specific requirements it has for
implementation-parameters.

Note: A conforming-program may or may not work, and may or may not produce identical
results on all conforming-implementations, because of inherent dependencies on implementation-
parameters or implementation-algorithms such as the algorithm used for matrix inversion.

It is suggested that conforming-programs provide documentation detailing the values of
implementation-parameters they require so that their suitability for a given conforming-
implementation can be determined readily.

1 May 1997 at 23:52

14 APL Extended — DIS 8485(1997)

5

Definitions

5.1 Characters

– Character-Set: An implementation-defined finite set.

– Character: A member of the implementation-defined finite set character-set.

– Required-Character-Set: An enumerated set which is the union of a set of alphabetics
with the sets of Numeric Characters and Special Characters designated in Table 1. The
alphabetics may be any alphabet; this standard uses the Alphabetic Characters shown
in Table 1 to represent the dual-case Latin alphabet. The character-set provided by a
conforming-implementation shall contain all members of the required-character-set
which results from the choice of alphabet.

Additional Requirement:

Members of the required-character-set are represented in this standard by graphic symbols
in a particular typeface, as shown in Table 1. The graphic symbols associated with the
required-character-set in a conforming-implementation are implementation-defined.

Note: There are conformance requirements associated with the required-character-set. A
conforming-implementation must publish, as part of its required documentation, a table giving the
correspondence between the graphic symbols in Table 1 and the atomic-vector. Where the graphic
symbols provided are not similar in appearance to those used in this standard, the correspondence
between the graphic symbols in this standard and those provided by the implementation must also be
provided.

Some of the graphic symbols given in Table 1 are not used to designate APL constructs in this
standard. They are present to provide all keys on common terminal keyboards with corresponding
symbols.

The names in Table 1 are not to be considered part of this standard.

APL Extended — DIS 8485(1997) 15

1 May 1997 at 23:52

5. DEFINITIONS

Alphabetic Characters

A B C D E F G H I J K L M N O P Q R S T U V W
X Y Z
Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù
Ú Û Ü

Numeric Characters

0 1 2 3 4 5 6 7 8 9

Special Characters

© alpha è del tilde ä quote quad
· down arrow ¯ delta µ rho
¼ left arrow æ delta stile ; semicolon
¾ right arrow Â delta underbar ¸ down shoe
õ up arrow ¡ diaeresis » left shoe
- bar À diamond º right shoe

blank ¦ divide « up shoe
{ left brace $ dollar sign Ý up shoe jot
} right brace . dot / slash
[left bracket ­ epsilon \ back slash
] right bracket = equal ð slash bar
£ down caret ¿ greater-than or equal ñ back slash bar
é down caret tilde ° iota * star
< left caret ± jot | stile
> right caret ¢ less-than or equal ¬ down stile
¤ up caret § multiply ¶ up stile
ê up caret tilde ¥ not equal ª up tack
´ circle ¨ overbar ß up tack jot
í circle backslash (left parenthesis ½ right tack
î circle bar) right parenthesis Á left tack
ë circle star + plus ³ down tack
ì circle stile ² quad à down tack jot
: colon á quad divide ~ tilde
, comma ? query _ underbar
ï comma bar ø diaeresis jot ¡~ diaeresis tilde
® del ' quote ¹ omega
ç del stile ! quote dot ô equal underbar

Table 1: The Required Character Set

1 May 1997 at 23:52

16 APL Extended — DIS 8485(1997)

5.2. NUMBERS

5.2 Numbers

– Number-Set: An implementation-defined finite set used to represent arithmetic
quantities.

– Number: A member of the number-set.

Note: The number-set is an abstraction used in this document to represent the floating-point
arithmetic quantities of an arbitrary computer.

5.2.1 Elementary Operations

Elementary-Operation: One of the following four implementation-algorithms.

– A Plus B.

Note: Plus implements addition.

– A Minus B.

Note: Minus implements subtraction.

– A Times B.

Note: Times implements multiplication.

– A Divided-by B.

Note: Divided-by implements division.

Note: Each elementary-operation is a mapping from the Cartesian product of the number-set
with itself back onto the union of the number-set and the metaclass error, as described in the
subsection Implementation-Algorithms. It is assumed that members of the metaclass error are
returned by elementary-operations when results cannot be represented as numbers. In particular,
exponent-overflow is returnedwhen the result of an elementary-operation is too large in magnitude
to be represented by a number, exponent-underflow is returned when the result of an elementary-
operation is non-zero but too small in magnitude to be represented by a number other than zero,
and domain-error is returned by an elementary-operation called with arguments for which its
mathematical counterpart is undefined, such as one divided-by zero.

The treatment of exponent-overflow and exponent-underflow is not specified by this standard,
except as suggestions to the implementer. Implementers should avoid having exponent-overflow
and exponent-underflow occur in the intermediate results of implementation-algorithms wherever
possible. In any case, exponent-underflow should not cause a limit-error.

The fact that these fundamental algorithms are effectively undefined in the standard is intentional.
A definition general enough to cover all known and possible floating-point systems was felt to be
less useful than the requirement that the internal representation for numbers in a conforming-
implementation be described in the required-documentation for the implementation.

APL Extended — DIS 8485(1997) 17

1 May 1997 at 23:52

5. DEFINITIONS

5.2.2 Number Constants

Note: The following numbers, used in this standard, are defined here as terms to make clear the
distinction between APL constant arraysrepresentedas strings of APL digits, such as1, and members
of the the implementation-defined finite set containing numbers, such as one.

These terms arealways set in bold when they are used in this formal sense. They are not cross-indexed.

– Zero: A number such that, for any number A, A plus zero is A.

– One: A number such that, for any number A, A times one is A.

– Negative-One: Zero minus one.

– Two: One plus one.

– Three: Two plus one.

– Four: Three plus one.

– Five: Four plus one.

– Six: Five plus one.

– One-half: One divided-by two.

– Imaginary-One: Negative-One to-the-power one-half.

5.2.3 Subsets of the Set of Numbers

Note: The following subsets of the numbers are used to define the domains of operations.

– Boolean: zero or one.

Note: False is represented by zero, true by one.

Note: A counting-number is a member of the subset of the numbers accessible under a successor
function.

– Positive-Counting-Number: one or any number that can be generated by A plus one,
where A is a positive-counting-number.

– Negative-Counting-Number: The number negative-one or any number that can be
generated by N plus negative-one, where N is a negative-counting-number.

– Nonnegative-Counting-Number: A positive-counting-number or zero.

1 May 1997 at 23:52

18 APL Extended — DIS 8485(1997)

5.2. NUMBERS

– Counting-Number: A negative-counting-number or a nonnegative-counting-
number.

Note: An integer is a member of the subset of the numbers accessible from zero and one through
addition and subtraction.

– Positive-Integer: A positive-counting-number or a number that can be generated by
A plus B, where A and B are positive-integers.

– Negative-Integer: A negative-counting-number or a number that can be generated
by A plus B, where A and B are negative-integers.

– Nonnegative-Integer: A positive-integer or zero.

– Integer: A negative-integer or a nonnegative-integer.

– Positive-Number: A positive-integer, or a number other than zero that can be generated
by A times B, by A divided-by B, or by A plus B, where A and B are positive-numbers.

– Negative-Number: A negative-integer, or a number other than zero that can be
generated by A times B, by A divided-by B, or by C plus D, where A is a positive-
number and B, C and D are negative-numbers.

– Nonnegative-Number: A positive-number or zero.

– Real-Number: A negative-number or a nonnegative-number.

– Complex-Number: A real-number, or a number that can be generated by A plus (B
times imaginary-one), where A and B are real-numbers.

– Complex-Integer: A complex-number that can be generated byA plus (imaginary-one
times B), where A and B are integers.

– Half-plane: Two numbers are in the same half-plane if the signs of either their real-
parts or imaginary-parts are nonzero and are equal.

– Unit-square: A unit-square contains all numbers for which the integral part of the real
parts are the same and the integral parts of the imaginary parts are the same.

– Arc: The arc of a number is zero if the number is zero, and otherwise is the imaginary-
part of the natural-logarithm of the number, and has a value greater than minus pi and
less than or equal to pi.

– Fraction: A number lying in the rectangle of the complex-plane bounded by the two
parallel lines passing through zero and one at an angle of 135 degrees with the real axis,
and the two parallel lines passing through one and negative-one at an angle of forty-five
degrees with the real axis, including the numbers on the lines going through zero and
negative-one, but not including the numbers on the two lines through one.

APL Extended — DIS 8485(1997) 19

1 May 1997 at 23:52

5. DEFINITIONS

– First-Quadrant-Associate: Either a nonnegative-number, or a number with both
real-part and imaginary-part positive-numbers, and having the same magnitude as
a given nonzero number, and separated from it by an angle of either 0, 90, 180, or 270
degrees.

Note: The numbers are assumed to be identical to the complex-numbers.

Example

Consider a normalised base-2 floating point number system with a two position exponent field and a
two position mantissa field with the radix point between the digits. The decimal values representable
with this system and the categories into which each falls are as follows:

Exponent Mantissa Value Boolean Counting- Integer
in Base 2 in Base 2 in Base 10 Number

00 00 0 Y Y Y
00 10 1 Y Y Y
00 11 1.5
01 10 2 Y Y
01 11 3 Y Y
10 10 4 Y Y
10 11 6 Y
11 10 8 Y
11 11 12 Y

As can be seen in this example, counting-numbers form a dense subset of the integers; the largest
counting-number is typically a power of the number system base.

A given number, such as a counting-number, may have several hardware representations. Except for
their effect on system resources, these representations should be indistinguishable to a conforming-
program.

5.2.4 Implementation Algorithms

An Implementation-Algorithm is an algorithm used in this standard whose behaviour
is implementation-defined. The following implementation algorithms are used in this
standard.

– Conjugate

– Cosine

– Current-Time

– Deal

– Display

– Divided-by

1 May 1997 at 23:52

20 APL Extended — DIS 8485(1997)

5.2. NUMBERS

– Exponential

– Function-Display

– Gamma-Function

– Greatest-Common-Divisor

– Hyperbolic-Cosine

– Hyperbolic-Sine

– Hyperbolic-Tangent

– Inverse-Cosine

– Inverse-Hyperbolic-Cosine

– Inverse-Hyperbolic-Sine

– Inverse-Hyperbolic-Tangent

– Inverse-Sine

– Inverse-Tangent

– Magnitude

– Matrix-Divide

– Minus

– Modulo

– Natural-Logarithm

– Next-Definition-Line

– Numeric-Input-Conversion

– Numeric-Output-Conversion

– Pi-Times

– Plus

– Produce-Canonical-Representation-Vector

– Pseudorandom-Number-Generator

– Read-Keyboard

– Sine

– Tangent

– Times

APL Extended — DIS 8485(1997) 21

1 May 1997 at 23:52

5. DEFINITIONS

– Time-Stamp

– To-the-Power

– Trace-Display

– Typical-Element-For-Mixed

The following implementation-algorithms take a number as an argument and return
either a number or an error: Cosine, Exponential, Gamma-Function, Hyperbolic-
Cosine, Hyperbolic-Sine, Hyperbolic-Tangent, Inverse-Cosine, Inverse-Hyperbolic-
Cosine, Inverse-Hyperbolic-Sine, Inverse-Hyperbolic-Tangent, Inverse-Sine, Inverse-
Tangent, Magnitude, Natural-Logarithm, Pi-Times, Sine, Tangent.

The following implementation-algorithms take two numbers as arguments and return
either a number or an error: Divided-by, Minus, Modulo, Plus, Times, To-the-Power.

The properties of the remaining implementation-algorithms are described in the chapters
in which they are used.

5.2.5 Defined Operations

– A Equals B: An operation that, for A and B numbers, returns one if A and B are the
same number, and zero otherwise.

– Direction ofA: An operation that, forA a number, returns zero ifA is zero, and otherwise
returns the number determined by the radial projection of A onto the unit-circle.

Note: For A a real-number, the direction of A is either negative-one or zero or one.

– A is Greater-Than B: An operation that, for A and B real-numbers returns one if
A is a positive-number and B is a negative-number, returns one if A minus B is a
positive-number, and returns zero otherwise.

– A is Less-Than B: An operation that, for A and B real-numbers, returns B greater-than
A.

– Negation of A: An operation that, for any number A, returns zero minus A.

– Magnitude of A: An operation that, for A a number, returns the non-negative real-
number determined by rotating A onto the nonnegative real-axis.

– Open-Interval-Between A and B: An operation that, for any numbers A and B, returns
a subset of the numbers as follows: if A is not greater-than B, the set of all numbers
greater-than A and less-than B; otherwise, the open-interval-between B and A.

– Closed-Interval-Between A and B: An operation that, for any numbers A and B, returns
a subset of the numbers consisting of A, B, and the open-interval-between A and B.

– Larger-Magnitude of A and B: An operation that, for any numbers A and B, returns the
magnitude of A if it is greater-than that of B, and the magnitude of B otherwise.

1 May 1997 at 23:52

22 APL Extended — DIS 8485(1997)

5.2. NUMBERS

– Distance-Between A and B: An operation that, for any two numbers A and B, returns
the magnitude of A minus B.

– A is Tolerantly-Equal to B Within C: An operation that, given three numbers A, B, and
C, with C greater than or equal to zero, returns a Boolean Z determined as follows:

If A equals B, then Z is one.
If A and B are not in the same half-plane, then Z is zero.
If the distance-between A and B is less-than or equals C times the larger-magnitude

of A and B, then Z is one.
Otherwise, Z is zero.

– Tolerant-Floor of A WithinB: An operation that, for A a number and B a nonnegative-
number, returns a complex-integer Z determined as follows:

Let A be a member of the set of numbers in the unit-square at the complex-integer C,
and let D be A minus C.
If the sum of the real and imaginary parts of D is tolerantly-less-than one within B,

then Z is C.
Otherwise, if the imaginary-part of D is greater-than the real-part of D, then Z is C

plus imaginary-one.
Otherwise, Z is C plus one.

– A is Integral-Within B: An operation that, for a number A and a positive-number B,
returns a Boolean Z determined as follows:
Let C stand for the negation of A.
Z is one if the tolerant-floor of C within B equals the negation of the tolerant-floor of
A within B, and zero otherwise.

– A is a Near-Integer: An operation that, for a number A, returns one if A is integral-
within integer-tolerance, and zero otherwise.

Note: The foregoing definition contains a forward reference to integer-tolerance.

– Integer-Nearest-to A: An operation that, for a near-integer A, returns the tolerant-floor
of A within integer-tolerance.

– A is Near-Boolean: An operation that, for a near-integer A, returns one if the integer-
nearest-to A is a Boolean, and zero otherwise.

Note: Near-integers and near-Booleans include numbers whose magnitude is less-than integer-
tolerance. The operation integer-nearest-to maps such numbers to zero.

– A is Real-WithinB: An operation that, for a number A and a positive-numberB, returns
a Boolean Z determined as follows:

Let R stand for the magnitude of the real-part of A, and I for the magnitude of the
imaginary-part of A.
Z is one if I is less-than-or-equal either to B, or to R times B, and is zero otherwise.

– A is Near-Real: An operation that, for a number A, returns one if A is real-within
real-tolerance, and zero otherwise.

APL Extended — DIS 8485(1997) 23

1 May 1997 at 23:52

5. DEFINITIONS

5.3 Objects

Note: The description of APL in this document is based on objects—abstract data structures that are
described in terms of characters, numbers, and elementary set theory.

Each object has a small set of named attributes that take on values that are characters, numbers, or
other objects.

Each object has additionally a small set of operations that can be performed upon it.

All the objects in the description are defined here, as are all the attributes of each object. The
operations are introduced as they are needed. All objects, attributes, and operations are cross-
referenced in the index.

5.3.1 Lists

Index: A nonnegative-counting-number less than or equal to index-limit.

List: An object with the following attributes:

– Index-Set: A finite set I of positive-counting-numbers chosen so that for every subset
of I, except the empty set, the cardinality of that subset is in I.

– Value-Set: A finite set in a specific correspondence with the index-set of the list.

Empty-List: A list, the cardinality of whose index-set is zero.

Nonempty-List: A list, the cardinality of whose index-set is greater-than zero.

Number-of-Items in L: The cardinality of the index-set of the list L.

Item X of L: An operation that, for X a member of the index-set of the list L, returns
the member of the value-set of L associated with X by the correspondence between the
value-set of L and the index-set of L.

Note: This form of indexing is always in origin one.

First-Item in L: An operation that for a nonempty-list L returns item one of L.

Last-Item in L: An operation that for a nonempty-list L, and for C the number-of-items
in L, returns item C of L.

Rest-of L: An operation that, for a nonempty-list L whose index-set has cardinality C,
returns a second list R whose index-set has cardinality C minus one, such that for each
item J in the index-set of R, item J of R is item (J plus one) of L.

Product-of L: An operation defined on a list of numbers L as follows:

1 May 1997 at 23:52

24 APL Extended — DIS 8485(1997)

5.3. OBJECTS

If the number-of-items in L is zero, one.
If the number-of-items in L is one, the first-item in L.
If the number-of-items in L is greater-than one, first-item in L times the product-of

the rest-of L.

Prefix: A (possibly empty) list P is a prefix of a list L if the index-set of P is a subset of
the index-set of L, and each item of P is the same as the corresponding item of L.

5.3.2 Arrays

Array-Type: An enumerated set containing the members character, numeric, and mixed.

Array: An object with the following attributes:

– Shape-list: A list of nonnegative-counting-numbers.

– Ravel-list: A list. Each item of the list is either a character, a number, or an array.

The number-of-items in the ravel-list of an array A is the same as the product-of the
shape-list of A.

– Type: A member of the enumerated set array-type.

If the type of A is character, the ravel-list of A is a list of characters; if the type of A
is numeric, the ravel-list of A is a list of numbers.

Sufficient-Type of L under T: the following operation on a type T and a list L.
If T is character or numeric, return T
else if L is a nonempty-list

if all items of L are numbers, return the type numeric
if all items of L are characters, return the type character
otherwise, return the type mixed

else return the type of the typical-element of L.

Note: The foregoing definition is intended to provide for the cases where a mixed-array becomes a
non-mixed array, and vice-versa.

Rank of A: An operation that, for an array or array-of-vectors A, returns the number-of-
items in the shape-list of A.

Simple: An array is simple if each item of its ravel-list is either a character or a number.

Scalar: An array whose rank is zero.

Simple-scalar: A simple array whose rank is zero.

Max-shape-of B An operation that, for B, an arrays defined as follows:

APL Extended — DIS 8485(1997) 25

1 May 1997 at 23:52

5. DEFINITIONS

Set B1 to the first-thingy of B.
Set M1 to µB1.
If the count-of B is one, return M1.
Set B2 to the remainder-of B.
Set M2 to the max-shape-of B2.
If the shape-list of M1 differs from the shape-list of M2, signal rank-error.
Return M1¶M2

First-thingy in A: An opration that for A, an array, returns an array B, defined as follows:
If A is empty, set B1 to the typical-element of A.
Otherwise, set B1 to the first-item of the ravel-list of A.
If B1 is a number or a character, set B to an array, whose ravel-list contains the single

item B1, and whose shape-list is empty.
Otherwise, set B to B1.

Numeric-Scalar with value I: For I a number, the scalar Z such that the type of Z is
numeric and the ravel-list of Z is the list L such that the number-of-items in L is one and
the first-item of L is I.

Count of A: For A an array, the product-of the shape-list of A.

Vector: An array whose rank is one.

Matrix: An array whose rank is two.

Length of A: For A a vector, the count of A.

Typical-Element of A: For A an array, if the type of A is character, the character blank;
if the type of A is numeric, the number zero; if the type of A is mixed, the typical-element
is determined by an implementation-defined-algorithm.

Empty: Of an array, the count of which is zero.

One-Element-Vector: A vector A is a one-element-vector if the length of A is one.

K is a Valid-Axis of A: An operation that, for A and K arrays, returns one if K is a scalar
or one-element-vector, and the first-item in the ravel-list of K is a near-integer, the
integer-nearest-to which is a member of the index-set of the shape-list of A; and returns
zero otherwise.

Axis K of A: An operation that, for A an array and K a valid-axis of A, returns item K of
the shape-list of A.

Array-of-vectors: An object with the following attributes:

– Shape-list: A list of nonnegative-counting-numbers.

– Ravel-list: Each vector V in the ravel-list of an array-of-vectors A has the type
sufficient-type of the ravel-list of V under the type of A.

1 May 1997 at 23:52

26 APL Extended — DIS 8485(1997)

5.3. OBJECTS

– Type: A member of the enumerated set array-type.

Note: The term array-of-vectors is used only as an expository device.

Along-Axis K of A: An operation that, for an array A with non-zero rank N, produces Z,
an array-of-vectors of rank N-1 such that the shape-list of Z is the shape-list of A with
item K omitted. Each item of the ravel-list of Z is a vector whose length is the same as
axis K of A.

Note: Some operations on vectors extend to arrays of greater rank in a manner similar to scalar-
extension. Along-axis is an expository device used in the definition of these operations.

Vector-Item I of A: An operation that, for an array-of-vectors A, returns item I of the
ravel-list of A.

Ravel-Along-AxisKofA: An operation that, for an arrayAwith non-zero rankN, produces
an array-of-vectors Z such that the shape-list of Z is the product-of the shape-list of A
with item K omitted, and the ravel-list of Z is the ravel-list of along-axis K of A.

First-Scalar in A: An operation that, for A a nonempty array, returns a scalar Z such
that the ravel-list of Z is the first-item in the ravel-list of A and the type of Z is the
sufficient-type of the ravel-list of Z under the type of A.

Remainder-of A: An operation that, for A a non-empty vector, returns a vector Z such that
the length of Z is negative-one plus the length of A, the ravel-list of Z is the rest-of the
ravel-list of A and the type of Z is the sufficient-type of the ravel-list of Z under the type
of A.

Row I of A: An operation that, for A an array of rank two and I a number, returns
vector-item I along-axis two of A.

Number-of-Rows in A: An operation that, for A an array of rank two, returns item one
of the shape-list of A.

Integer-Array-Nearest-to A: An operation that, for A an array having the property that
each item of the ravel-list of A is a near-integer, returns a numeric array Z such that the
shape-list of Z is the same as the shape-list of A and each item of the ravel-list of Z is the
integer-nearest-to the corresponding item of the ravel-list of A.

Boolean-Array-Nearest-to A: An operation that, for A an array having the property that
each item of the ravel-list of A is a near-Boolean, returns the integer-array-nearest-to A.

5.3.3 Defined-Functions

Note: A defined-function represents a function defined by a user. The attributes of a defined-
function are given here. Operations are described in the Defined Functions chapter. Defined-
operators are a subclass of defined functions.

APL Extended — DIS 8485(1997) 27

1 May 1997 at 23:52

5. DEFINITIONS

Defined-Function: An object with the following attributes:

– Canonical-Representation: A character array whose rank is two.

– Stop-Vector: A numeric vector.

– Trace-Vector: A numeric vector.

1 May 1997 at 23:52

28 APL Extended — DIS 8485(1997)

5.3. OBJECTS

5.3.4 Tokens

Class-Names: A set containing the following members:

Assignment-Arrow
Axis-Error
Branch
Branch-Arrow
Character-Literal
Clear-State-Indicator
Colon
Command-Complete
Committed-Value
Complete-Index-List
Constant
Defined-Function
Defined-Function-Name
Defined-Dyadic-Operator
Defined-Dyadic-Operator-Name
Defined-Monadic-Operator
Defined-Monadic-Operator-Name
Definition-Error
Distinguished-Identifier
Domain-Error
Dyadic-Operator
Elided-Index-Marker
Escape
Implicit-Error
Incorrect-Command
Index-Error
Index-Separator
Interrupt
Label
Label-Name
Left-Argument-Name
Left-Axis-Bracket
Left-End-of-Statement
Left-Index-Bracket
Left-Operand-Name
Left-Parenthesis
Length-Error
Limit-Error

Local-Name
Monadic-Operator
Nil
Niladic-Defined-Function
Niladic-Defined-Function-Name
Niladic-System-Function-Name
Not-Copied
Not-Erased
Not-Found
Not-Saved
Numeric-Literal
Partial-Index-List
Primitive
Primitive-Function
Rank-Error
Result-Name
Right-Argument-Name
Right-Axis-Bracket
Right-End-of-Statement
Right-Index-Bracket
Right-Operand-Name
Right-Parenthesis
Semicolon
Shared-Variable
Shared-Variable-Name
Simple-Identifier
Small-Circle
Syntax-Error
System-Function-Name
System-Variable-Name
Unwind
Value-Error
Variable
Variable-Name

Token: An object with the following attributes:

– Class: A member of the set Class-Names.

APL Extended — DIS 8485(1997) 29

1 May 1997 at 23:52

5. DEFINITIONS

– Content: A number, a character, or an object, according to the class of the token, as
indicated in Table 2.

Note: Tokens represent the internal objects manipulated by an implementation of APL.

The class of a token is a straightforward indication of the sort of object it represents. A token of
class nil, for example, is used to return a value-error from a defined function that does not set its
result name. Note that class-names is an enumerated set. This means that nil has no definition other
than its literal appearance on this page. Its significance, like the significance of APL characters in
this document, lies in the use of its name in evaluation sequences.

The content of a token varies with the class of the token. If specified, the content is a character, a list
of characters, a list of numbers, an array, an index-list, a shared-variable, or a defined-function.

5.3.4.1 Metaclasses

Note: Metaclasses are subsets of the enumerated set class-names. They are used to shorten evaluation
sequences by abstracting a sequence of tests on the class of a token into a single test for membership
in a metaclass. “If B is an error,” is equivalent to “If the class of B is in the metaclass error.”

– Metaclass: A subset of the enumerated set class-names.

– Identifier: A metaclass containing simple-identifier and distinguished-identifier.

– Literal: A metaclass containing character-literal and numeric-literal.

– Lexical-Unit: A metaclass containing primitive, literal, and identifier.

– Value: A metaclass containing committed-value and constant.

– Delimiter: A metaclass containing primitive-function, branch-arrow, assignment-
arrow, left-end-of-statement, right-end-of-statement, left-index-bracket, right-
index-bracket, elided-index-marker, left-axis-bracket, right-axis-bracket, left-
parenthesis, right-parenthesis, small-circle, and semicolon.

– Defined-Name: A metaclass containing shared-variable-name, variable-name,
defined-function-name, defined-dyadic-operator-name, defined-monadic-operator-
name, niladic-defined-function-name, result-name, left-argument-name, right-
argument-name, label-name, and local-name.

– Defined-Operator: A metaclass containing defined-dyadic-operator and defined-
monadic-operator.

– System-Name: A metaclass containing system-variable-name, system-function-
name, and niladic-system-function-name.

– Classified-Name: A metaclass containing the members of system-name and defined-
name.

– Syntactic-Unit: A metaclass containing the members of classified-name and delimiter.

1 May 1997 at 23:52

30 APL Extended — DIS 8485(1997)

5.3. OBJECTS

Class-Name Content
Assignment-Arrow
Axis-Error
Branch An array
Branch-Arrow
Character-Literal A list of characters
Clear-State-Indicator
Colon
Command-Complete
Committed-Value An array
Complete-Index-List An index-list
Constant An array
Defined-Function A defined-function
Defined-Function-Name A list of characters
Defined-Dyadic-Operator A defined-function
Defined-Dyadic-Operator-Name A list of characters
Defined-Monadic-Operator A defined-function
Defined-Monadic-Operator-Name A list of characters
Definition-Error
Distinguished-Identifier A list of characters
Domain-Error
Dyadic-Operator A character
Elided-Index-Marker
Escape
Implicit-Error
Incorrect-Command
Index-Error
Index-Separator
Interrupt
Label An array
Label-Name A list of characters
Left-Argument-Name A list of characters
Left-Axis-Bracket
Left-End-of-Statement
Left-Index-Bracket
Left-Operand-Name A list of characters
Left-Parenthesis
Length-Error
Limit-Error

Table 2: Relationship between Class-Name and Content

APL Extended — DIS 8485(1997) 31

1 May 1997 at 23:52

5. DEFINITIONS

Class-Name Content
Local-Name A list of characters
Monadic-Operator A character
Nil
Niladic-Defined-Function A defined-function
Niladic-Defined-Function-Name A list of characters
Niladic-System-Function-Name A list of characters
Not-Copied
Not-Erased
Not-Found
Not-Saved
Numeric-Literal A list of numbers
Partial-Index-List An index-list
Primitive A character
Primitive-Function A character
Rank-Error
Result-Name A list of characters
Right-Argument-Name A list of characters
Right-Axis-Bracket
Right-End-of-Statement
Right-Index-Bracket
Right-Operand-Name A list of characters
Right-Parenthesis
Semicolon
Shared-Variable A shared-variable
Shared-Variable-Name A list of characters
Simple-Identifier A list of characters
Small-Circle
Syntax-Error
System-Function-Name A list of characters
System-Variable-Name A list of characters
Unwind
Value-Error
Variable An array
Variable-Name A list of characters

Table 2: (Continued)

1 May 1997 at 23:52

32 APL Extended — DIS 8485(1997)

5.3. OBJECTS

– Error: A metaclass containing axis-error, domain-error, implicit-error, index-error,
length-error, limit-error, rank-error, syntax-error, value-error, and interrupt.

Note: This metaclass includes only errors that occur in the evaluation of APL statements.

– Report: A metaclass containing incorrect-command, not-copied, not-erased, not-
found, and not-saved.

– Exception: A metaclass containing branch, escape, clear-state-indicator, unwind, and
the members of error and report.

– Result: A metaclass containing nil and the members of exception and value.

5.3.4.2 Index-List

– Index-List: A (possibly empty) list consisting of tokens whose class is either constant
or elided-index-marker.

5.3.5 Symbols

Symbol: An object with the following attributes:

– Name: A list of characters.

– Referent-List: A list of tokens.

5.3.6 Contexts

– Mode-Names: An enumerated set containing the members immediate-execution,
execute, function-definition, quad-input, and defined-function.

Context: An object with the following attributes:

– Mode: An element of the enumerated set mode-names.

– Stack: A list of tokens.

– Current-Line: A list of characters.

– Current-Statement: A list of tokens.

– Current-Function: If mode is defined-function, a defined-function; otherwise
undefined.

– Current-Line-Number: If mode is defined-function, an index; otherwise undefined.

APL Extended — DIS 8485(1997) 33

1 May 1997 at 23:52

5. DEFINITIONS

5.3.7 Workspaces

Note: The workspace is the basic organisational unit in an APL system. A workspace contains data,
programs, execution status, and environmental information.

– Workspace-Presence: An enumerated set containing absent and present.

Workspace: An object with the following attributes:

– Owner: A user-identification.

– Workspace-Name: A list of characters.

– Symbol-Table: A list of all symbols whose names are distinct.

– State-Indicator: A list of contexts.

– Existential-Property: A member of the enumerated set workspace-presence.

Clear-Workspace: A workspace with the following values:

– Owner: this-owner.

– Workspace-Name: The clear-workspace-identifier.

– Symbol-Table: A list of all symbols whose names are distinct and whose referent-lists
each consist of the list whose only member is nil.

– State-Indicator: An empty list of contexts.

– Existential-Property: absent.

5.3.8 Sessions

Note: A user interacts with an APL system through a session, an abstraction that represents a
hypothetical machine capable of carrying out the evaluation sequences in the standard.

– Session-Identification: Either a number or a list of characters, depending upon the
implementation-parameter session-identification-type.

– User-Identification: Either a number or a list of characters, depending upon the
implementation-parameter user-identification-type.

1 May 1997 at 23:52

34 APL Extended — DIS 8485(1997)

5.3. OBJECTS

– Keyboard-States: An enumerated set containing the members open-keyboard and
locked-keyboard.

Session: An object with the following attributes:

– Active-Workspace: A workspace.

– This-Session: A session-identification.

– This-Owner: A user-identification.

– Attention-Flag: A member of the enumerated set Boolean.

– Keyboard-State: A member of the enumerated set keyboard-states.

– Current-Prompt: A character vector.

– Quote-Quad-Prompt: A character vector.

– Event-Time: A nonnegative-number.

– Event-Message: A character array giving, in an implementation-defined form, the
event-report and any other information the implementation deems helpful in locating
the error’s source.

– Event-Type: A two-element integer vector corresponding to the most recent event.
Defined values are:

0 0 — No error

0 1 — Undefined event

There may be additional implementation-defined values as well as values supplied by
a progarm via ²ES.

– Current-Context: The first-item in the state-indicator of the active-workspace.

– Current-Stack: The stack of the current-context.

– Symbol-Named-ByT: The symbol in the symbol-table of the active-workspace whose
name is the same as the content of the token T.

– Current-Referent of T: The first-item in the referent-list of the symbol-named-by T.

– Current-Class of T: The class of the current-referent of T.

– Current-Content of T: The content of the current-referent of T.

– Comparison-Tolerance: The current-content of ²CT.

– Random-Link: The current-content of ²RL.

APL Extended — DIS 8485(1997) 35

1 May 1997 at 23:52

5. DEFINITIONS

– Print-Precision: The current-content of ²PP.

– Index-Origin: The current-content of ²IO.

– Latent-Expression: The current-content of ²LX.

System-Parameter: Any of comparison-tolerance, random-link, print-precision,
index-origin, or latent-expression.

The initial values of system-parameters in a clear-workspace are implementation-
defined.

5.3.9 Shared-Variables

Note: A shared-variable is a variable shared between two sessions.

Shared Variables are an optional-facility.

Shared-Variable: An object with the following attributes:

– Session-A: A session-identification.

– Session-A-Active: A Boolean.

– Session-A-ACV: A Boolean vector of length four.

Note: ACV stands for access control vector.

– Session-B: A session-identification.

– Session-B-Active: A Boolean.

– Session-B-ACV: A Boolean vector of length four.

– Shared-Name: An identifier.

– Shared-Value: A token, either a constant or nil.

– State: An integer, either zero, one, or two.

– Session-A-Event: A Boolean.

– Session-B-Event: A Boolean.

Note: The operations in the chapter Shared Variables use the shared-variableattributes as follows:

– Session-A: The session-identification of the first session to offer the shared-variable.

1 May 1997 at 23:52

36 APL Extended — DIS 8485(1997)

5.3. OBJECTS

– Session-A-Active: A Boolean; one if session-A is currently sharing this shared-variable, zero
if not.

– Session-A-ACV: The contribution of session-A to the ACV.

– Session-B: The session-identification of the session with which session-A offered to share the
shared-variable; this may be the general-offer while state is one.

– Session-B-Active: A Boolean; one if session-B is currently sharing this shared-variable, zero if
not.

– Session-B-ACV: The contribution of session-B to the ACV.

– Shared-Name: An identifier, the name session-A designated for this shared-variable.

– Shared-Value: A token of class constant or nil; the current value of this shared-variable.

– State: An integer, either zero, one, or two, used in combination with the ACV to determine which
operations must be delayed.

5.3.10 Systems

Note: A system represents a set of active APL users, a library, and, optionally, a shared variable
facility.

System: An object with the following attributes:

– Library: A list of workspaces in which each combination of possible values for the
attributes owner and workspace-name occurs exactly once.

– Active-Users: A list of sessions.

– Shared-Variable-List: A list of shared-variables.

– Implementation-Parameters: The following quantities, referred to in this standard by
name, whose values are implementation-defined:

– Atomic-Vector: An implementation-defined character vector containing every
member of the required-character-set exactly once.

– Initial-Comparison-Tolerance: A member of the internal-value-set for
comparison-tolerance that is the value of comparison-tolerance in a clear-
workspace.

– Initial-Index-Origin: A member of the internal-value-set for index-origin that is
the value of index-origin in a clear-workspace.

– Initial-Latent-Expression: A member of the internal-value-set for latent-
expression that is the value of latent-expression in a clear-workspace.

– Initial-Print-Precision: A member of the internal-value-set for print-precision that
is the value of print-precision in a clear-workspace.

– Initial-Random-Link: A member of the internal-value-set for random-link that is
the value of random-link in a clear-workspace.

APL Extended — DIS 8485(1997) 37

1 May 1997 at 23:52

5. DEFINITIONS

– Initial-Event-Message: The empty-event-message.

– Reduction-Style: One of the two symbolics Enclose-Reduction-Style or Insert-
Reduction-Style, indicating which of the two styles of reduction the system uses.

– Initial-Event-Type: The two-element integer vector (0,0).

– Clear-Workspace-Identifier: A list of characters.

– Positive-Number-Limit: The real-number greater-than all other real-numbers.

– Negative-Number-Limit: The real-number less-than all other real-numbers.

– Positive-Counting-Number-Limit: The counting-number greater than all other
counting-numbers.

– Negative-Counting-Number-Limit: The counting-number less-than all other
counting-numbers.

– Index-Limit: The index greater than all other indices. This value specifies the
maximum value of any item of the shape-list of any array, ignoring storage
limitations.

– Count-Limit: An index not greater than index-limit that specifies the maximum
value for the count of an array, ignoring storage limitations.

– Rank-Limit: An index not greater than count-limit that specifies the maximum value
for the rank of any array, ignoring storage limitations.

– Workspace-Name-Length-Limit: A positive-counting-number that specifies the
maximum number of characters in a workspace-name.

– Identifier-Length-Limit: A positive-counting-number not greater than count-limit
that specifies the maximum number of characters in an identifier.

– Quote-Quad-Output-Limit: A nonnegative-counting-number that specifies the
maximum number of characters that can be used in a prompt set by Quote Quad
Output.

– Comparison-Tolerance-Limit: The largest real-number permitted by the
implementation for the system parameter comparison-tolerance.

– Integer-Tolerance: A real-number not greater than comparison-tolerance-limit
used to determine whether a given number is to be considered integral.

– Real-Tolerance: A nonnegative-number not greater than comparison-tolerance-
limit used to determine whether a given number is to be considered real.

– Full-Print-Precision: The smallest positive-counting-number which, when used as
the value of print-precision, causes numeric-output-conversion to produce a unique
numeric-scalar-literal for every number.

– Print-Precision-Limit: The largest positive-counting-number permitted by the
implementation for the system parameter print-precision.

Note: Print-precision-limit must be at least full-print-precision if every unique number is to have
a unique decimal representation.

– Exponent-Field-Width: A positive-counting-number giving the number of places,
including sign and trailing blanks, used for the exponent field in the result of dyadic
format.

1 May 1997 at 23:52

38 APL Extended — DIS 8485(1997)

5.4. EVALUATION SEQUENCES

– Session-Identification-Type: A member of the enumerated set array-type, either
character or numeric.

– User-Identification-Type: A member of the enumerated set array-type, either
character or numeric.

– Indent-Prompt: A list of characters used to indicate to the user that the session is
in immediate-execution mode.

– Quad-Prompt: A list of characters used to indicate to the user that the session is in
quad-input mode.

– Function-Definition-Prompt: A list of characters used to indicate to the user that
the session is in function-definition mode.

– Line-Limit: A positive-counting-number that specifies the maximum number of
lines permitted in a defined function, ignoring storage limitations.

– Definition-Line-Limit: A positive-number that specifies the maximum value of a
line number in function-definition mode.

– General-Offer: A reserved session-identification used to indicate that the offerer of
a shared-variable is willing to share the proffered variable with any other session.
This implementation-parameter is required only if the optional-facility shared-
variable-protocol is present.

Any action that would cause a limit specified by an implementation parameter to be
exceeded shall signal a limit-error.

5.4 Evaluation Sequences

The evaluation sequences that define APL operations in the remainder of this standard
are written in English in the imperative mood. The English phrases used in evaluation
sequences are restricted to the set specified in this subsection.

Indention is used in evaluation sequences to indicate scope, typically of the consequent of
an implication.

For example, in the evaluation sequence fragment below, the indented text is evaluated only if both
A and B are vectors; the “otherwise” clause is evaluated only if at least one of A or B is not a vector.

...
If A is a vector and B is a vector,

If A is empty and ...
...

Otherwise, return ...

Expressions in APL are used in evaluation sequences. A given evaluation sequence uses
only APL operations that have been specified earlier in the standard. Where indices are
generated or used by APL expressions in evaluation sequences, they are evaluated with
origin one. The APL relational operations are never used in evaluation sequences unless
they are qualified with the value to be used for comparison-tolerance.

APL Extended — DIS 8485(1997) 39

1 May 1997 at 23:52

5. DEFINITIONS

5.4.1 Evaluation Sequence Phrases

Note: The following phrases are used in evaluation sequences. They are not set in bold type nor
cross-referenced when employed in evaluation sequences.

– For all A, C: An evaluation sequence phrase used to specify that the action or condition
specified by the consequent C is to be performed or checked for every value in the
antecedent A.

Example:
...
For all I in the index-set of A,

Set item I of the ravel-list of A to zero.
...

– For form F, C:

– For pattern F, C:

An evaluation sequence phrase used to specify that the actions listed in the consequent
C are to be performed only if the pattern or form F is the one that caused this evaluation
sequence to be selected.

Example:
For form A ìB

If B is a scalar ...
...

For form A îB
If ...

– If A, C: An evaluation sequence phrase used to specify that the actions listed in the
consequent C are to be performed only if the value of the antecedent A is one.

– If T is an mc, C: For T a token and mc a metaclass, an evaluation sequence phrase
equivalent to “If the class of T is in the metaclass mc, C.”

– Let A stand for B: An evaluation sequence phrase used to indicate that the name A is to
be an abbreviation for the phrase B in subsequent evaluation sequence lines.

– Otherwise, C: An evaluation sequence phrase used to indicate that the actions listed in
consequent C are to be performed only if the antecedent in the immediately preceding if
phrase was zero. If a consequent is an indented paragraph, the immediately preceding if
statement is the one at the same level of indention as the otherwise phrase.

– Repeat: An evaluation sequence phrase used to indicate that the block of text indented
after the repeat is to be executed repeatedly until a return or signal phrase is encountered.
The end of a repeated block is indicated by the parenthetic remark “(End of repeated
block).”

1 May 1997 at 23:52

40 APL Extended — DIS 8485(1997)

5.4. EVALUATION SEQUENCES

– ReturnX: An evaluation sequence phrase used to specify that evaluation of this evaluation
sequence is to stop and that a token is to be returned to the caller of the evaluation
sequence. If X is a token, then X is returned; if X is an array, a token of class constant
and content X is returned.

– Set A to B: An evaluation sequence phrase used to specify that the referent of A is to be
assigned the value B.

– SignalX: An evaluation sequence phrase used to specify that evaluation of this evaluation
sequence is to stop and that a token whose class isX, whereX is an error, is to be returned.

– Using O, C: An evaluation sequence phrase used to indicate that the consequent C is to
be evaluated against the specific object O. This construct is used, for example, in the
description of shared variables to indicate which shared variable is to be changed.

– Wait until: An evaluation sequence phrase that indicates that the session is waiting for
a condition to hold before continuing.

5.4.2 Diagrams

Note: Diagrams are used in this standard to indicate permissible sequences of characters or of
tokens.

– Character-Diagram: A graph that designates a subset of the set of all lists of characters.

– Token-Diagram: A graph that designates a subset of the set of all lists of tokens.

– Thread D with A: An evaluation sequence phrase used to indicate that a search is to
be made for a route through the diagram D that corresponds to the list or part of a list
A. A character-diagram is threaded with a list of characters by setting a list-cursor
to the first item in the list, and a diagram-cursor to the arrow-tail- , in the diagram,
then progressing along paths in the diagram to the arrow-head -. At a junction, the
diagram-cursor may enter the alternate path only if it can do so by making an acute-angle
turn from its current direction. It may not back up into the alternate path.

For the diagram-cursor to advance along a path labelled with a graphic symbol such as ¦,
that graphic symbol must be pointed to by the list-cursor, which then also advances. For
the diagram-cursor to advance along a path labelled with a diagram name, that diagram
must itself be threaded, using the same list-cursor and a new diagram-cursor. If in either
case the diagram-cursor cannot advance, the diagram-cursor is set back to the previous
junction, the list-cursor is set back correspondingly, and a new path is tried; or if the
diagram-cursor is now at the arrow-tail, the diagram cannot be threaded with the list.

If a route is found through a diagram for a given list of characters, it is unique. In
this case, the diagram can be rethreaded, following the same route without entering
blind alleys. For example, characters are collected into identifier tokens through actions
performed while a character-diagram is being rethreaded.

APL Extended — DIS 8485(1997) 41

1 May 1997 at 23:52

5. DEFINITIONS

Token-diagrams are threaded exactly like character-diagrams, except that the items
pointed to by the list-cursor are tokens and are matched either by their class or by both
their class and their content.

– Rethread D with A: An evaluation sequence phrase used to indicate that the route found
by a previous threaded phrase is to be threaded again, in order to effect certain actions
through when phrases.

– When A, C: An evaluation sequence phrase used during a rethread phrase to indicate
that when the antecedent A is true, the consequent C is to be performed.

– A Matches D: An operation that, for diagram D and list A, is true if A is a member of the
set of lists designated by D, and false otherwise.

A list matches a diagram if it can be threaded in such a way that there are no items
remaining in the list when the final exit path is taken.

Note: The question of whether a list matches a diagram is different from the question of whether a
list can thread a diagram, since there will normally be items left over in a list once a diagram has
been threaded—in collecting the digits in a number, for example, the digit diagram removes only
one digit at a time from a list of characters.

5.5 Other Terms

– Side-effect: Any effect an operation has other than returning a result.

– Atomic: The property of an operation with side-effects to produce its side-effects only
if it completes without error.

Note: For example, the specification of items 3, 4, and 5 of A in the APL line

B ¼A[3 4 5] ¼2

is a side effect, since the result placed in B is the scalar 2; further, since indexed assignment is
specified to be atomic, no change to A will occur if the indexed assignment fails with, for example,
an index error.

1 May 1997 at 23:52

42 APL Extended — DIS 8485(1997)

6

Syntax and Evaluation

6.1 Introduction

Note: This chapter specifies the rules for evaluating lines. These rules are used by the subsections
execute, quad input, immediate-execution, and defined-function-control.

The rules are described in three subsections, evaluate-line, evaluate-statement, and reduce-
statement.

The data structures and procedures used to describe syntax and evaluation in this standard
are strictly expository devices; they are not intended to represent required or desirable
implementation techniques. The order of reporting errors implied by the diagram-matching
actions in the model is not required.

6.1.1 Evaluate-Line

Form: Evaluate-Line

Informal Description: Evaluate-line is the principal procedure in the evaluation of APL
lines. It decomposes the list of characters named current-line into lexical-units
according to the character-diagram named line.

Some diagrams referred to in line have their exit paths flagged with asterisks. Once the
diagram line has been threaded, the rethreading pass is used to gather certain character
sequences (diagrams ending in two asterisks), and either create tokens (diagrams ending
in one asterisk) or discard the character sequences gathered (diagrams ending in three
asterisks).

Evaluate-line calls evaluate-statement to convert the lexical-units into a result.

APL Extended — DIS 8485(1997) 43

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Note that the result can be a constant (from, for example, 2+2), committed-value
(from A¼1), nil (ß''), branch (ß'¾3'), escape (¾), unwind (¾), error (2-), clear-
state-indicator (from)SIC) or interrupt (from signal-interrupt).

Note: The handling of these result classes by the different callers of evaluate-line specifies the
treatment of exceptions, and should be analysed carefully.

Evaluate-line is called from evaluation sequences in the subsections defined-function-
control, execute, execute-alternate, immediate-execution, and quad-input. If the
optional-facility statement-separator-facility is implemented, evaluate-line evaluates
successive statements in current-line beginning with the leftmost statement and
continuing until evaluation produces an exception or the rightmost statement has been
evaluated.

Evaluation Sequence:

Set C to the empty-list of characters.
Set current-statement to the empty-list of tokens.
Thread line with current-line; if current-line does not match line, signal syntax-

error.
Rethread line with current-line, taking the following actions:

When a character-diagram ending in ‘ ***-’ is recognised, setC to the empty-list
of characters.

When a character-diagram ending in ‘ **-’ is recognised, append to C as a new
last item the character just passed.

When a character-diagram ending in ‘ *-’ is recognised,
Append to current-statement as a new last item a token with class given by the

name of the character-diagram and with content C.
Set C to the empty-list of characters.

When the optional-facility statement-separator-facility is implemented and the
character-diagram statement-separator is recognised,

Set Z to evaluate-statement.
If Z is an exception, return Z.
If Z is a constant, display Z.
Set current-statement to the empty-list of tokens.
Set C to the empty-list of characters.

When the character-diagram line is matched,
Set Z to evaluate-statement.
Return Z.

6.1.2 Character-Diagrams

The diagrams in this subsection are character-diagrams: the APL Graphic Symbols
such as ® in these character-diagrams match corresponding characters in the required-
character-set.

1 May 1997 at 23:52

44 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Line

- � � �

� identifier �

� numeric-literal �

�

� primitive �

� character-literal �

� space �

� statement-separator �

� �

� comment �

-

Identifier

- � simple-identifier �

� distinguished-identifier �

-

Simple-identifier

- � literal-identifier �

� direct-identifier �

-

Literal-identifier

- letter � �

� letter �

� digit �

� underbar �

� overbar �

*-

Direct-identifier

- � © �

� ¹ �

-

APL Extended — DIS 8485(1997) 45

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Distinguished-identifier

- � quote-quad �

� quad � �

� letter �

� digit �

�

*-

Numeric-Literal

- �numeric-scalar-literal �

� �blank �

� �

�

*-

Real-scalar-literal

- � �

� overbar �

� �digit �

� �

� �

� dot �

�

� �digit �

� �

dot �digit �

� �

�

� dot �digit �

� �

�

� �

� exponent �

-

Exponent

- exponent-marker � �

� overbar �

�digit �

� �

-

Numeric-scalar-literal

- real-scalar-literal � �

� imaginary-part �

-

Imaginary-part

- complex-marker real-scalar-literal -

1 May 1997 at 23:52

46 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Character-literal

- �quote � �

� nonquote �

quote �

� �

*-

Comment

- lamp � �

� any �

***-

Any

- � quote �

� nonquote �

-

Primitive

- ideogram *-

Space

- blank ***-

Nonquote

- � ideogram �

� digit �

� blank �

� letter �

� lamp �

� del �

� del-tilde �

� quad �

� quote-quad �

� diamond �

-

APL Extended — DIS 8485(1997) 47

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Statement-separator

- diamond -

Letter

- � �

A

�

�

B

�

�

C

�

�

D

�

�

E

�

�

F

�

�

G

�

�

H

�

�

I

�

�

J

�

�

K

�

�

L

�

�

M

�

�

N

�

�

O

�

�

P

�

�

Q

�

�

R

�

�

S

�

�

T

�

�

U

�

�

V

�

�

W

�

�

X

�

�

Y

�

�

Z

�

�

¯

�

�

�

�

� �

Ã

�

�

Ä

�

�

Å

�

�

Æ

�

�

Ç

�

�

È

�

�

É

�

�

Ê

�

�

Ë

�

�

Ì

�

�

Í

�

�

Î

�

�

Ï

�

�

Ð

�

�

Ñ

�

�

Ò

�

�

Ó

�

�

Ô

�

�

Õ

�

�

Ö

�

�

×

�

�

Ø

�

�

Ù

�

�

Ú

�

�

Û

�

�

Ü

�

�

Â

�

�

�

�

**-

Digit

- �

0

�

�

1

�

�

2

�

�

3

�

�

4

�

�

5

�

�

6

�

�

7

�

�

8

�

�

9

�

�

�

**-

1 May 1997 at 23:52

48 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Ideogram

- � �

¡

�

�

¨

�

�

<

�

�

¢

�

�

=

�

�

¿

�

�

>

�

�

¥

�

�

£

�

�

¤

�

�

-

�

�

¦

�

�

+

�

�

§

�

�

�

�

� �

?

�

�

¹

�

�

­

�

�

µ

�

�

~

�

�

õ

�

�

·

�

�

°

�

�

´

�

�

*

�

�

¾

�

�

¼

�

�

�

�

� �

©

�

�

¶

�

�

¬

�

�

_

�

�

±

�

�

ú

�

�

ù

�

�

�

�

�

�

�

�

�

�

� �

»

�

�

º

�

�

«

�

�

¸

�

�

ª

�

�

³

�

�

|

�

�

;

�

�

:

�

�

�

�

�

,

�

�

.

�

�

�

�

�

�

�

� �

ç

�

�

æ

�

�

ì

�

�

í

�

�

î

�

�

ë

�

�

é

�

�

ê

�

�

!

�

�

á

�

�

ß

�

�

à

�

�

ñ

�

�

ð

�

�

ø

�

�

ï

�

�

~¡

�

�

�

�

� �

{

�

�

}

�

�

½

�

�

Á

�

�

$

�

�

�

�

**-

Quote

- ' **-

Exponent-marker

- E **-

Complex-marker

- J **-

Dot

- . **-

APL Extended — DIS 8485(1997) 49

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Underbar

- _ **-

Overbar

- ¨ **-

Blank

- **-

Del

- ® **-

Del-tilde

- è **-

Lamp

- Ý **-

Quad

- ² **-

Quote-quad

- ä **-

Diamond

- À **-

Example

The example introduced in this subsection is continued through the syntax analysis portion of this
standard.

After evaluate-line has processed the current-line
ABC¼FN ²ì[1+0] DEF[1;5 6]§3.45E4,µ'ABC' ÝCOMMENT

1 May 1997 at 23:52

50 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

current-statement looks like this:

Identification Content Class

T01 'ABC' simple-identifier
T02 '¼' primitive
T03 'FN' simple-identifier
T04 '²' distinguished-identifier
T05 'ì' primitive
T06 '[' primitive
T07 '1' numeric-literal
T08 '+' primitive
T09 '0' numeric-literal
T10 ']' primitive
T11 'DEF' simple-identifier
T12 '[' primitive
T13 '1' numeric-literal
T14 ';' primitive
T15 '5 6' numeric-literal
T16 ']' primitive
T17 '§' primitive
T18 '3.45E4' numeric-literal
T19 ',' primitive
T20 'µ' primitive
T21 ''ABC'' character-literal

Each token has a content, which is a list of characters, and a class, which is in the metaclass lexical-
unit. The tokens produced are numbered T01 to T21 for later reference. Note that comments and
blanks between tokens are discarded during this tokenisation process.

Note: As the diagram line shows, identifiers and numeric literals are separated by one or more
spaces, character-literals, or primitives. 1 ABC'A' is a line, 1ABC'A' is not. No such separation
rule applies to primitive function symbols. 1µ'AB' is a line.

The sequence 3+.4 is parsed numeric-literal, primitive, numeric-literal but the sequence 3+.§
is parsed numeric-literal, primitive, primitive, primitive.

A comment may appear at the end of a line or alone on a line.

The statement-separator-facility is an optional-facility.

Parsing an identifier token signals a limit-error if the number-of-items in the list of
characters is greater than identifier-length-limit.

6.1.3 Evaluate-Statement

Evaluate-Statement

Informal Description: Evaluate-statement is performed on current-statement, a list of

APL Extended — DIS 8485(1997) 51

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

tokens found in the current-context.
It uses bind-token-class to convert identifiers to classified-names and constants.
It uses literal-conversion to convert literals to constants.
It uses the token-diagram named statement to verify that the statement is properly

formed and to resolve certain ambiguous tokens. For example, the token containing
] is resolved to either right-axis-bracket or right-index-bracket.

It calls the evaluation sequence in the subsection reduce-statement to convert the
current-statement to a result, which it returns to its caller.

Evaluate-statement is called by evaluate-line.

Evaluation Sequence:

For every index I in the index-set of current-statement,
Let T stand for item I of current-statement.
If T is an identifier, set Q to bind-token-class of T
If T is a literal, set Q to the literal-conversion of T.
If T is a primitive, set Q to T.
If Q is an exception, return Q.
Otherwise, set T to Q.

Thread statement with current-statement; if statement cannot be matched, signal
syntax-error.

Rethread statement with current-statement, taking the following action:

When any token-diagram ending in ‘ *-’ is threaded,
Replace the token in current-statement that matched the diagram with a token

having the same content, but having a class given by the name of the token-
diagram.

Append to current-statement as a new first item a left-end-of-statement token.
Append to current-statement as a new last item a right-end-of-statement token.
Set Z to reduce-statement.
If mode is defined-function and current-line-number is in current-trace-vector,

set Z to trace-display of Z.
Return Z.

Additional Requirement:

This standard permits two orders of evaluation for expressions in brackets, as follows:

The syntax evaluator used here distinguishes axis brackets from index brackets in order
to classify a function immediately to the right as monadic or dyadic. For example, the
evaluation of ì[µX]+ X is specified to proceed by first calling monadic plus, then
evaluating monadic rho.

The permitted alternative is to evaluate any expression in brackets before determining
whether a function immediately to the right is monadic or dyadic. In the example given,
this alternative behaviour would evaluate monadic rho before discovering that plus is used
monadically.

1 May 1997 at 23:52

52 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Note: The distinction can be observed only through side effects.

6.1.4 Bind-Token-Class

Bind-Token-Class of T

Informal Description: Bind-token-class is used to bind each identifier in current-
statement to its current syntactic-unit; if the class of a token changes between this
point and the time the token is used (as it would for example in F ²EX'F', assuming
F were initially a defined-function), the change will be detected and reported as a
syntax-error in the appropriate phrase-evaluator.

This prebinding limits the standard to defining the meaning of statements only when
the syntax class of their tokens does not change in mid-statement. Conforming-
implementations may, of course, relax these rules. Conforming-programs must abide
by them.

Evaluation Sequence:

Let f stand for the content of T.
If T is a simple-identifier,

If the current-class of T is
defined-monadic-operator, return a token of class defined-monadic-operator-

name and content f.
defined-dyadic-operator, return a token of class defined-dyadic-operator-name

and content f.
defined-function, return a token of class defined-function-name and content f.
niladic-defined-function, return a token of class niladic-defined-function-name

and content f.
nil or variable, return a token of class variable-name and content f.
shared-variable, return a token of class shared-variable-name and content f.
label, return a token of class constant and content the current-content of T.

Note: Other cases cannot occur.
If T is a distinguished-identifier,

If both forms Z ¼f and Z ¼f ¼B occur in the form-table, return a token of class
system-variable-name and content f.

If the form Z ¼f occurs in the form-table, but the form
Z ¼f ¼B does not, return a token of class niladic-system-function-name and
content f.
If either form Z ¼f B or form Z ¼A f B occurs in the form-table, return a token

of class system-function-name with content f.
Otherwise, signal syntax-error.

APL Extended — DIS 8485(1997) 53

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

6.1.5 Literal-Conversion

Literal-Conversion of T.

Informal Description: Literal-conversion converts T, a token of class literal, to a token
of class constant. The content of such a token is converted from a list of characters to
an array.

Evaluation Sequence:

If T is a character-literal, generate Z, a character vector such that the ravel-list
of Z is the content of T with the initial and final quotes removed, and each pair of
adjacent quotes in T replaced by a single quote.

If T is a numeric-literal, generate Z, a numeric vector such that the ravel-list of
Z is a list of numbers, each of which is obtained by calling the implementation-
algorithm numeric-input-conversion for the corresponding numeric-scalar-literal
in the numeric-literal.

If the length of Z is greater-than one, return Z.
Otherwise, return first-scalar in Z.

Note: A quote character is represented in a character-literal by two adjacent quote characters.
A single character between quotes is a scalar. All other cases are character vector literals. For
example, the character literal '' is the empty character vector literal and the character literal
'''' is the character scalar “quote”.

A numeric literal containing a single number is a scalar. A numeric literal containing two or more
numbers is a vector.

6.1.6 Statement-Analysis Token-Diagrams

Paths containing ideograms such as ë in these token-diagrams match tokens whose class
is primitive and whose content is the ideogram. Paths containing the word token, such as
shared-variable-name token in operand, match tokens with the given class.

Statement

- � �

� branch-arrow �

� �

� expression �

-

Expression

- �� �

� operation �

operand �

� operation �

-

1 May 1997 at 23:52

54 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Operation

- � assignment �

� defined-function-name-token �

� system-function-name-token �

� derived-function �

-

Assignment

- � variable-name-token �

� system-variable-name-token �

� shared-variable-name-token �

� �

� index �

assignment-arrow -

Derived-Function

- � � small-circle �

� primitive-function �

dot primitive-function �

� primitive-function � �

� axis-monadic-operator �

� �

� axis-specification �

�

� � function �

� operand �

dyadic-operator-name-token � function �

� operand �

�

� � function �

� operand �

monadic-operator-name-token �

-

Axis-Specification

- left-axis-bracket expression right-axis-bracket -

APL Extended — DIS 8485(1997) 55

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Operand

- �left-parenthesis expression right-parenthesis �

� constant-token �

� variable-name-token �

� shared-variable-name-token �

� system-variable-name-token �

� niladic-system-function-name-token �

� niladic-defined-function-name-token �

� �

� index �

-

Index

- left-index-bracket � � �

� expression �

�

� index-separator �

right-index-bracket -

Primitive-Function

- � �

<

�

�

¢

�

�

=

�

�

¿

�

�

>

�

�

¥

�

�

£

�

�

¤

�

�

-

�

�

¦

�

�

+

�

�

§

�

�

�

�

� �

?

�

�

­

�

�

µ

�

�

~

�

�

õ

�

�

·

�

�

°

�

�

´

�

�

*

�

�

�

�

� �

¶

�

�

¬

�

�

�

�

� �

ª

�

�

³

�

�

|

�

�

�

�

�

,

�

�

/

�

�

�

�

� �

ç

�

�

æ

�

�

ì

�

�

í

�

�

î

�

�

ë

�

�

é

�

�

ê

�

�

!

�

�

á

�

�

ß

�

�

à

�

�

ñ

�

�

ð

�

�

ï

�

�

�

�

*-

1 May 1997 at 23:52

56 APL Extended — DIS 8485(1997)

6.1. INTRODUCTION

Function

- � primitive-function �

� derived-function �

� defined-function-name-token �

� system-function-name-token �

-

Dyadic-Operator

- � primitive-dyadic-operator �

� defined-dyadic-operator-name-token �

*-

Monadic-Operator

- � primitive-monadic-operator �

� defined-monadic-operator-name-token �

*-

Axis-Monadic-Operator

- � / �

� ð �

� � �

� ñ �

*-

Primitive-Monadic-Operator

- �axis-monadic-operator �

� diaeresis-tilde �

*-

Primitive-Dyadic-Operator

- diaeresis-jot *-

Diaeresis-Jot

- ø *-

APL Extended — DIS 8485(1997) 57

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Diaeresis-Tilde

- ¡~ *-

Left-Parenthesis

- (*-

Right-Parenthesis

-) *-

Left-Axis-Bracket

- [*-

Right-Axis-Bracket

-] *-

Branch-Arrow

- ¾ *-

Assignment-Arrow

- ¼ *-

Left-Index-Bracket

- [*-

Right-Index-Bracket

-] *-

Index-Separator

- ; *-

1 May 1997 at 23:52

58 APL Extended — DIS 8485(1997)

6.2. REDUCE-STATEMENT

Small-Circle

- ± *-

Example

From the list of characters in current-line,
ABC¼FN ²ì[1+0] DEF[1;5 6]§3.45E4,µ'ABC' ÝCOMMENT

evaluate-line generated a list of tokens and stored it in current-statement. Here, evaluate-
statement has replaced that list with a new list of tokens.

Identification Content Class

T00 left-end-of-statement
T01 'ABC' variable-name
T02 assignment-arrow
T03 'FN' defined-function-name
T04 '²' system-variable-name
T05 'ì' primitive-function
T06 left-axis-bracket
T07 1 constant
T08 '+' primitive-function
T09 0 constant
T10 right-axis-bracket
T11 'DEF' variable-name
T12 left-index-bracket
T13 1 constant
T14 index-separator
T15 5 6 constant
T16 right-index-bracket
T17 '§' primitive-function
T18 34500 constant
T19 ',' primitive-function
T20 'µ' primitive-function
T21 'ABC' constant
T22 right-end-of-statement

The new list, shown above, begins with a left-end-of-statement token and ends with a right-end-
of-statement token. Old identifier tokens have a new class and the same content; old literal
tokens are now constants whose content is an appropriate array; old primitive tokens are now
either primitive-functions whose content is the character identifying the primitive function, or are
grouping signs such as right-axis-bracket with no specified content.

6.2 Reduce-Statement

Reduce-Statement

APL Extended — DIS 8485(1997) 59

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Informal Description: Reduce-statement converts current-statement, a list of
syntactic-units, to a result by decomposing it into shorter lists of syntactic-units called
phrases, then calling procedures termed phrase-evaluators to convert these phrases into
tokens.

The letters Z, K, and J in this evaluation sequence refer to the graphic symbols found in
the resultant-prefix column of Table 3.

Evaluation Sequence:

Set current-stack to the empty-list of tokens.
Repeat:

Find the first entry in the phrase-table whose pattern matches a prefix of current-
stack.

If there is no matching entry,
If current-statement is empty, signal syntax-error.
Otherwise,

Remove the last token from current-statement.
Append it to current-stack as a new first item.

If there is a matching entry,
Let p stand for the prefix of the current-stack that matched the entry.
Let r stand for the resultant-prefix of the entry.
Let s stand for the phrase-evaluator of the entry.
Call s and set y to the token it returns.
If s is process-end-of-statement, return y.
If y is an exception, return y.
Otherwise, replace p with r in which y has been substituted forZ,K orJ according

to whether y is a result, a complete-index-list or a partial-index-list.
(End of repeated block)

The graphic symbols in the Pattern and Resultant-Prefix columns of Table 3 designate
lists of syntactic-units. Each graphic symbol matches tokens of the designated classes or
metaclasses.

Note: The graphic symbols employed are chosen to be suggestive of the list of characters that give
rise to such phrases.

The build-index-list entries are called with B bound to a value and I bound to a partial-index-list;
they return either anotherpartial-index-list (J) or a complete-index-list (K). Bracketsare not passed
as arguments or returned by build-index-list; they are preserved by reduce-statement to make the
patterns more obvious.

Example

This example is continued from evaluate-statement.

1 May 1997 at 23:52

60 APL Extended — DIS 8485(1997)

6.2. REDUCE-STATEMENT

The line being evaluated is
ABC ¼ FN ² ì [1 + 0] DEF [1 ; 56] § 34500 , µ 'ABC'
õ õ
T T
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

T00 is left-end-of-statement, and T22 is right-end-of-statement.

The tokens T00 through T22 initially form the columns of Figure 1. The rows of the figure show
the actions taken because of the pattern or lack of pattern in current-stack.

Consider step 5: the line fragment,µ'ABC' matches the phraseX F B as follows: X matches token
T19 because , is a primitive-function. F matches token T20 because µ is a primitive-function.
B matches token T21 because ABC is a constant. Token T22, right-end-of-statement, is not
considered because the pattern X F B is concerned with only the first three tokens in current-stack.

The phrase-evaluator associated with X F B is evaluate-monadic-function. This phrase-
evaluator, seeing that µ is a primitive function, searches the form-table for Z ¼µB, and calls
the corresponding evaluation sequence, shape. Shape returns a constant, the one-element-vector
containing three.

This becomes Z in the resultant-prefix column for X F B. Current-stack now holds three tokens:
(primitive-function; ,), (constant; ,3) and (right-end-of-statement;). Since no entry in the
phrase-table has an entry whose pattern matches a prefix of current-stack, the token T18

(constant; 34500) is added to current-stack. A prefix of current-stack now matches a pattern (A
F B matches (constant; 34500), (primitive-function; ,), (constant; ,3)), so the corresponding
phrase-evaluator (evaluate-dyadic-function) is called.

APL Extended — DIS 8485(1997) 61

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Pattern Phrase Evaluator Resultant-Prefix

(B) Remove-Parentheses Z
N Evaluate-Niladic-Function Z

X F B Evaluate-Monadic-Function X Z
X F [C] B Evaluate-Monadic-Function X Z
X F M B Evaluate-Monadic-Operator X Z
X F M [C] B Evaluate-Monadic-Operator X Z
A F M B Evaluate-Monadic-Operator X Z
A F M [C] B Evaluate-Monadic-Operator X Z

A F B Evaluate-Dyadic-Function Z
A F [C] B Evaluate-Dyadic-Function Z
X F D G B Evaluate-Dyadic-Operator Z
A F D G B Evaluate-Dyadic-Operator Z
A ±D G B Evaluate-Dyadic-Operator Z

A [K] Evaluate-Indexed-Reference Z
V [K] ¼B Evaluate-Indexed-Assignment Z
V ¼B Evaluate-Assignment Z
V Evaluate-Variable Z

] Build-Index-List J]
; I Build-Index-List J
; B I Build-Index-List J
[I Build-Index-List [K
[B I Build-Index-List [K

L R Process-End-of-Statement -
L B R Process-End-of-Statement -
L ¾B R Process-End-of-Statement -
L ¾R Process-End-of-Statement -

Legend:
A,B,Z match result.
D matches dyadic-operator.

F,G match defined-function-name,
primitive-function, or
system-function-name.

I,J match partial-index-list.
C,K match complete-index-list.
L matches left-end-of-statement.
M matches monadic-operator.

N matches niladic-defined-function-name or
niladic-system-function-name.

R matches right-end-of-statement.
V matches variable-name,

system-variable-name, or
shared-variable-name.

X matches assignment-arrow,
branch-arrow, defined-function-name,
index-separator, left-axis-bracket,
left-end-of-statement, left-index-bracket,
left-parenthesis, primitive-function,
system-function-name, or
right-axis-bracket.

(matches left-parenthesis.

) matches right-parenthesis.

[matches left-axis-bracket or
left-index-bracket.

] matches right-axis-bracket or
right-index-bracket.

± matches small-circle.

; matches index-separator.

¼ matches assignment-arrow.

¾ matches branch-arrow.

Table 3: The Phrase Table.

1 May 1997 at 23:52

62 APL Extended — DIS 8485(1997)

6.2. REDUCE-STATEMENT

1 GET NEXT TOKEN T22 ()
2 GET NEXT TOKEN T21 (R)
3 GET NEXT TOKEN T20 (B R)
4 GET NEXT TOKEN T19 (F B R)
5 EVALUATE MONADIC FUNCTION (<X F B>R)
6 GET NEXT TOKEN T18 (<X Z> R)
7 EVALUATE DYADIC FUNCTION (<A F B> R)
8 GET NEXT TOKEN T17 (Z R)
9 GET NEXT TOKEN T16 (F B R)
10 BUILD INDEX LIST (<]> F B R)
11 GET NEXT TOKEN T15 (J] F B R)
12 GET NEXT TOKEN T14 (B I] F B R)
13 BUILD INDEX LIST (<; B I>] F B R)
14 GET NEXT TOKEN T13 (J] F B R)
15 GET NEXT TOKEN T12 (B I] F B R)
16 BUILD INDEX LIST (<[B I>] F B R)
17 GET NEXT TOKEN T11 ([K] F B R)
18 EVALUATE VARIABLE (<V>[K] F B R)
19 EVALUATE INDEXED REFERENCE (<A [K]> F B R)
20 EVALUATE DYADIC FUNCTION (<A F B> R)
21 GET NEXT TOKEN T10 (Z R)
22 BUILD INDEX LIST (<]>B R)
23 GET NEXT TOKEN T09 (I] B R)
24 GET NEXT TOKEN T08 (B I] B R)
25 GET NEXT TOKEN T07 (F B I] B R)
26 EVALUATE DYADIC (<A F B>I] B FUNCTION R)
27 GET NEXT (Z I] B TOKEN T06 R)
28 BUILD INDEX (<[B I>] B LIST R)
29 GET NEXT ([C] B TOKEN T05 R)
30 GET NEXT (F [C] B TOKEN T04 R)
31 EVALUATE (<V>F [C] B VARIABLE R)
32 EVALUATE (<A F [C] B> DYADIC FUNCTION R)
33 GET NEXT (Z TOKEN T03 R)
34 (F B GET NEXT TOKEN T02 R)
35 (<X F B> EVALUATE MONADIC FUNCTION R)
36 (X Z GET NEXT TOKEN T01 R)
37 (<V ¼ B> EVALUATE ASSIGNMENT R)
38 (Z GET NEXT TOKEN T00 R)
39 * (<L B END OF STATEMENT R>)

Figure 1: Statement Evaluation.

APL Extended — DIS 8485(1997) 63

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

6.3 The Phrase Evaluators

Informal Description: Each phrase-evaluator takes a phrase and reduces it to a single
token. The form-table used by the phrase-evaluators is given as Table 4.

6.3.1 Diagrams

Primitive-Monadic-Scalar-Function

- �

+

�

�

-

�

�

§

�

�

¦

�

�

~

�

�

´

�

�

*

�

�

¶

�

�

¬

�

�

|

�

�

ë

�

�

!

�

�

�

-

Primitive-Dyadic-Scalar-Function

- �

<

�

�

¢

�

�

=

�

�

¿

�

�

>

�

�

¥

�

�

£

�

�

¤

�

�

-

�

�

¦

�

�

+

�

�

§

�

�

´

�

�

*

�

�

¶

�

�

¬

�

�

|

�

�

ë

�

�

é

�

�

ê

�

�

�

-

6.3.2 Remove-Parentheses

Pattern (B)

Evaluation Sequence:

If B is nil, signal value-error.
If B is a branch, signal value-error.
Otherwise, return B.

Note: (ß'') and (ß'¾3') fail with a value-error. (A¼3) and (ß'A¼3') do not display, since
the token returned by remove-parentheses is a committed-value, not a constant; for the same
reason, (²¼3) displays the value three only once. (¾3) fails with a syntax-error in evaluate-
statement.

(¾) also fails in evaluate-statement, but (ß'¾') succeeds; evaluate-statement threads line
successfully, and remove-parentheses receives and returns an escape token.

6.3.3 Evaluate-Niladic-Function

Pattern N

1 May 1997 at 23:52

64 APL Extended — DIS 8485(1997)

6.3. THE PHRASE EVALUATORS

Evaluation Sequence:

Let n stand for the content of N.
If N is a niladic-defined-function-name,

If the current-class of N is niladic-defined-function,
Search the form-table for Z ¼DFN.
Call the corresponding evaluation sequence, passing n as the value of DFN.
Return the token it returns.

Otherwise, signal syntax-error.
If N is a niladic-system-function-name,

Search the form-table for Z ¼n.
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence.
Return the token it returns.

Note: This phrase evaluator checks for a change in syntax class.

6.3.4 Evaluate-Monadic-Function

Pattern X F B

Pattern X F[C] B

Evaluation Sequence:

If B is not a value, signal value-error.
Let f stand for the content of F.
For pattern X F B

If F is a defined-function-name,
If the current-class of F is defined-function,

Search the form-table for Z ¼DFN B.
Call the corresponding evaluation sequence, passing f as the value of DFN.
Return the token it returns.

Otherwise, signal syntax-error.
If F is a primitive-function or a system-function-name,

If F matches primitive-monadic-scalar-function and B is not a scalar, perform
monadic-scalar-extension as follows:
Return a numeric array Z such that the shape-list of Z is the shape-list of B

and for all I in the index-set of the ravel-list of Z, item I of the ravel-list of
Z is f (item I of the ravel-list of B).

Otherwise,
Search the form-table for Z ¼f B.
If it is not found, signal valence-error.
Otherwise, call the corresponding evaluation sequence.
Return the token it returns.

For pattern X F[C] B

APL Extended — DIS 8485(1997) 65

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

If F is not a primitive-function, signal syntax-error.
If index-origin is nil, signal implicit-error.
Let C1 stand for the first-item in the index-list C.
If C1 is not a scalar or one-element-vector, signal axis-error.
If any item of the ravel-list of C1 is not a number, signal axis-error.
Set K to C1 plus (one minus index-origin).
Search the form-table for Z ¼f[K] B.
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence and return the token it

returns.

Additional Requirement:

The order in which the individual items ofZ are produced during monadic-scalar-extension
is not specified by this standard.

If any call of f signals an error during monadic-scalar-extension, that error is returned as
the result of evaluate-monadic-function.

Note: This phrase evaluator checks for a change in syntax class.

6.3.5 Evaluate-Monadic-Operator

Pattern X F M B

Pattern A F M B

Pattern X F M[C] B

Pattern A F M[C] B

Evaluation Sequence:

If B is not a value, signal value-error.
Let m stand for the content of M.
Let f stand for the content of F.
For pattern X F M B

If M is a primitive-monadic-operator
Search the form-table for Z¼f m B
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence, passing token F as the

value of f.
Return the token it returns.

Otherwise,
Search the form-table for Z¼f DFN B.
If it is not found, signal syntax-error.

1 May 1997 at 23:52

66 APL Extended — DIS 8485(1997)

6.3. THE PHRASE EVALUATORS

Otherwise, call the corresponding evaluation sequence, passing token F as the
value of f and the token DFN as the value of m.

Return the token it returns.
For pattern A F M B

If A is not a value, signal value-error.
If m is a primitive-monadic-operator

Search the form-table for Z¼A f m B.
If it is not found, signal syntax-error.
Call the corresponding evaluation sequence, passing token F as the value of f.
Return the token it returns.

Otherwise,
Search the form-table for Z¼A F DFN B.
If it is not found, signal syntax-error.
Call the corresponding evaluation sequence, passing token F as the value of f

and the token DFN as the value of m.
Return the token it returns.

For pattern X F M[C] B or A F M[C] B
If M is not an axis-operator, signal syntax-error
If F is not a primitive-function, signal syntax-error.
If index-origin is nil, signal implicit-error.
Let C1 stand for the first-item in the index-list C.
If C1 is not a scalar or one-element-vector, signal axis-error.
If any item of the ravel-list of C1 is not a number, signal axis-error.
Set K to C1 plus (one minus index-origin).

For pattern X F M[C] B
Search the form-table for Z ¼f m[K] B.
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence, passing token F as the

value of f.
Return the token it returns.

For pattern A F M[C] B
If A is not a value, signal value-error
Search the form-table for Z ¼ A f m[K] B.
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence, passing token F as the

value of f.
Return the token it returns.

6.3.6 Evaluate-Dyadic-Function

Pattern A F B

Pattern A F[C] B

Evaluation Sequence:

APL Extended — DIS 8485(1997) 67

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

If A is not a value, signal value-error.
If B is not a value, signal value-error.
Let f stand for the content of F.
For pattern A F B

If F is a defined-function-name,
If the current-class of F is defined-function,

Search the form-table for Z ¼A DFN B.
Call the corresponding evaluation sequence, passing f as the value of DFN.
Return the token it returns.

Otherwise, signal syntax-error.
If F is a primitive-function or a system-function-name,

IfFmatches primitive-dyadic-scalar-functionand A and B are not both scalars,
perform dyadic-scalar-extension as follows:
If the rank of A differs from the rank of B,

If A is a scalar or one-element-vector and B is not a scalar, return
((µB)µA) f B.

If B is a scalar or one-element-vector, return A f (µA)µB.
Otherwise, signal rank-error.

If the shape-list of A differs from the shape-list of B, signal length-error.
Return Z, an array such that the shape-list of Z is the same as the shape-list

of A, the type of Z is numeric, and the ravel-list of Z is such that, for all I
in the index-set of the ravel-list of Z, item I of the ravel-list of Z is (item I
of the ravel-list of A) f (item I of the ravel-list of B).

Otherwise, search the form-table for Z ¼AfB.
If it is not found, signal valence-error.
Call the corresponding evaluation sequence and return the token it returns.

For pattern A F[C] B
If F is not a primitive-function, signal syntax-error.
If index-origin is nil, signal implicit-error.
Let C1 stand for the first-item in the index-list C.
If C1 is not a scalar or one-element-vector, signal axis-error.
If any item of the ravel-list of C1 is not a number, signal axis-error.
Set K to C1 plus (one minus index-origin).
Search the form-table for Z ¼A f[K] B.
If it is not found, signal syntax-error.
Otherwise, call the corresponding evaluation sequence, passing tokenF as the value

of f.
Return the token it returns.

Additional Requirement:

There is an intentional forward reference to shape and reshape in the description of
dyadic-scalar-extension.

The order in which the individual items of Z are produced during dyadic-scalar-extension
is not specified by this standard.

1 May 1997 at 23:52

68 APL Extended — DIS 8485(1997)

6.3. THE PHRASE EVALUATORS

If any call of f signals an error during dyadic-scalar-extension, that error is returned as the
result of evaluate-dyadic-function.

Note: Dyadic-scalar-extension is intentionally stricter than it is in existing systems. For example,
(1 1µ1)+°3 signals a rank-error and 1 2 + ,1 signals a length-error.

This phrase evaluator checks for a change in syntax class.

An ambivalent function must be called either monadically or dyadically;hence,during syntax analysis
and execution of a line, there is never a reference to an ambivalent function as any given instance is
either monadic or dyadic.

6.3.7 Evaluate-Dyadic-Operator

Pattern X F D G B

Pattern A F D G B

Pattern A ± D G B

Evaluation Sequence:

If B is not a value, signal value-error.
Let d stand for the content of D.
Let f stand for the content of F.
Let g stand for the content of G.
For pattern X F D G B

If D is a primitive-dyadic-operator
Search the form-table for Z ¼f d g B.
If it is not found, signal syntax-error.
If it is found, call the corresponding evaluation sequence, passing token f as the

value of F and token g as the value of G.
Return the token it returns.

Otherwise,
Search the form-table for Z ¼f DFN g B.
If it is not found, signal syntax-error.
If it is found, call the corresponding evaluation sequence, passing token f as the

value of F, token g as the value of G, and token DFN as the value of d.
Return the token it returns.

For pattern A F D G B
If A is not a value, signal value-error.
If d is a primitive-dyadic-operator,

Search the form-table for Z ¼A f d g B.
If it is not found, signal syntax-error.
If it is found, call the corresponding evaluation sequence, passing token f as the

value of F and token g as the value of G.
Return the token it returns.

Otherwise,

APL Extended — DIS 8485(1997) 69

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Search the form-table for Z ¼A f DFN g B.
If it is not found, signal syntax-error.
If it is found, call the corresponding evaluation sequence, passing token f as the

value of F and token g as the value of G, and token DFN as the value of d.
Return the token it returns.

For pattern A ± D G B
If D is not dot, signal syntax-error.
Otherwise,

Search the form-table for Z ¼A ± d g B.
If it is not found, signal syntax-error.
If it is found, call the corresponding evaluation sequence, passing token g as the

value of G.
Return the token it returns.

6.3.8 Evaluate-Indexed-Reference

Pattern A[K]

Evaluation Sequence:

If A is not a value, signal value-error.
If index-origin is nil, signal implicit-error.
If the number-of-items in the index-list K differs from the rank of A, signal rank-

error.
If the rank of A is greater-than one,

Search the form-table for Z ¼A[I].
Call the corresponding evaluation sequence, passing K as the value of I.
Return the token it returns.

Otherwise,
If first-item in K is an elided-index-marker, return A.
Otherwise,

Set X to first-item in the index-list K.
If any item of the ravel-list of X is not a near-integer, signal domain-error.
Generate X1, a numeric array with the shape-list of X such that each item of

the ravel-list of X1 is (one minus index-origin) plus the integer-nearest-to X.
If any item of the ravel-list of X1 is not in the index-set of A, signal index-error.
Return Z, an array with the shape-list of X1, such that for each integer I in the

index-set of Z, item I of the ravel-list of Z is item J of the ravel-list of A,
where J is item I of the ravel-list of X1. The type of Z is the sufficient-type
of the ravel-list of Z under the type of A.

Note: Since an index-list will never have zero items, indexing will always signal a rank-error when
argumentA is a scalar.

1 May 1997 at 23:52

70 APL Extended — DIS 8485(1997)

6.3. THE PHRASE EVALUATORS

6.3.9 Evaluate-Assignment

Pattern V ¼ B

Evaluation Sequence:

If B is not a value, signal value-error.
If V is a shared-variable-name,

If the current-class of V is shared-variable,
Search the form-table for Z ¼SHV ¼B.
Call the corresponding evaluation sequence, passing token V as the value ofSHV.
Return the token it returns.

Otherwise, signal syntax-error.
If V is a system-variable-name,

Search the form-table for Z ¼ q ¼B, where q is the content of V.
If it is not found, signal syntax-error.
Otherwise,

Call the corresponding evaluation sequence
Return the token it returns.

If V is a variable-name,
If the current-class of V is nil or variable,

Set the current-referent of V to a token whose class is variable and whose
content is the content of B.

Return a token whose class is committed-value and whose content is B.
Otherwise, signal syntax-error.

Note: The phrase ABC¼ß'¾3' yields value-error. The phrase V¼²SVR 'V' where V was a
shared-variable yields syntax-error.

6.3.10 Evaluate-Indexed-Assignment

Pattern V[K] ¼B

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If B is not a value, signal value-error.
If V is a shared-variable-name,

If the current-class of V is shared-variable,
Search the form-table for Z ¼SHV[I] ¼B.
Call the corresponding evaluation sequence, passing token V as the value ofSHV,

and K as the value of I.
Return the token it returns.

Otherwise, signal syntax-error.
If V is a system-variable-name,

Search the form-table for Z ¼ q[I] ¼B, where q is the content of V.

APL Extended — DIS 8485(1997) 71

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

If it is not found, signal syntax-error.
Otherwise,

Call the corresponding evaluation sequence, passing K as the value of I.
Return the token it returns.

If V is a variable-name,
If the current-class of V is nil, signal value-error.
If the current-class of V is a variable,

Search the form-table for Z ¼V[I] ¼B.
Call the corresponding evaluation sequence, passing K as the value of I.
Return the token it returns.

Otherwise, signal syntax-error.

6.3.11 Evaluate-Variable

Pattern V

Evaluation Sequence:

If V is a shared-variable-name,
If the current-class of V is shared-variable,

Search the form-table for Z ¼SHV.
Call the corresponding evaluation sequence, passing token V as the value ofSHV.
Return the token it returns.

Otherwise, signal syntax-error.
If V is a system-variable-name,

If the current-class of V is nil, signal value-error.
Search the form-table for Z ¼q, where q is the content of V.
Call the corresponding evaluation sequence.
Return the token it returns.

If V is a variable-name,
If the current-class of V is nil, signal value-error.
If the current-class of V is variable, return the current-content of V.
Otherwise, signal syntax-error.

6.3.12 Build-Index-List

Pattern]

Pattern ; I

Pattern ; B I

Pattern [I

Pattern [B I

1 May 1997 at 23:52

72 APL Extended — DIS 8485(1997)

6.3. THE PHRASE EVALUATORS

Evaluation Sequence:

For pattern]
Return J, a partial-index-list with content the index-list of length zero.

For pattern ; I
Return J, a partial-index-list with content Z, an index-list such that the first-item

in Z is an elided-index-marker and the rest-of Z is I.
For pattern ; B I

Return J, a partial-index-list with content Z, an index-list such that the first-item
in Z is B and the rest-of Z is I.

For pattern [I
Return J, a complete-index-list with content Z, an index-list such that the first-

item in Z is an elided-index-marker and the rest-of Z is I.
For pattern [B I

Return J, a complete-index-list with content Z, an index-list such that the first-
item in Z is B and the rest-of Z is I.

6.3.13 Process-End-of-Statement

Pattern L R

Pattern L A R

Pattern L ¾R

Pattern L ¾A R

Evaluation Sequence:

For pattern L R
Return a token whose class is nil.

For pattern L A R
Return A.

For pattern L ¾R Process-End-of-Statement
Return a token whose class is escape.

Process-End-of-Statement
For pattern L ¾A R

If the rank of A is greater-than one, signal rank-error.
If A is empty, return a token whose class is nil.
Otherwise, set A1 to the first-scalar in A.
If A1 is not a near-integer, signal domain-error.
Return a token whose class is branch and whose content is the numeric-scalar

with value the integer-nearest-to A1.

APL Extended — DIS 8485(1997) 73

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

6.4 The Form Table

The form-table is the list of all lists of syntactic-units for which evaluation sequences
exist.

The following matching rules apply in the form-table.
A, B, Z match constant.
I,K match complete-index-list.
f, g match primitive-function or defined-function, but not defined-operator.
A given ideogram, such as ë, matches a primitive-function token that contains it.
A given distinguished-identifier, such as ²IO, matches any system-variable-name

token or system-function-name token that contains it.

The behaviour of operations in the form-table that do not create new contexts is atomic.

This behaviour is observable only for those operations that have side-effects. For example,
if any of the elements of an argument array is not in the domain of roll, the value of the
system parameter random-link following execution will be as it was when roll was called.

1 May 1997 at 23:52

74 APL Extended — DIS 8485(1997)

6.4. THE FORM TABLE

Form Operation Name Page

Z ¼ + B Conjugate 80
Z ¼ - B Negative 80
Z ¼ § B Direction 81
Z ¼ ¦ B Reciprocal 81
Z ¼ ¬ B Floor 82
Z ¼ ¶ B Ceiling 82
Z ¼ * B Exponential 83
Z ¼ ë B Natural Logarithm 83
Z ¼ | B Magnitude 84
Z ¼ ! B Factorial 85
Z ¼ ´ B Pi times 86
Z ¼ ~ B Not 87

Z ¼ A + B Plus 88
Z ¼ A - B Minus 88
Z ¼ A § B Times 89
Z ¼ A ¦ B Divide 89
Z ¼ A ¶ B Maximum 90
Z ¼ A ¬ B Minimum 90
Z ¼ A * B Power 91
Z ¼ A ë B Logarithm 92
Z ¼ A | B Residue 93
Z ¼ A ! B Binomial 94
Z ¼ A ´ B Circular Functions 95
Z ¼ A ¤ B And/LCM 97
Z ¼ A £ B Or/GCD 98
Z ¼ A ê B Nand 98
Z ¼ A é B Nor 99
Z ¼ A = B Equal 100
Z ¼ A < B Less than 101
Z ¼ A ¢ B Less than or equal to 102
Z ¼ A ¥ B Not equal 103
Z ¼ A ¿ B Greater than or equal to 104
Z ¼ A > B Greater than 105

Z ¼ , B Ravel 107
Z ¼ µ B Shape 108
Z ¼ ° B Index Generator 109
Z ¼ ï B Table 110

Z ¼ A µ B Reshape 112
Z ¼ A , B Join 114
Z ¼ A ï B Join 114

Table 4: The Form Table

APL Extended — DIS 8485(1997) 75

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Form Operation Name Page

Z ¼ f/ B Reduction 115
Z ¼ f/[K] B Reduction 115
Z ¼ fð B Reduction 115
Z ¼ fð[K] B Reduction 115
Z ¼ f\ B Scan 119
Z ¼ f\[K] B Scan 119
Z ¼ fñ B Scan 119
Z ¼ fñ[K] B Scan 119
Z ¼ N f / B N-wise Reduction 121
Z ¼ N f /[K] B N-wise Reduction 121
Z ¼ N f ð B N-wise Reduction 121
Z ¼ N f ð[K] B N-wise Reduction 121
Z ¼ f ~¡ B Duplicate 124
Z ¼ A f ~¡ B Commute 124
Z ¼ A ± . f B Outer Product 126
Z ¼ A f . g B Inner Product 127
Z ¼ f ø y B Rank 130
Z ¼ A f ø y B Rank 131

Z ¼ ? B Roll 133
Z ¼ æ B Grade Up 135
Z ¼ ç B Grade Down 137
Z ¼ ì B Reverse 138
Z ¼ î B Reverse 138
Z ¼ ì[K] B Reverse 138
Z ¼ î[K] B Reverse 138
Z ¼ í B Monadic Transpose 139
Z ¼ á B Matrix Inverse 140
Z ¼ ß B Execute 141
Z ¼ ¸ B Unique 142

Z ¼ A ,[K] B Join Along an Axis 143
Z ¼ A ° B Index of 146
Z ¼ A ­ B Member of 147
Z ¼ A ? B Deal 148
Z ¼ A / B Replicate 149
Z ¼ A ð B Replicate 149
Z ¼ A /[K] B Replicate 149
Z ¼ A ð[K] B Replicate 149
Z ¼ A \ B Expand 151
Z ¼ A ñ B Expand 151
Z ¼ A \[K] B Expand 151
Z ¼ A ñ[K] B Expand 151

Table 4: (Continued)

1 May 1997 at 23:52

76 APL Extended — DIS 8485(1997)

6.4. THE FORM TABLE

Form Operation Name Page

Z ¼ A ì B Rotate 153
Z ¼ A î B Rotate 153
Z ¼ A ì[K] B Rotate 153
Z ¼ A î[K] B Rotate 153
Z ¼ A ª B Base Value 155
Z ¼ A ³ B Representation 157
Z ¼ A í B Dyadic Transpose 159
Z ¼ A õ B Take 161
Z ¼ A · B Drop 162
Z ¼ A á B Matrix Divide 163
Z ¼ A[I] Indexed Reference 164
Z ¼ V[I] ¼ B Indexed Assignment 165
Z ¼ A ~ B Without 167
Z ¼ A Á B Left 167
Z ¼ A ½ B Right 168
Z ¼ A ç B Character Grade Down 169
Z ¼ A æ B Character Grade Up 170

Z ¼ ²TS Time Stamp 178
Z ¼ ²AV Atomic Vector 179
Z ¼ ²LC Line Counter 179
Z ¼ ²EM Event Message 180
Z ¼ ²ET Event Type 181

Z ¼ ²DL B Delay 181
Z ¼ ²NC B Name Class 182
Z ¼ ²EX B Expunge 183
Z ¼ ²NL B Name List 184
Z ¼ ²STOP B Query Stop 185
Z ¼ ²TRACE B Query Trace 186
²ES B Monadic Event Simulation 187

Z ¼ A ²NL B Name List 187
Z ¼ A ²STOP B Set Stop 188
Z ¼ A ²TRACE B Set Trace 189
Z ¼ A ²EA B Execute Alternate 190
A ²ES B Dyadic Event Simulation 191
Z ¼ A ²TF B Transfer Form 192
Z ¼ ²CT ¼ B Comparison Tolerance 194
Z ¼ ²CT Comparison Tolerance 194
Z ¼ ²RL ¼ B Random Link 195
Z ¼ ²RL Random Link 195
Z ¼ ²PP ¼ B Print Precision 196
Z ¼ ²PP Print Precision 196

Table 4: (Continued)

APL Extended — DIS 8485(1997) 77

1 May 1997 at 23:52

6. SYNTAX AND EVALUATION

Form Operation Name Page

Z ¼ ²IO ¼ B Index Origin 197
Z ¼ ²IO Index Origin 197
Z ¼ ²LX ¼ B Latent Expression 198
Z ¼ ²LX Latent Expression 198
Z ¼ ²LX[I] ¼ B Latent Expression 198
Z ¼ DFN Call-Defined-Function 207
Z ¼ DFN B Call-Defined-Function 207
Z ¼ A DFN B Call-Defined-Function 207
Z ¼ f DFN B Call-Defined-Function 207
Z ¼ A f DFN B Call-Defined-Function 207
Z ¼ f DFN g B Call-Defined-Function 207
Z ¼ A f DFN g B Call-Defined-Function 207
Z ¼ ²FX B Function Fix 210
Z ¼ ²CR B Character Representation 211
Z ¼ SHV Shared Variable Reference 224
Z ¼ SHV ¼ B Shared Variable Assignment 225
Z ¼ SHV[I] ¼ B Shared Variable Indexed Assignment 226
Z ¼ ²SVC B Shared Variable Access Control Inquiry 226
Z ¼ ²SVQ B Shared Variable Query 228
Z ¼ ²SVO B Shared Variable Degree of Coupling 229
Z ¼ A ²SVO B Shared Variable Offer 230
Z ¼ ²SVR B Shared Variable Retraction 231
Z ¼ A ²SVC B Shared Variable Access Control Set 232
Z ¼ ²SVS B Shared Variable State Inquiry 233
²SVE ¼ B Shared Variable Event 234
Z ¼ ²SVE Shared Variable Event 234
Z ¼ à B Monadic Format 240
Z ¼ A à B Dyadic Format 244
Z ¼ ² Quad Input 252
Z ¼ ä Quote Quad Input 253
Z ¼ ² ¼ B Quad Output 253
Z ¼ ä ¼ B Quote Quad Output 254

Table 4: (Concluded)

1 May 1997 at 23:52

78 APL Extended — DIS 8485(1997)

7

Scalar Functions

Note: The primitive functions described in this chapter are called scalar-functions. All scalar-
functions have uniform behaviour with respect to the structure of their argument arrays. The shape
of the result of a scalar-function is determined solely by the shapes of its arguments.

This section defines scalar-functions individually for scalar arguments. Their common behaviour
is described in this informal description by the expository device of an implicit operator, called the
scalar-extension-operator.

If the argument to a monadic scalar function is not a scalar, a monadic scalar extension operator
can be thought of as being invoked to produce a derived function which, in turn, applies the monadic
scalar function to every element of the argument array, producing a result array of the same shape as
the argument. The order in which the elements of the argument array are presented to the monadic
scalar function is not specified by this standard. Monadic scalar functions never signal rank-error
or length-error.

If either of the arguments of a dyadic scalar function is not a scalar, a dyadic scalar extension
operator can be thought of as being invoked to produce a derived function, which provides pairs of
scalars to the scalar function as follows:

The dyadic scalar extension operator first tests whether the two argumentarrays have the same shape.
Arguments to a dyadic scalar function must have the same shape. If they do not, and the argument of
lesser rank is a scalar or one-element vector, the argument of lesser rank is reshaped to the shape of
the argument of greater rank.

If the arguments cannot be made to have the same shape, the dyadic scalar extension operator signals
a rank-error if the arguments are of different ranks and a length-error otherwise.

When the dyadic scalar extension operator succeeds, it producesa derived function which generates a
scalar for each position in its result array by applying the subject scalar-function to pairs of scalars
selected from corresponding positions in the argument arrays. The order in which the elements of
the result array are produced is not specified by this standard.

Because the derived function produced by either scalar extension operator never calls its scalar-
function argumentfor empty arrays,domain-error can never be signalled for empty array arguments
or for arrays reshaped by scalar extension to empty.

The type of all empty results produced by the functions derived from monadic and dyadic scalar
extension is a property of the function to scalar extension. Since all scalar functions specified in

APL Extended — DIS 8485(1997) 79

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

this standard produce numeric results, the type of all empty results produced by scalar extension is
specified as numeric.

For example, ''¤5 and -''return empty numeric results rather than signalling an error.

7.1 Monadic Scalar Functions

Note: The definitions in this section cover only scalar arguments. The phrase-evaluator evaluate-
monadic-function handles non-scalar cases. All scalar-functions yield scalar results when applied
to scalar arguments.

Note that, in this standard, roll is not a scalar-function.

7.1.1 Conjugate

Z ¼ + B

Informal Description: Z is the conjugate of B. Geometrically, it is the reflection of the
number about the real axis.

Evaluation Sequence:

If B is not a number, signal domain-error.
Return B with its imaginary-part negated.

Example:

+ 3 ¨4 0 0.5 3J4 ¨3J4 3J¨4
3 ¨4 0 0.5 3J¨4 ¨3J¨4 3J4

7.1.2 Negative

Z ¼ - B

Informal Description: Z is the negation of B.

Evaluation Sequence:

If B is not a number, signal domain-error.
Return zero minus B.

Example:

- 7 0 ¨7
¨7 0 7

1 May 1997 at 23:52

80 APL Extended — DIS 8485(1997)

7.1. MONADIC SCALAR FUNCTIONS

7.1.3 Direction

Z ¼ § B

Informal Description: Z is zero ifB is zero, and otherwise is the number with magnitude
one that has the same direction as B. Geometrically, it is the number determined by the
radial projection of B onto the unit-circle. For real numbers, this is identical with the
sign or signum function, and takes on only the values one, zero, and negative one.

Evaluation Sequence:

If B is not a number, signal domain-error.
If B is zero, return zero; otherwise, return B divided-by the magnitude of B.

Examples:

§1 ¨.5 .33 0 ¨1E¨20
1 ¨1 1 0 ¨1

§3J4 3J¨4 ¨3J4 ¨3J¨4
0.6J0.8 0.6J¨0.8 ¨0.6J0.8 ¨0.6J¨0.8

7.1.4 Reciprocal

Z ¼ ¦ B

Informal Description: Z is 1¦B.

Evaluation Sequence:

If B is not a number, signal domain-error.
If B is zero, signal domain-error.
Return one divided-by B.

Examples:

¦¨.25 .5 1 2 ¨4
¨4 2 1 0.5 ¨0.25

¦0
domain-error

APL Extended — DIS 8485(1997) 81

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.1.5 Floor

Z ¼ ¬ B

Informal Description: Z is the complex-integer U associated with the unit-square
containing B, unless the sum of the fractional-parts of the real-part and imaginary-
part of B is greater-than-or-equal-to one, in which case it is the nearer of U plus one
or U plus imaginary-one, In case of a tie, it is U plus one. For real-numbers, Z is the
greatest integer tolerantly less than or equal to B. Uses comparison-tolerance

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If B is not a number, signal domain-error.
Return the tolerant-floor of B within comparison-tolerance.

Examples:

– In the following, comparison-tolerance is 1E¨10.

¬¨3.1416 3.1416 .99999999999 5E20 ¨0.5E¨10
¨4 3 1 5E20 0

¬0.3J0.6 0.6J0.8 0.8J0.6 0.6J0.3 0.8J0.2 0.5J0.5
0 0J1 1 0 1 1

Note: The following article describes the design of the floor function for complex arguments:

McDonnell, E. E., “Complex Floor”, APL Congress 73, North Holland Publishing Co., 1973

7.1.6 Ceiling

Z ¼ ¶ B

Informal Description: Z is the negation of the floor of the negation of B. For B a real-
number, Z is the least integer tolerantly greater than or equal to B. Uses comparison-
tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If B is not a number, signal domain-error.
Return -¬-B.

Example:

– In the following, comparison-tolerance is 1E¨10.

¶¨3.1416 3.1416 5.00000000001
¨3 4 5

1 May 1997 at 23:52

82 APL Extended — DIS 8485(1997)

7.1. MONADIC SCALAR FUNCTIONS

7.1.7 Exponential

Z ¼ * B

Informal Description: Z is e raised to the power B, where e is the base of the natural
logarithms.

Evaluation Sequence:

If B is not a number, signal domain-error.
Return the exponential of B.

Examples:

* ¨1E50 ¨2 ¨1 0 1 2
0 0.135335 0.367879 1 2.71828 7.38906

* .693147
2

7.1.8 Natural Logarithm

Z ¼ ë B

Informal Description: Z is the natural logarithm of B.

Evaluation Sequence:

If B is not a number, signal domain-error.
If B is zero, signal domain-error.
Return the natural-logarithm of B.

Examples:

ë1828459045 2 1E¨50 1E50
1 0.693147 ¨115.129 115.129

ë*1
1

APL Extended — DIS 8485(1997) 83

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.1.9 Magnitude

Z ¼ | B

Informal Description: Z is the magnitude of B.

Evaluation Sequence:

If B is not a number, signal domain-error.
Return the magnitude of B.

Example:

|1 ¨0.5 0.33 ¨0.25 0 1E¨20
1 0.5 0.33 0.25 0 1E¨20

1 May 1997 at 23:52

84 APL Extended — DIS 8485(1997)

7.1. MONADIC SCALAR FUNCTIONS

7.1.10 Factorial

Z ¼ ! B

Informal Description: Z is the gamma-function of B+1. If B is a nonnegative-integer,
this is factorial B.

Evaluation Sequence:

If B is not a number, signal domain-error.
If B is a negative-integer, signal domain-error.
Set B1 to B plus one.
Return gamma-function of B1.

Examples:

! 0 1 2 3 4 5 6 7 8 9
1 1 2 6 24 120 720 5040 40320 362880

!¨.5
1.77245

5 1 µ! - 1.502 1.503 1.504 1.505 1.506
¨3.54471
¨3.54466
¨3.54464
¨3.54466
¨3.5447

Note: The gamma-function is defined in, for example, the National Bureau of Standards
Handbook of Mathematical Functions, U.S. Government Printing Office, Washington D.C., 1964.

See also Hart, J. F., Computer Approximations, Robert C. Krieger Publishing Company,
Huntington, NY, 1978.

APL Extended — DIS 8485(1997) 85

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.1.11 Pi times

Z ¼ ´ B

Informal Description: Z is � times B.

Evaluation Sequence:

If B is not a number, signal domain-error.
Return pi-times B.

Example:

´1 10 100
3.14159 31.4159 314.159

1 May 1997 at 23:52

86 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.1.12 Not

Z ¼ ~ B

Informal Description: Z is the Boolean complement of B.

Evaluation Sequence:

If B is not near-Boolean, signal domain-error.
If the integer-nearest-to B is one, return zero.
Otherwise, return one.

Example:

– For the following, the implementation-parameter integer-tolerance is 1E¨10.

~0 1 1E¨11 .999999999999
1 0 1 0

7.2 Dyadic Scalar Functions

Note: The definitions in this section cover only scalar arguments. The phrase-evaluator evaluate-
dyadic-function handles non-scalar cases. All scalar-functions yield scalar results when applied
to scalar arguments.

The outer product operator, which has not yet been formally introduced at this point in the document,
is used in the examples in this section as a convenient way of generating tables. The use of outer
product in this section is limited to vector arguments. The same results could be obtained from each
example, although not so compactly, by supplying the elements of the left argument one at a time,
starting from the leftmost, as left arguments to the scalar function.

For example,

Example:

0 1±.=0 1 2
1 0 0
0 1 0

is equivalent to

Example:

0 = 0 1 2
1 0 0

1 = 0 1 2
0 1 0

APL Extended — DIS 8485(1997) 87

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.1 Plus

Z ¼ A + B

Informal Description: Z is A plus B.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
Return A plus B.

Example:

¨2 ¨1 0 1 ±.+ ¨2 ¨1 0 1
¨4 ¨3 ¨2 ¨1
¨3 ¨2 ¨1 0
¨2 ¨1 0 1
¨1 0 1 2

7.2.2 Minus

Z ¼ A - B

Informal Description: Z is A minus B.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
Return A minus B.

Example:

¨2 ¨1 0 1 ±.- ¨2 ¨1 0 1
0 ¨1 ¨2 ¨3
1 0 ¨1 ¨2
2 1 0 ¨1
3 2 1 0

1 May 1997 at 23:52

88 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.3 Times

Z ¼ A § B

Informal Description: Z is A times B.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
Return A times B.

Example:

¨2 ¨1 0 1 ±.§¨2 ¨1 0 1
4 2 0 ¨2
2 1 0 ¨1
0 0 0 0
¨2 ¨1 0 1

7.2.4 Divide

Z ¼ A ¦ B

Informal Description: Z is A divided by B.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
If B is zero and A is not zero, signal domain-error.
If B is zero and A is zero, return one.
Otherwise, return A divided-by B.

Example:

0 1 2 3 4 ±.¦1 2 3 4
0 0 0 0
1 0.5 0.333333 0.25
2 1 0.666666 0.5
3 1.5 1 0.75
4 2 1.33333 1

APL Extended — DIS 8485(1997) 89

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.5 Maximum

Z ¼ A ¶ B

Informal Description: Z is the larger of A and B.

Evaluation Sequence:

If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1 is greater-than B1, return A1.
Otherwise, return B1.

Example:

¨2 ¨1 0 1 ±.¶¨2 ¨1 0 1
¨2 ¨1 0 1
¨1 ¨1 0 1
0 0 0 1
1 1 1 1

7.2.6 Minimum

Z ¼ A ¬ B

Informal Description: Z is the smaller of A and B.

Evaluation Sequence:

If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1 is greater-than B1, return B1.
Otherwise, return A1.

Example:

¨2 ¨1 0 1 ±.¬¨2 ¨1 0 1
¨2 ¨2 ¨2 ¨2
¨2 ¨1 ¨1 ¨1
¨2 ¨1 0 0
¨2 ¨1 0 1

1 May 1997 at 23:52

90 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.7 Power

Z ¼ A * B

Informal Description: Z is A raised to the Bth power.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
If A is zero and B is zero, return one.
If A is zero and the real-part of B is a positive-number, return zero, otherwise signal

domain-error.
Return A to-the-power B.

Examples:

– In the following, print-precision is 12.

2*32
4294967296

4*0.5
2

¨8*¦3
1J1.73205080757

Additional Requirement:

The foregoing example shows that, when the optional complex arithmetic facility is
implemented, the implementation-algorithm should yield the principal value of the
nth (odd n) root of a negative number, not the real negative root. If it is not implemented,
a domain error should be signalled.

APL Extended — DIS 8485(1997) 91

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.8 Logarithm

Z ¼ A ë B

Informal Description: Z is the logarithm of B to the base A.

Evaluation Sequence:

If either of A or B are not numbers signal domain-error.
If A and B are equal, return one.
If A is one, signal domain-error.
Set A1 to the natural-logarithm of A.
Set B1 to the natural-logarithm of B.
Return B1 divided-by A1.

Example:

10 2 10 0.1 ë2 65536 1E15 1E15
0.30103 16 15 ¨15

1 May 1997 at 23:52

92 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.9 Residue

Z ¼ A | B

Informal Description: Z is B modulo A. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either of A or B is not a number, signal domain-error.
If A is zero, return B.
If comparison-tolerance is not zero, and B divided-by A is integral-within

comparison-tolerance, return zero.
Otherwise set Z to B modulo A.
If Z is A, return zero.
Otherwise, return Z.

Examples:

– In the following, print-precision is 16 and comparison-tolerance is 1E¨10.

7 ¨7 ±.|31 28 ¨30
3 0 5
¨4 0 ¨2

0.2 |1.4 1.5 1.6
0 0.1 0

1 |1E30 1E¨30 ¨1E¨30 .99999999999
0 0 0 0

– In the following, comparison-tolerance is zero.

1 |1E30 1E¨30 ¨1E¨30 .99999999999
0 1E¨30 0 0.99999999999

Additional Requirement:

The range of residue is those numbers that are the product of a fraction and A, except when
A is zero, in which case the range is the single number B.

Note: The implementation-algorithm P modulo Q provides an exact modulo operation for real-
numbersP and Q. It evaluatesR¼P-(§P)§|Q§¬|P¦Q exactly, and returnsR if (§R)=§Q, or R+Q
otherwise.

The definition of “mod” in the IEEE standard for Binary Floating-Point Arithmetic (754) provides
an example of this exact evaluation.

Implementations should avoid signalling limit-error in residue. If the operation B divided-by A
causes exponent-overflow, return zero. If it causes exponent-underflow, and if A and B have the
same signs, return B. If they have different signs, return zero.

APL Extended — DIS 8485(1997) 93

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.10 Binomial

Z ¼ A ! B

Informal Description: Z is (gamma(1+B))¦((gamma(1+A))§gamma(1+B-A))

If A and B are nonnegative-integers, Z is the number of combinations of B things taken
A at a time.

Evaluation Sequence:

If either of A or B is not a number, signal domain-error.
Determine if each of A, B, and B-A is a negative-integer.
Select the appropriate case from the following table, where a one indicates that the

corresponding value is a negative-integer and a zero indicates that it is not.
Case Rule

A B B-A
0 0 0 Return (!B)¦(!A)§!B-A.
0 0 1 Return zero.
0 1 0 Signal domain-error.
0 1 1 Return (¨1*A)§A!A-B+1.
1 0 0 Return zero.
1 0 1 (Case cannot arise.)
1 1 0 Return (¨1*B-A)§(|B+1)!(|A+1).
1 1 1 Return zero.

Example:

¨4 ¨3 ¨2 ¨1 0 1 2 3 4 ±.! ¨4 ¨3 ¨2 ¨1 0 1 2 3 4

1 ¨3 3 ¨1 0 0 0 0 0
0 1 ¨2 1 0 0 0 0 0
0 0 1 ¨1 0 0 0 0 0
0 0 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1
¨4 ¨3 ¨2 ¨1 0 1 2 3 4
10 6 3 1 0 0 1 3 6
¨20 ¨10 ¨4 ¨1 0 0 0 1 4
35 15 5 1 0 0 0 0 1

Note: The APL expressions in the rule column indicate the result required, not the algorithm to be
used. For example, 64!65 should be 65 even if !65 signals limit-error.

1 May 1997 at 23:52

94 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.11 Circular Functions

Z ¼ A ´ B

Informal Description: Z is the result of applying a function designated by A to B.

Evaluation Sequence:

If A is not a near-integer, signal domain-error.
If B is not a number, signal domain-error.
Set A1 to the integer-nearest-to A.
If A1 is not in the closed-interval-between ¨12 and 12, signal domain-error.
If A1 is ¨12, return *0J1§B.
If A1 is ¨11, return 0J1§B.
If A1 is ¨10, return +B.
If A1 is ¨9, return B.
If A1 is ¨8, return -(¨1-B*2)*.5.
If A1 is ¨7,

If B is negative-one or one, signal domain-error.
Return the inverse-hyperbolic-tangent of B.

If A1 is ¨6,
Return Z, the principal value of the inverse-hyperbolic-cosine of B, where Z is a

nonnegative-number.
If A1 is ¨5, return the inverse-hyperbolic-sine of B.
If A1 is ¨4,

If B is ¨1 return zero
Otherwise return (B+1)§((B-1)¦B+1)*0.5.

If A1 is ¨3, return Z, the principal value in radians of the inverse-tangent of B, where
Z is in the open-interval-between ��=2 and �=2.

If A1 is ¨2,
Return Z, the principal value in radians of the inverse-cosine of B, where Z is either

zero or a number in the open-interval-between zero and �.
A1 is ¨1,

Return Z, the principal value in radians of the inverse-sine of B, where Z is either
�=2, or a number in the open-interval-between ��=2 and �=2.

If A1 is 0,
If B is not in the closed-interval-between negative-one and one, signal domain-

error.
Return (1-B*2)*0.5.

If A1 is 1, return the sine of B radians.
If A1 is 2, return the cosine of B radians.
If A1 is 3,

If B is an odd multiple of �=2, signal domain-error.
Return the tangent of B radians.

If A1 is 4, return (1+B*2)*0.5.
If A1 is 5, return the hyperbolic-sine of B.
If A1 is 6, return the hyperbolic-cosine of B.

APL Extended — DIS 8485(1997) 95

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

If A1 is 7, return the hyperbolic-tangent of B.
If A1 is 8, return (¨1-B*2)*.5.
If A1 is 9, return the real-part of B.
If A1 is 10, return |B.
If A1 is 11, return the imaginary-part of B.
If A1 is 12, return the arc of B.

Examples:

2 ´¨1 ´.6
.8

2 ´0
1

3 ´´¦4
1

6 ´0
1

Note: The APL expressions used for 0´X, ¨4´X, and 4´X above indicate the result desired, not the
algorithm to be used.

Note: The following article describes the reasons for the choices made in defining the circular
functions for complex arguments,

Penfield, Paul, “Principal Values and Branch Cuts in Complex APL”, APL81 Conference
Proceedings, ACM, San Francisco, 1981

Note: Values ofA greater than 7 in magnitude are requiredonly for an implementation which includes
the optional complex-arithmetic-facility.

1 May 1997 at 23:52

96 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.12 And/LCM

Z ¼ A ¤ B

Informal Description: Z is the least common multiple of A and B. For Boolean arguments
it is the Boolean product of A and B. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either A or B is not a number, signal domain-error.
If both A and B are near-boolean,

Set A1 to the integer-nearest-to A.
Set B1 to the integer-nearest-to B.
If either A1 or B1 is zero, return zero.
Otherwise, return one.

Otherwise, set A1 to the greatest-common-divisor of A and B, using the
implementation-algorithm greatest-common-divisor.

If A1 is zero, return zero.
Otherwise, return A times (B divided-by A1).

Examples:

0 1 ±.¤0 1
0 0
0 1

30 ¤ 36
180

3 ¤ 3.6
18

¨29J53 ¤ ¨1J107
¨853J¨329

APL Extended — DIS 8485(1997) 97

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.13 Or/GCD

Z ¼ A £ B

Informal Description: Z is the greatest common divisor of A and B. For Boolean
arguments, Z is the Boolean sum of A and B. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either A or B is not a number, signal domain-error.
If both A and B are near-boolean,

Set A1 to the nearest-integer to A.
Set B1 to the nearest-integer to B.
If either A1 or B1 is one, return one.
Otherwise, return zero.

Otherwise, return the greatest-common-divisor of A and B, using the
implementation-defined-algorithm greatest-common-divisor.

Examples:

0 1 ±.£0 1
0 1
1 1

30 £ 36
6

3 £ 3.6
0.6

¨29J53 £ ¨1J107
7J1

7.2.14 Nand

Z ¼ A ê B

Informal Description: Z is the Boolean complement of the Boolean product of A and B.

Evaluation Sequence:

If either A or B is not near-Boolean, signal domain-error.
Otherwise, return ~A¤B, with comparison-tolerance set to zero.

Example:

0 1 ±.ê0 1
1 1
1 0

1 May 1997 at 23:52

98 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.15 Nor

Z ¼ A é B

Informal Description: Z is the Boolean complement of the Boolean sum of A and B.

Evaluation Sequence:

If either A or B is not near-Boolean, signal domain-error.
Otherwise, return ~A£B, with comparison-tolerance set to zero.

Example:

0 1 ±.é0 1
1 0
0 0

APL Extended — DIS 8485(1997) 99

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.16 Equal

Z ¼ A = B

Informal Description: Z is one if A and B are considered equal and zero otherwise. A
and B are equal if they are the same character, or if they are both numeric and A is
tolerantly equal to B within comparison-tolerance. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If the type of A is not the same as the type of B, return zero.
If both A and B are characters,

If A is the same character as B, return one.
Otherwise, return zero.

If both A and B are numbers,
If A is tolerantly-equal to B within comparison-tolerance, return one.
Otherwise, return zero.

Example:

1 2 3 ±.= 1 2 3
1 0 0
0 1 0
0 0 1

– In the following, comparison-tolerance is 1E¨13.

4 = 4 + 5E¨13 2E¨13 ¨2E¨13 ¨5E¨13
0 1 1 0

0 = ¨1E¨20 1E¨20 0
0 0 1

3 = 'A3'
0 0

Note: Comparisons of numbers whose signs differ are not affected by comparison-tolerance.

For any value of comparison-tolerance and any two real numbers A and B, exactly one of the
expressionsA<B, A=B, and A>B is one.

Equal should not signal a limit-error. For example, the result of positive-number-limit= negative-
number-limit is zero. The following is a sample technique for handling exponent-overflow and
exponent-underflow when scaling comparison-tolerance.

Set C to the larger of the magnitudes of A and B.
Set D to comparison-tolerance times C.
If exponent-underflow occurs,

Set A1 to A divided-by C.
Set B1 to B divided-by C.
Set C1 to the magnitude of A1 minus B1.

1 May 1997 at 23:52

100 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

If C1 is greater-than comparison-tolerance, return zero.
Otherwise, return one.

Set E to the magnitude of A minus B.
If exponent-overflow occurs, return zero.
If exponent-underflow occurs,

Set A1 to A divided-by C.
Set B1 to B divided-by C.
Set C1 to the magnitude of A1 minus B1.
If C1 is greater-than comparison-tolerance, return zero.
Otherwise, return one.

If E is not greater-than D, return one.
Otherwise, return zero.

7.2.17 Less than

Z ¼ A < B

Informal Description: Z is one if A is tolerantly less-than B, and zero otherwise. Uses
comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1=B1, evaluated with the current value of comparison-tolerance, is one, return

zero.
If A1 is less-than B1, return one.
Otherwise, return zero.

Examples:

1 2 3 ±.< 1 2 3
0 1 1
0 0 1
0 0 0

0 1 ±.< 0 1
0 1
0 0

APL Extended — DIS 8485(1997) 101

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.18 Less than or equal to

Z ¼ A ¢ B

Informal Description: Z is one ifA is less than or tolerantly equal toB, and zero otherwise.
Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1=B1, evaluated with the current value of comparison-tolerance, is one, return

one.
If A1 is less-than B1, return one.
Otherwise, return zero.

Examples:

1 2 3 ±.¢1 2 3
1 1 1
0 1 1
0 0 1

0 1 ±.¢0 1
1 1
0 1

1 May 1997 at 23:52

102 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.19 Not equal

Z ¼ A ¥ B

Informal Description: Z is one if A does not equal B, and zero otherwise. Uses
comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
Return ~A=B, evaluated with the current value of comparison-tolerance.

Examples:

'A' ¥41
1

1 2 3 ±.¥1 2 3
0 1 1
1 0 1
1 1 0

0 1 ±.¥0 1
0 1
1 0

APL Extended — DIS 8485(1997) 103

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

7.2.20 Greater than or equal to

Z ¼ A ¿ B

Informal Description: Z is one if A is greater than or tolerantly equal to B, and zero
otherwise. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1=B1, evaluated with the current value of comparison-tolerance, is one, return

one.
If A1 is greater-than B1, return one.
Otherwise, return zero.

Examples:

1 2 3 ±.¿1 2 3
1 0 0
1 1 0
1 1 1

0 1 ±.¿0 1
1 0
1 1

1 May 1997 at 23:52

104 APL Extended — DIS 8485(1997)

7.2. DYADIC SCALAR FUNCTIONS

7.2.21 Greater than

Z ¼ A > B

Informal Description: Z is one if A is tolerantly greater than B, and zero otherwise. Uses
comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
If either of A or B is not a near-real number, signal domain-error.
Set A1 to the real-number nearest to A.
Set B1 to the real-number nearest to B.
If A1=B1, evaluated with the current value of comparison-tolerance, is one, return

zero.
If A1 is greater-than B1, return one.
Otherwise, return zero.

Examples:

1 2 3 ±.> 1 2 3
0 0 0
1 0 0
1 1 0

0 1 ±.> 0 1
0 0
1 0

APL Extended — DIS 8485(1997) 105

1 May 1997 at 23:52

7. SCALAR FUNCTIONS

1 May 1997 at 23:52

106 APL Extended — DIS 8485(1997)

8

Structural Primitive Functions

8.1 Introduction

Note: The functions in this chapter are used in the evaluation sequences of many non-scalar
operations. They are defined here to avoid forward references.

8.2 Monadic Structural Primitive Functions

8.2.1 Ravel

Z ¼ , B

Informal Description: Z is a vector containing the elements of B in row-major order.

Evaluation Sequence:

Return Z, a vector such that the ravel-list of Z is the same as the ravel-list of B, the
type of Z is the same as the the type of B, and the shape-list of Z is a list of length
one containing the count of B as its only item.

Examples:

,N22
11 12 21 22

,N222
111 112 121 122 211 212 221 222

,N2221
1111 1121 1211 1221 2111 2121 2211 2221

APL Extended — DIS 8485(1997) 107

1 May 1997 at 23:52

8. STRUCTURAL PRIMITIVE FUNCTIONS

Note: Ravelalways producesa vectorresult. The expressionsravel-list ofZ, type ofZ, and shape-list
of Z refer to attributes of an array object.

8.2.2 Shape

Z ¼ µ B

Informal Description: Z is a numeric vector containing the shape of the array B.

Evaluation Sequence:

Return Z, an array such that the type of Z is numeric, the ravel-list of Z is the
shape-list of B, and the shape-list of Z is a list whose only item contains the
number-of-items in the shape-list of B.

Examples:

µN

µ,N
1

µµN
0

µN3
3

µµN3
1

µN34
3 4

Note: Shape always produces a vector result. The expression shape-list of Z refers to an attribute of
an array object.

1 May 1997 at 23:52

108 APL Extended — DIS 8485(1997)

8.2. MONADIC STRUCTURAL PRIMITIVE FUNCTIONS

8.2.3 Index Generator

Z ¼ ° B

Informal Description: Z is a numeric vector of B consecutive ascending integers, the
first of which is index-origin. Uses index-origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If the rank of B is greater-than one, signal rank-error.
If the count of B is not one, signal length-error.
If B is not a near-integer, signal domain-error.
Set B1 to the integer-nearest-to B.
If B1 is not a nonnegative-integer, signal domain-error.
If B1 is zero, return an empty numeric vector.
Generate a numeric vector Z1 of length B1 such that the ravel-list of Z1 consists of

the integers in the closed-interval-between one andB1 in ascending order. Generate
Z, a numeric array with the shape-list of Z1 such that each item of the ravel-list
of Z is (index-origin minus one) plus the corresponding element of Z1.

Return Z.

Examples:

– In the following example, index-origin is zero.

°4
0 1 2 3

– In the following example, index-origin is one.

°4
1 2 3 4

APL Extended — DIS 8485(1997) 109

1 May 1997 at 23:52

8. STRUCTURAL PRIMITIVE FUNCTIONS

8.2.4 Table

Z ¼ ï B

Informal Description: Z is a matrix containing the elements of B. Z is formed by ravelling
the subarrays of B along its first axis. For example, if B is a scalar, Z has shape 1 1; if B
is a five-element vector, Z has shape 5 1; if B has shape 5 4 3 2, Z has shape 5 24.

Evaluation Sequence:

If B is a scalar set C to 1 1.
Else set C to a two-element list as follows:

Set the first-item of C to the first-item of the shape-list of B.
Set the last-item of C to the product-of the rest-of the shape-list of B.

Set Z to the C reshape of B.
Return Z.

Examples:

ï0
0

µï0
1 1

ïN4
1
2
3
4

ïN22
11 12
21 22

ïN222
111 112 121 122
211 212 221 222

ïN2221
1111 1121 1211 1221
2111 2121 2211 2221

1 May 1997 at 23:52

110 APL Extended — DIS 8485(1997)

8.2. MONADIC STRUCTURAL PRIMITIVE FUNCTIONS

8.2.5 Depth

Z ¼ ô B

Informal Description: Z is a numeric scalar describing the level of nesting of B. For
simple-scalars, this is 0. For arrays, this is one greater than the depth of the element
with the greatest depth.

Note: An enclosed array is an array.

Evaluation Sequence:

If B is a simple-scalar, return zero.
Return 1+¶�,ô¡B.

Examples:

ô5
0

ô1 2 3
1

ôN234
1

ô'ABC',1 2 3
1

ô»1 2 3
2

ô,»1 2 3
2

ô'HERO',»2 3,»2 3µ»5 8
4

APL Extended — DIS 8485(1997) 111

1 May 1997 at 23:52

8. STRUCTURAL PRIMITIVE FUNCTIONS

8.2.6 Enlist

Z ¼ ­ B

Informal Description: If B is a simple-array, then enlist has the same effect as ravel.
Otherwise, enlist has the effect of recursively raveling each element of B (in ravel-list
order) and joining them together. Thus, Z will always be a simple-array of rank one,
containing all items of B.

Note: Enlist is sometimes called “super ravel”.

Evaluation Sequence:

If B is empty, return 0µ­1õ,B.
If B is a simple-array, return ,B.
Set B1 to the first item of the ravel-list of B.
Return (­B1),(­1·,B).

Examples:

­1 2 3,»4 5 6
1 2 3 4 5 6

ô1 2 3,»4 5 6
2

ô­1 2 3,»4 5 6
1

8.3 Dyadic Structural Primitive Functions

8.3.1 Reshape

Z ¼ A µ B

Informal Description: Z is an array of shape ,A whose elements are taken sequentially
from ,B repeated cyclically as required.

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
If any item of the ravel-list of A is not a near-integer, signal domain-error.
Set A1 to the integer-array-nearest-to ,A.
If any item of the ravel-list of A1 is not a nonnegative-counting-number, signal

domain-error.
Let RA stand for the product-of the ravel-list of A1.
Let CB stand for the count of B.

1 May 1997 at 23:52

112 APL Extended — DIS 8485(1997)

8.3. DYADIC STRUCTURAL PRIMITIVE FUNCTIONS

If RA is not zero and CB is zero, signal length-error.
Return an array Z such that the type of Z is the sufficient-type of the ravel-list of Z

under the type of B, the shape-list of Z is the same as the ravel-list of A1, and the
ravel-list of Z is a list with RA items such that for all I in the index-set of Z, item
I of the ravel-list of Z is item 1+CB|I-1 of the ravel-list of B.

Examples:

2 4µN213
111 112 113 211
212 213 111 112

µ0µ'ABCD'
0

B ¼1E7 1E7 1E7 0 1E7 1E7 1E7 µ 42
µB

1E7 1E7 1E7 0 1E7 1E7 1E7

Note: For any X that is not empty, ''µX and (°0)µX produce the same result: a scalar whose
value is that of the first-scalar in X.

APL Extended — DIS 8485(1997) 113

1 May 1997 at 23:52

8. STRUCTURAL PRIMITIVE FUNCTIONS

8.3.2 Join

Z ¼ A , B

Z ¼ A ï B

Informal Description: If A and B are scalars or vectors, Z is the vector of length
(µ,A)+µ,B whose first µ,A elements are ,A and whose last µ,B elements are ,B.

If either A or B has rank greater than one,
For form Z ¼ A , B
Z is A,[(µµA)¶µµB]B,

For form Z ¼ A ï B
Z is A,[1]B,

as defined under Join Along an Axis.

Evaluation Sequence:

If A is a scalar and B is a scalar, return (,A),,B.
If A is a scalar and B is a vector, return (,A),B.
If A is a vector and B is a scalar, return A,,B.
If A is a vector and B is a vector,

If A is empty and B is empty and the type of A differs from the type of B, return an
empty-list whose type is determined by the implementation-algorithm typical-
element-for-mixed.

If B is empty, return A.
If A is empty, return B.
Otherwise, return a vector Z, such that the shape-list of Z is (µA)+µB, the ravel-

list ofZ is a list whose firstµA items are the ravel-list ofA and whose lastµB items
are the ravel-list of B, and the type of Z is the sufficient-type of the ravel-list of
Z under the type mixed.

Otherwise, when either A or B has rank greater than one, return A,[1]B for form
AïB and A,[(µµA)¶µµB]B for form A,B.

Example:

'',0
0

Note: This subsection intentionally contains a forward reference to Join Along an Axis. Join and
Join Along an Axis are defined separately because the description of Join Along an Axis requires
APL operations that depend for their definitions in turn upon Join.

1 May 1997 at 23:52

114 APL Extended — DIS 8485(1997)

9

Operators

9.1 Introduction

Note: The forms in this chapter are referred to as operators.

9.2 Monadic Operators

9.2.1 Reduction

Z ¼ f/ B

Z ¼ f/[K] B

Z ¼ fð B

Z ¼ fð [K] B

Informal Description: Z is the value produced by placing the dyadic function f between
adjacent items along a designated axis of B and evaluating the resulting expression. The
axis designated determines how the subarrays are chosen. Uses index-origin.

There are two conforming definitions for Reduction; the Implementation Parameter
Reduction-Style specifies which definition a particular implementation uses.

The Enclose-Reduction-Style style, informally known as the APL2 style, uses a
definition based on enclose which, for all f, preserves the identity:
µµZ is 0¶¨1+µµB.

APL Extended — DIS 8485(1997) 115

1 May 1997 at 23:52

9. OPERATORS

The Insert-Reduction-Style style, informally known as the Sharp/J style, does not
universally preserve the above identity. Instead f is inserted between each successive
cell along the frame axis (the axis of reduction). The rank of f controls the subsequent
evaluation.

Note: Since reduction is used in the evaluation sequences of other operators, the choice of the
Implementation Parameter Reduction-Style has a pervasive effect on the implementation, and its
importance should not be underestimated.

Note: The functions listed in Table 5 are scalar functions, that is their left and right function ranks
are zero.

Evaluation Sequence:

If Implementation Parameter Reduction-Style is Enclose-Reduction-Style:
If f is not a dyadic-function, signal syntax-error.
For form f/B

If B is a scalar, return B.
Otherwise, return f/[¨1õ°µµB] B .

For form fðB
If B is a scalar, return B.
Otherwise, return f/[°1] B .

For forms f/[K] B and fð[K] B
If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If B is a vector,

If the length of B is zero, take the action designated in Table 5 for f.
If the length of B is one, return a scalar Z such that the type of Z is the type

of B and the ravel-list of Z is the ravel-list of B.
If the length of B is greater-than one,

Set B1 to the first-scalar in B.
Set B2 to the remainder-of B.
Return »B1 f ºf/B2.

If the rank of B is greater-than one, return an array Z such that the shape-list
of Z is the shape-list of B with item K1 omitted, and the ravel-list of Z has
the property that if Z1 is an item of Z and B3 is the corresponding vector-item
along-axis K1 of B, then Z1 is f/B3.

Otherwise Implementation Parameter Reduction-Style is Insert-Reduction-Style:
If f is not a dyadic-function, signal syntax-error.
For form f/B

If B is a scalar, return B.
Otherwise, return f/[¨1õ°µB] B .

For form fðB
If B is a scalar, return B.
Otherwise, return f/[°1] B .

For forms f/[K] B and fð[K] B
If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.

1 May 1997 at 23:52

116 APL Extended — DIS 8485(1997)

9.2. MONADIC OPERATORS

Set B1 to (æK1,(°µµB)~K1)íB.
Set C1 to 1·µB1.
If the number of C1-cells in B1 is zero, take the action designated in Table 5 for

f to choose a result item Z0. Return an array Z such that the shape-list of Z is
C1, the type of Z is the type of Z0, and each item of the ravel-list of Z is the
ravel-list of Z0.

If the number of C1-cells in B1 is one, return an array Z such that the shape-list
ofZ is C1, the type ofZ is the type of B1, and the ravel-list of Z is the ravel-list
of B1.

If the number of C1-cells in B1 is greater-than one,
Set B2 to an array such that the shape-list of B2 is C1, the type of B2 is the

type of B1, and the ravel-list of B2 is the ravel-list of the first C1-cell in B1.
Set B3 to an array such that the shape-list of B3 is ((¨1+1õµB1),C1), the

type of B3 is the type of B1, and the ravel-list of B3 is the ravel-list of all
the the C1-cells of B1 except the first.

Return B2 f fðB3.

Examples:

+/1 2 3
6

§/1 2
2

=/'A'
A

=/'AA'
1

=/'AAA'
0

(3 8µ0) ô,ð2 3 4µ0 ÝInsert-Reduction-Style
1

(3 4µ»0 0) ô,ð2 3 4µ0 ÝEnclose-Reduction-Style
1

Additional Requirement:

If Z is empty, the type of Z is determined by the argument function f.

When applied along an empty axis in an array, reduction produces an array whose shape
is that of the argument array with the designated axis deleted. The elements of the array,
if any, are determined by the argument function and Table 5. In some cases, an error is
signalled.

APL Extended — DIS 8485(1997) 117

1 May 1997 at 23:52

9. OPERATORS
Dyadic Function Action

Plus + Return zero.
Minus - Return zero.
Times § Return one.
Divide ¦ Return one.

Residue | Return zero.
Minimum ¬ Return positive-number-limit.
Maximum ¶ Return negative-number-limit.
Power * Return one.

Binomial ! Return one.
And ¤ Return one.
Or £ Return zero.
Less < Return zero.

Not greater ¢ Return one.
Equal = Return one.
Not less ¿ Return one.
Greater > Return zero.

Not equal ¥ Return zero.

all others Signal domain-error.

Table 5: Actions for the Reduction of an Empty Vector.

Example:

+/2 0 µ5.1
0 0

µ+/2 0µ5.1
2

1 May 1997 at 23:52

118 APL Extended — DIS 8485(1997)

9.2. MONADIC OPERATORS

9.2.2 Scan

Z ¼ f\B

Z ¼ f\[K] B

Z ¼ fñB

Z ¼ fñ[K] B

Informal Description: Z is an array having the same shape as B and containing the results
produced by f reduction over all prefixes of a designated axis of B. Uses index-origin.

Evaluation Sequence:

If f is not a dyadic-function, signal syntax-error.
For form f\B

If B is a scalar, return B.
Otherwise, return f\[µµB] B evaluated with index-origin set to one.

For form fñB
If B is a scalar, return B.
Otherwise, return f\[1] B evaluated with index-origin set to one.

For forms f\[K]B and fñ[K]B
If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If B is a vector,

If the count of B is less-than two, return B.
Otherwise return Z, a vector such that the shape-list of Z is the shape-list of B,

and the ravel-list of Z is such that item I of the ravel-list of Z is f/B[°I] for
all I in the index-set of the ravel-list of B. The type of Z is the sufficient-type
of the ravel-list of Z under the type mixed.

If the rank of B is greater-than one, each vector-item along-axisK1 of Z is f\B1,
where B1 is the corresponding vector-item along-axis K1 of B.

Examples:

+\1 1 1
1 2 3

¤\1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0

-\'A'
A

=\'AB'
A 0

Additional Requirement:

APL Extended — DIS 8485(1997) 119

1 May 1997 at 23:52

9. OPERATORS

If the operator reduction signals an error when called by scan, scan returns the resultant
error token.

The evaluation sequence above describes a quadratic algorithm for scan. If the function f
is associative, scan may be implemented with a linear algorithm.

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

1 May 1997 at 23:52

120 APL Extended — DIS 8485(1997)

9.2. MONADIC OPERATORS

9.2.3 N-wise Reduction

Z ¼ N f/ B

Z ¼ N f/[K] B

Z ¼ N fð B

Z ¼ N fð[K] B

Informal Description: N-wise reduction is the dyadic invocation of a function derived
by reduction. Z is the value produced by placing the primitive scalar dyadic function
f between subarrays of B and evaluating the resulting expression. If N is negative the
subarrays are reversed before application of f. Each subarray has length N along a
common dimension. The axis designated determines how the subarrays are chosen.
Uses index-origin.

Evaluation Sequence:

If the rank of N is greater-than one, signal rank-error.
If the length of the ravel-list of N is greater-than one, signal length-error.
If N is not a near-integer, signal domain-error.

Set N1 to the integer-nearest-to N.
Set M1 to the magnitude of N1.

If f is not a dyadic-function, signal syntax-error.
For form N f/B

If B is a scalar,
If M1 is greater-than two, signal domain-error.
If M1 is zero, set R to two and take the action designated in Table 6 for R and f.
Otherwise, return (2-M1)µB.

Otherwise, return N f�[µµB] B evaluated with index-origin set to one.
For form N fðB

If B is a scalar,
If M1 is greater-than two, signal domain-error.
If M1 is zero, set R to two and take the action designated in Table 6 for R and f.
Otherwise, return (2-M1)µB.

Otherwise, return N f�[1] B evaluated with index-origin set to one.
For forms N f/[K] B and N fð[K] B

If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If B is a vector,

If M1 is greater-than one plus the length of B, signal domain-error.
If M1 is zero, set R to one plus the length of B and take the action designated in

Table 6 for R and f.
Set B1 to M1 take B.
If N1 is less-than zero,

set B2 to ìB1

APL Extended — DIS 8485(1997) 121

1 May 1997 at 23:52

9. OPERATORS

otherwise set B2 to B1.
If M1 equals the length of B, return f/B2.
Otherwise,

Set B3 to f/B2.
Set B4 to one drop B.
Return B3, N f / B4.

If the rank of B is greater-than one, return an array Z such that the shape-list of
Z is the shape-list of B with item K1 replaced by one plus the value of item K1
minus M1, and the ravel-list of Z has the property that if Z1 is the vector-item
along-axis K1 of Z and B3 is the corresponding vector-item along-axis K1 of B,
then Z1 is N f/B3.

Examples:

0+/1 2 3
0 0 0 0

1+/1 2 3
1 2 3

2+/1 2 3
3 5

3+/1 2 3
6

4+/1 2 3

2-/1 4 9 16 25
¨3 ¨5 ¨7 ¨9

¨2-/1 4 9 16 25
3 5 7 9

¨3-/1 2 3 4 5 6 7
2 3 4 5 6

1 May 1997 at 23:52

122 APL Extended — DIS 8485(1997)

9.2. MONADIC OPERATORS

Dyadic Function Action

Plus + Return R reshape zero.
Minus - Return R reshape zero.
Times § Return R reshape one.
Divide ¦ Return R reshape one.

Residue | Return R reshape zero.
Minimum ¬ Return R reshape positive-number-limit.
Maximum ¶ Return R reshape negative-number-limit.
Power * Return R reshape one.

Logarithm ë Signal domain-error.
Circular ´ Signal domain-error.
Binomial ! Return R reshape one.
And ¤ Return R reshape one.

Or £ Return R reshape zero.
Nand ê Signal domain-error.
Nor é Signal domain-error.
Less < Return R reshape zero.

Not greater ¢ Return R reshape one.
Equal = Return R reshape one.
Not less ¿ Return R reshape one.
Greater > Return R reshape zero.

Not equal ¥ Return R reshape zero.

all others Signal domain-error.

Table 6: Actions for the N-wise Reduction of an Empty Vector.

APL Extended — DIS 8485(1997) 123

1 May 1997 at 23:52

9. OPERATORS

9.2.4 Duplicate

Z ¼ f ¡~ B

Informal Description: Z is B f B.

Evaluation Sequence:

Return B f B.

Example:

±.¢¡~N3
1 1 1
0 1 1
0 0 1

Note: If f is not an ambivalent-function, a valence-error will be signalled.

9.2.5 Commute

Z ¼A f ¡~ B

Informal Description: Z is B f A.

Evaluation Sequence:

Return B f A.

Examples:

3-¡~4
1

+/2*¡~2 2µ4 7 1 8
65 65

1 May 1997 at 23:52

124 APL Extended — DIS 8485(1997)

9.2. MONADIC OPERATORS

9.2.6 Each

Z ¼ f¡ B

Z ¼ A f¡ B

Informal Description: The operand function f is applied independently to corresponding
items of the arguments, or (monadic case) independently to the items of the argument.
The corresponding results are assembled in an array of the same shape as the argument(s).

Evaluation Sequence:

For form Af¡B:
If the rank of A differs from the rank of B,

If A is a scalar or one-element-vector and B is not a scalar, set A to (µB)µA.
Otherwise,

If B is a scalar or one-element-vector, set B to (µA)µB.
Otherwise, Signal rank-error.

If the shape-list of A differs from the shape-list of B, Signal length-error.
For both forms:

If B is not empty, Signal domain-error.
Create Z, an array having the same shape-list as B.
For each I in the index-set of the ravel-list of Z:

For form f¡B,
Set X to item I of the ravel-list of B.
Evaluate-Monadic-Function with fX giving token T.

For form Af¡B,
Set X to item I of the ravel-list of A.
Set Y to item I of the ravel-list of B.
For each pair X and Y of corresponding items from A and B, Evaluate-Dyadic-

Function with XfY giving token T.
If T is an error, return T.
Set Q to the content of T.
Set item I of the ravel-list of Z as follows:

If Q is a simple-scalar, the first-item of the ravel-list of Q.
Otherwise, Q.

If all items of the ravel-list of Z are nil, return nil.
If all items of the ravel-list of Z are values, return Z.
Otherwise, signal value-error.

Example:

µ¡»’AB’,»’CDE’
2 3

APL Extended — DIS 8485(1997) 125

1 May 1997 at 23:52

9. OPERATORS

9.3 Dyadic Operators

9.3.1 Outer Product

Z ¼ A ±.f B

Informal Description: Z is an array of shape (µA),µB. The elements of Z are the result
of applying the dyadic-function f to every possible combination of scalar arguments
where the left argument is an element of A and the right an element of B.

Z is such that if I is an index-list that selects a single element of Z, the first µA items of
I are the index-list that would select from A the element used as the left argument to f
and the last µB items of I are the index-list that would select from B the element used
as the right argument to f when producing the selected element of Z.

Evaluation Sequence:

If f is not a dyadic-function, signal syntax-error.
Return Z, an array such that the shape-list of Z is (µA),µB, and the ravel-list of Z

has the following property:
Let I stand for an item of the index-set of the ravel-list of A.
Let J stand for an item of the index-set of the ravel-list of B.
Let X stand for item I of the ravel-list of A.
Let Y stand for item J of the ravel-list of B.
Let N stand for the count of B.
Let P stand for J+(N§(I-1)).
Set Q to X f Y.
If Q is a simple-scalar, set Q1 to the first-item of the ravel-list of Q.
Otherwise, set Q1 to Q.
Then, item P of the ravel-list of Z is Q1.

Set the type of Z to the sufficient-type of the ravel-list of Z under mixed.

Example:

10 20 30 ±.+ 1 2 3
11 12 13
21 22 23
31 32 33

Additional Requirement:

If the dyadic-function f signals an error, outer product returns the resulting error token.

1 May 1997 at 23:52

126 APL Extended — DIS 8485(1997)

9.3. DYADIC OPERATORS

9.3.2 Inner Product

Z ¼ A f . g B

Informal Description: Z is an array of shape(µA)[°0¶¨1+µµA],(µB)[1+°0¶¨1+µµB].
The elements of Z are the results obtained from evaluating the expression f/XgY for all
possible combinations of X and Y, where X is a vector-item along-axis µµA of A and Y
a vector-item along-axis one of B.

Evaluation Sequence:

If either f or g is not a dyadic-function, signal syntax-error.
If A is a scalar or one-element-vector and B is not, set A1 to (1µµB)µA.
If A and B are scalars or one-element-vectors, set A1 to ,A.
Otherwise, set A1 to A.
If B is a scalar or one-element-vector and A is not, set B1 to (µA)[µµA]µB.
If A and B are scalars or one-element-vectors, set B1 to ,B.
Otherwise, set B1 to B.
If the last-item in the shape-list ofA1 is not the same as the first-item in the shape-list

of B1, signal length-error.
If A1 and B1 are both vectors, return f/A1 g B1.
Otherwise, set Z to an array such that the the shape-list of Z is
(µA1)[°0¶¨1+µµA1],(µB1)[1+°0¶¨1+µµB1] and the ravel-list of Z has
the following property:
Let I stand for an item of the index-set of the ravel-along-axis (µµA1) of A1.
Let X stand for vector-item I of the ravel-along-axis(µµA1) of A1.
Let J stand for an item of the index-set of the ravel-along-axis one of B1.
Let Y stand for vector-item J of the ravel-along-axis one of B1.
Let N stand for the number-of-items in the ravel-along-axis one of B1.
Let P stand for (N§(I-1))+J.
Set Q to f/X g Y.
If Q is a simple-scalar, set Q1 to the first-item of the ravel-list of Q.
Otherwise, set Q1 to Q.
Then, item P of the ravel-list of Z is Q1.

Set the type of Z to the sufficient-type of Z under mixed.
Return Z.

APL Extended — DIS 8485(1997) 127

1 May 1997 at 23:52

9. OPERATORS

Examples:

4 2 1+.§1 0 1
5

N22+.§0 1
12 22

N22+.§1 0
11 21

N22+.§2 2µ0 1 1 0
12 11
22 21

Additional Requirement:

If scalar-function f or g signals an error, inner product returns the resulting error token.

Note: The evaluation sequence rule for when A1 and B1 are vectors holds if A1 or B1 is the empty
vector. The result returned is f/°0.

The type of the result of inner product is numeric only because all permitted argument functions
return numeric results.

1 May 1997 at 23:52

128 APL Extended — DIS 8485(1997)

9.3. DYADIC OPERATORS

9.3.3 Rank operator definitions

The following definitions are used in connection with the rank operator:
cell: The last k items of the shape-list of an array determine rank-k cells of the array.
frame: For an array of rank r, its frame with respect to its cells of rank k is the r–k

leading elements of its shape-list.
conform: The shape of a result is the frame of the argument (relative to the cells to

which the function applies) catenated with the shape of the individual results produced
by applying the function to the individual cells. If the results do not agree in shape
they are brought to a common shape as follows:

If the ranks differ, they are brought to a common maximum rank by reshaping each
individual result to introduce leading unit lengths.

If the individual shapes differ (after being brought to a common rank), each is brought
to a common shape by using take on each individual result, using as the argument
to take the shape which is the maximum over the shapes.

rank-vector: This is the right argument of the rank operator, and it is used to specify the
rank of the cells to which the function left argument is to be applied. For the monadic
case of a function this is a single value. For the dyadic case of a function it is in
general a two-element vector, the first element specifying the rank of the cells of the left
argument, and the second element specifying the rank of the cells of the right argument
to which the function is to be applied. If only a single value is supplied for the dyadic
case of a function, it is used to specify the cells of both the left and right arguments to
which the function will be applied. In general, for an arbitrary function, the rank vector
is a three-element vector, with the elements referring to the monadic rank, and the two
dyadic ranks, in order. No matter whether a one-, two-, or three-element vector v is
supplied as the rank vector, the expression ì3µìv produces a canonical rank-vector of
three elements, in which the first element defines the monadic rank, the second element
defines the dyadic left rank, and the third element defines the dyadic right rank.

APL Extended — DIS 8485(1997) 129

1 May 1997 at 23:52

9. OPERATORS

9.3.4 Rank operator deriving monadic function

Z ¼ f ø y B

Informal Description: The result of f ø y is a function which, when applied to B, returns
Z, the result of applying the function f to the rank-y cells of B.

Evaluation Sequence:

If y is a scalar, set y1 to ,y. Otherwise set y1 to y.
If y1 is not a vector, signal domain-error.
If y1 has more than three elements, signal length-error.
If any element of y1 is not a near-integer, signal domain-error.
Set y2 to ì3µìy1.
Set y3 to the first-item in y2.
Set y4 to the integer-nearest-to y3.
If y4 exceeds the rank of B, set y5 to the rank of B, otherwise set y5 to y4.
If y5 is negative, set y6 to 0¶y5 plus the rank of B, otherwise set y6 to y5.
Apply f to the rank-y6 cells of B.
Conform the individual result cells. Let their common shape after conforming be q,

and let p be the frame of B with respect to f, that is, (rank of B) minus y6, and
return the overall result with shape p , q.

Examples:

,ø2 N233
111 112 113 121 122 123 131 132 133
211 212 213 221 222 223 231 232 233

íø2 N233
111 121 131
112 122 132
113 123 133

211 221 231
212 222 232
213 223 233

°ø0 N3
1 0 0
1 2 0
1 2 3

1 May 1997 at 23:52

130 APL Extended — DIS 8485(1997)

9.3. DYADIC OPERATORS

9.3.5 Rank operator deriving dyadic function

Z ¼ A f ø y B

Informal Description: The result of f ø y is a function which, when applied dyadically
between A and B, returns Z, the result of applying the function f between the rank-l cells
of A and the rank-r cells of B, where l and r are given by y.

Evaluation Sequence:

If y is a scalar, set y1 to ,y. Otherwise set y1 to y.
If y1 is not a vector, signal domain-error.
If y1 has more than three elements, signal length-error.
If any element of y1 is not a near-integer, signal domain-error.
Set each element of y2 to the integer-nearest-to each corresponding element of y1.
Set y3 to ì3µìy2.
Set y4 to the second element of y3.
Set y5 to the third element of y3.
If y4 exceeds the rank of A, set y6 to the rank of A, otherwise set y6 to y4.
If y5 exceeds the rank of B, set y7 to the rank of B, otherwise set y7 to y5.
If y6 is negative, set y8 to the maximum of zero and y6 plus the rank of A, otherwise

set y8 to y6.
If y7 is negative, set y9 to the maximum of zero and y7 plus the rank of B, otherwise

set y9 to y7.
Set y10 to the shape of A with the last y8 items removed.
Set y11 to the shape of B with the last y9 items removed.
Execute the indicated action for whichever of the following cases is true:

Case y10 and y11 are empty:
Set A1 to A and B1 to B.

Case y10 is empty and y11 is nonempty:
Set A1 to A conform to B and B1 to B.

Case y10 is nonempty and y11 is empty:
Set A1 to A and B1 to B conform to A.

Case y10 and y11 are nonempty:
If y10 is not the same length as y11, signal a rank-error.
If y10 does not match y11, signal a length-error.
Set A1 to A and B1 to B.

Apply f between each rank-y8 cell of A1 and each rank-y9 cell of B1.
Conform the individual result cells to give the overall result.

APL Extended — DIS 8485(1997) 131

1 May 1997 at 23:52

9. OPERATORS

Examples:

0 1 2ìø0 1 'ABC'
ABC
BCA
CAB

2 2 2³ø1 0 N5
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

N34+ø2 N234
122 124 126 128
142 144 146 148
162 164 166 168

222 224 226 228
242 244 246 248
262 264 266 268

N3,ø1 N34
1 2 3 11 12 13 14
1 2 3 21 22 23 24
1 2 3 31 32 33 34

N2,ø0 2 N34
1 11 12 13 14
1 21 22 23 24
1 31 32 33 34

2 11 12 13 14
2 21 22 23 24
2 31 32 33 34

1 May 1997 at 23:52

132 APL Extended — DIS 8485(1997)

10

Mixed Functions

10.1 Monadic Mixed Functions

10.1.1 Roll

Z ¼ ? B

Informal Description: Z, for B a scalar integer, is index-origin plus R, where R is an
integer selected pseudorandomly from the set of all nonnegative integers less than B.
Each integer in the set has an equal chance of being selected. Uses index-origin. Uses
and sets random-link.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If random-link is nil, signal implicit-error.
Let J stand for item I of the ravel-list of B.
If B is not scalar, return a numeric array Z such that the shape-list of Z is the

shape-list of B and, for all I in the index-set of the ravel-list of Z, item I of the
ravel-list of Z is ?J.

If B is not a near-integer, signal domain-error.
Set B1 to the integer-nearest-to B.
If B1 is not a positive-integer, signal domain-error.
Using the implementation-algorithm pseudorandom-number-generator, whose

only inputs are B1 and random-link, set Z0 to a nonnegative-integer less-than B1,
then set random-link to a new value.

Return Z0 plus index-origin.

APL Extended — DIS 8485(1997) 133

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

?1 1 1
1 1 1

S¼²RL
?4µ1E30

1.69584E29 2.5949E29 5.38382E29 8.38274E29
²RL¼S
?4µ1E30

1.69584E29 2.5949E29 5.38382E29 8.38274E29

(?1E20 1E20)¦1E20
0.218959 0.678865

Additional Requirement:

The operation of roll is atomic: If roll signals an error, random-link shall be unchanged.

The result of ?B, where B is an array, shall be reproducible.

A conforming-implementation shall provide documentation describing the properties of
its pseudorandom-number-generator.

Note: One class of appropriate algorithms is Lehmer’s linear congruential method, described in
Knuth, D. E., Seminumerical Algorithms, page 9.

Roll is often considered a scalar function. However, it does not have the property that the elements
of its result array can be produced in parallel.

1 May 1997 at 23:52

134 APL Extended — DIS 8485(1997)

10.1. MONADIC MIXED FUNCTIONS

10.1.2 Grade Up

Z ¼ æ B

Informal Description: Z is, for B a vector, a permutation of °µB for which B[Z] is a
monotone increasing sequence. The indices of identical elements of B occur in Z in
ascending order. If B is a matrix, æ B grades the rows, that is, it grades the base value
of the rows, using a base larger than the magnitude of any of the elements. Higher rank
arguments are graded as if their major cells were ravelled. Uses index-origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If the rank of B is zero, signal rank-error.
If µB is zero, return °0.

If any item of the ravel-list of B is not a near-real number, signal domain-error.
Otherwise, set B1 to an array having the same shape as B, and with each element

having the value of the real-number nearest to that of the corresponding element of
B.

If the first-item of µB is one, return a one-element-vector Z such that the type of Z
is numeric and the ravel-list of Z contains index-origin.

Set K to the length of the first axis of B1.
If B1 is a vector, set B2 to B1.
Otherwise,

Set M to 1+2§¶/|B1.
Set B2 to a list with K items, where item I is determined as follows:

Set B3 to the ravel-list of subarray I along the first axis of B1. Set B2[I] to
MªB3.

Generate Z1, a permutation of °K such that for I and J elements of °K for which I
is less-than J,
B2[Z1[I]] is not greater-than B2[Z1[J]] and
B2[Z1[I]] equals B2[Z1[J]] implies that Z1[I] is less-than Z1[J].

Generate Z, a numeric array with the shape-list of Z1 such that each item of the
ravel-list of Z is (index-origin minus one) plus the corresponding element of Z1.

Return Z.

APL Extended — DIS 8485(1997) 135

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

æV ¼1.1 3.1 1.1 2.1 5.1
1 3 4 2 5

ææV
1 4 2 3 5

V[æV]
1.1 1.1 2.1 3.1 5.1

B
3 1 4
2 7 9
3 2 0
3 1 4

æB
2 1 4 3

– In the following example, index-origin is zero.

æB
1 0 3 2

Additional Requirement:

The system-parameter comparison-tolerance is not an implicit argument of grade up.

1 May 1997 at 23:52

136 APL Extended — DIS 8485(1997)

10.1. MONADIC MIXED FUNCTIONS

10.1.3 Grade Down

Z ¼ ç B

Informal Description: Grade down is like grade up except that the major cells are in
descending order.

Evaluation Sequence:

Return æ-B.

Examples:

V ¼1.1 3.1 1.1 2.1 5.1
çV

5 2 4 1 3
V[çV]

5.1 3.1 2.1 1.1 1.1
B

3 1 4
2 7 9
3 2 0
3 1 4

çB
3 1 4 2

– In the following example, index-origin is zero.

çB
2 0 3 1

Additional Requirement:

The system-parameter comparison-tolerance is not an implicit argument of grade down.

Note: Grade up and grade down are stable sort algorithms because they preserve the relative
order of identical elements of B.

One appropriate algorithm for grade up and down appears in Woodrum, L. J., Internal Sorting with
Minimal Comparing, IBM System Journal, Vol. 8, No. 3, p.189, 1969.

APL Extended — DIS 8485(1997) 137

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.1.4 Reverse

Z ¼ ì B

Z ¼ î B

Z ¼ ì[K] B

Z ¼ î[K] B

Informal Description: Z is an array whose elements are those of B taken in reverse order
along a specified axis. Uses index-origin

Evaluation Sequence:

For form ìB
If B is scalar, return B.
Otherwise, return ì[µµB] B, evaluated with index-origin set to one.

For form îB
If B is scalar, return B.
Otherwise, return ì[1] B, evaluated with index-origin set to one.

For forms ì[K] B and î[K] B
If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If B is a vector, return B[(1+µB)-°µB], evaluated with index-origin set to one.
Otherwise, return an array Z, such that the type of Z is the type of B, the shape-list

of Z is the shape-list of B, and the ravel-list of Z has the property that each
vector-item along-axis K1 of Z is ì applied to the corresponding vector-item
along-axis K1 of B.

Examples:

ìN23
13 12 11
23 22 21

ì[2] N224
121 122 123 124
111 112 113 114

221 222 223 224
211 212 213 214

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

1 May 1997 at 23:52

138 APL Extended — DIS 8485(1997)

10.1. MONADIC MIXED FUNCTIONS

10.1.5 Monadic Transpose

Z ¼ í B

Informal Description: Z is B with the order of the axes reversed.

Evaluation Sequence:

Return (ì°µµB)íB, evaluated with index-origin set to one.

Examples:

í3
3

µµí3
0

íN23
11 21
12 22
13 23

íN234
111 211
121 221
131 231

112 212
122 222
132 232

113 213
123 223
133 233

114 214
124 224
134 234

Note: This subsection contains a forward reference to dyadic transpose.

APL Extended — DIS 8485(1997) 139

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.1.6 Matrix Inverse

Z ¼ á B

Informal Description: Z is the result of applying a generalisation of the matrix inverse
function to B. Matrix inverse is matrix divide with an appropriate identity matrix as a
left argument.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Return ((2µ1µµB)µ1,(1µµB)µ0) áB.

Note: This subsection contains a forward reference to matrix divide.

The following article describes the motivation for matrix inverse and an acceptable algorithm.

Jenkins, M. A., Domino—An APL Primitive Function for Matrix Inversion—ItsImplementation
and Applications. APL Quote-Quad Vol III No. 4, February 1972, pp. 4-15.

1 May 1997 at 23:52

140 APL Extended — DIS 8485(1997)

10.1. MONADIC MIXED FUNCTIONS

10.1.7 Execute

Z ¼ ß B

Informal Description: Z is the result of evaluating the character scalar or vector B as a
line of APL.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If any item of the ravel-list of B is not a character, signal domain-error. Generate

a new context in which
mode is execute,
current-line is the ravel-list of B,
current-function is 0 0µ' ',
current-line-number is one,
current-statement is the empty list of tokens, and
stack is the empty list of tokens.

Append the new context to the state-indicator of the active-workspace as a new first
item.

Set Z to evaluate-line.
Remove the first context from the state-indicator.
Return Z.

Examples:

ß'T¼3'
T

3
²¼ß'T¼3'

3
A¼ß''

value-error

Note: If an error is signalled during execute, the user should be able to determine from information
provided by the system where the error occurred in the argument of execute as well as where the
failing execute primitive occurred in the immediate-execution or defined-function line.

APL Extended — DIS 8485(1997) 141

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.1.8 Unique

Z ¼ ¸B

Informal Description: B must be a vector or scalar. Z is a vector of the same type as B,
containing one copy of each unique item in B. The order of the items in Z is the order
they first occur in the ravel of B. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil signal implicit-error.
If the rank of B is greater-than one, signal rank-error.
Set B1 to an empty-list of the type of B.
Set B2 to the ravel-list of B.
Repeat:

If B2 is empty, return B1.
Set T to the vector-item one of B2.
Append T to B1.
Remove from B2 all items tolerantly-equal-to T, within comparison-tolerance.

(End of Repeated Block).

Examples:

¸2 7 1 8 2 8 1 8 2 8 4 5 9 0 4 4 9
2 7 1 8 4 5 9 0

¸'MISSISSIPPI'
MISP

1 May 1997 at 23:52

142 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.1.9 First

Z ¼ õ B

Informal Description: Z is the first item of B in row-major order. If B is empty, the
typical-element of B is returned.

Evaluation Sequence:

Return first-thingy of B.

Examples:

õ'BEATA'
B

µµõ'BEATA'
0

õN432
111

õ4 5µ(»'OSCAR'),(»'BEATA')
OSCAR

10.2 Dyadic Mixed Functions

10.2.1 Join Along an Axis

Z ¼ A ,[K] B

Informal Description: Z is formed by joining A and B along a designated axis. There are
two suboperations, catenate and laminate. The catenate suboperation joins the arrays
along an existing axis, the laminate suboperation along a new axis. The choice of axis
and the choice of operation is determined by K: if K is a near-integer, the operation is
catenate and the axis is K; if K is not a near-integer, the operation is laminate, the new
axis is ¶K, and the axes greater than or equal to ¶K are renumbered. Uses index-origin.

Evaluation Sequence:

If K is not a near-integer,
If A is a scalar, set A1 to (µB)µA.
Otherwise, set A1 to A.
If B is a scalar, set B1 to (µA)µB.
Otherwise, set B1 to B.

If the rank of A1 differs from the rank of B1, signal rank-error.
If K is not in the open-interval-between zero and (one plus the rank of A1), signal

axis-error.

APL Extended — DIS 8485(1997) 143

1 May 1997 at 23:52

10. MIXED FUNCTIONS

If the shape-list of A1 differs from the shape-list of B1, signal length-error.
Set T to (1,µA1)[æK,°µµA1].
Set A2 to TµA1.
Set B2 to TµB1.
Return A2,[¶K] B2, evaluated with index-origin set to one and with

comparison-tolerance set to integer-tolerance.

If K is a near-integer, evaluate the following with comparison-tolerance set to zero:
If both A and B are scalars, signal axis-error.
Set K1 to the integer-nearest-to K.
If K1 is not in the closed-interval-between one and the larger of the rank of A and

the rank of B, signal axis-error.
If A is a scalar, set A1 to ((µB)*K1¥°µµB)µA.
Otherwise, set A1 to A.
If B is a scalar, set B1 to ((µA)*K1¥°µµA)µB.
Otherwise, set B1 to B.
If the rank of B1 minus the rank of A1 is one,
set A2 to (1,µA1)[æK1,°µµA1]µA1.
Otherwise, set A2 to A1.
If the rank of A1 minus the rank of B1 is one,
set B2 to (1,µB1)[æK1,°µµB1]µB1.
Otherwise, set B2 to B1.
If the rank of A2 differs from the rank of B2, signal rank-error.
If any axis of A2 except axis K1 differs from the corresponding axis of B2, signal

length-error.
If B2 is empty, return ((µA2)+(µB2)§K1=°µµB2)µA2.
If A2 is empty, return ((µA2)+(µB2)§K1=°µµB2)µB2.
If A2 and B2 are vectors, return A2,B2.
Otherwise, return Z, an array such that the
shape-list of Z is (µA2)+(µB2)§K1=°µµB2 and the ravel-list of Z has the
property that each vector-item along-axis K1 of Z is A3,B3, where A3 is the
corresponding vector-item along-axis K1 of A2 and B3 is the corresponding
vector-item along-axis K1 of B2. The type of Z is the sufficient-type of the
ravel-list of Z under the type mixed.

1 May 1997 at 23:52

144 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

Examples:

²¼M¼2 3µ'¯'
¯¯¯
¯¯¯

²¼H¼3 3µ'´'
´´´
´´´
´´´

M,[1]H
¯¯¯
¯¯¯
´´´
´´´
´´´

²¼L¼2 4µ'²'
²²²²
²²²²

M,L
¯¯¯²²²²
¯¯¯²²²²

M,'+'
¯¯¯+
¯¯¯+

M,'34'
¯¯¯3
¯¯¯4

M,[1]'345'
¯¯¯
¯¯¯
345

1 2 3,[.5] 4 5 6
1 2 3
4 5 6

1 2 3,[1.5]4 5 6
1 4
2 5
3 6

1 2 3,[1.5]4
1 4
2 4
3 4

(2 0µ5),'A'
A
A

µ3,[.5]''
2 0

APL Extended — DIS 8485(1997) 145

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

10.2.2 Index of

Z ¼ A ° B

Informal Description: Z is a numeric array of shapeµB. Each element ofZ is the least index
inA of a value tolerantly-equal within comparison-tolerance to the corresponding item
of B. Uses index-origin. Uses comparison-tolerance.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If comparison-tolerance is nil, signal implicit-error.
If A is not a vector, signal rank-error.
Set Z to +/¤\B±.¥A, evaluated with the current value of comparison-tolerance.
Return Z plus index-origin.

Examples:

Note: In the following example, index-origin is zero.
²¼A¼2 2µ1.1 3.1 5.1 4.1

1.1 3.1
5.1 4.1

3.1 4.1 5.1°A
3 0
2 1

'ABC'°3
3

Note: In the following example, index-origin is one.
'123ABC'°'3BD'

3 5 7
'123ABC'°3

7

1 May 1997 at 23:52

146 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.3 Member of

Z ¼ A ­ B

Informal Description: Z is a Boolean array with the shape of A. An element of Z is one
if the corresponding element of A is tolerantly-equal to some element of B; otherwise,
it is zero. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error.
Return £/A±.=,B, evaluated with the current value of comparison-tolerance.

Examples:

²¼B¼2 2µ1.1 3.1 5.1 4.1
1.1 3.1
5.1 4.1

3.1 5.1 7.1 ­B
1 1 0

19­'CLUB'
0

'BE' ­'BOP'
1 0

'NADA'­°0
0 0 0 0

(¶/°0)­¬/°0
0

Note: If B is empty, the result of A­B is (µA)µ0.

APL Extended — DIS 8485(1997) 147

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.4 Deal

Z ¼ A ? B

Informal Description: Z is index-origin plus R, where R is a vector of shape A obtained
by making A pseudorandom selections without replacement from the set of nonnegative
integers less than B. Uses index-origin. Uses and sets random-link.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If random-link is nil, signal implicit-error.
If the rank of A or the rank of B is greater-than one, signal rank-error.
If either of A or B is neither a scalar nor a one-element-vector, signal length-error.
If either of A or B is not a near-integer, signal domain-error.

Set A1 to the integer-nearest-to A.
Set B1 to the integer-nearest-to B.
If either of A1 or B1 is not a nonnegative-number, signal domain-error.
If A1 is greater-than B1, signal domain-error.
If A1 is zero, return °0.
Using the implementation-algorithm deal, generate a numeric vector Z0 of length
A1 whose elements are selected in a pseudorandom fashion without duplication
from the integers in the closed-interval-between zero and B1 minus one, then set
random-link to a new value.

Return Z0 plus index-origin.

Example:

12?300
2 3 42 94 70 105 215 9 110 298 201 5

Additional Requirement:

The selection of elements in Z is pseudorandom (see the operation roll). The elements of
Z, their order, and the new value of random-link are determined by an implementation-
algorithm whose only inputs are A1, B1 and random-link. The operation of deal is
atomic: if deal signals an error, random-link shall be unchanged. The result of A?B,
where A and B are arrays, shall be reproducible.

1 May 1997 at 23:52

148 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.5 Replicate

Z ¼ A / B

Z ¼ A ð B

Z ¼ A /[K] B

Z ¼ A ð[K] B

Informal Description: Z is an array formed by replicating the subarrays, along a specified
axis ofB, the number of times indicated by the correspondingelement of the near-integer
vector or scalar A. Uses index-origin.

Evaluation Sequence:

If A is a scalar, set A1 to ,A.
Otherwise, set A1 to A.
If B is a scalar, set B1 to (µA1)µB.
Otherwise, set B1 to B.
For form A/B

Return A1/[µµB1] B1 evaluated with index-origin set to one.

For form AðB
Return A1/[1] B1 evaluated with index-origin set to one.

For forms A/[K] B and Að[K] B
If K is not a valid-axis for B1, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If the rank of A1 is greater-than one, signal rank-error.
If the count of A1 is one, set A2 to (µB1)[K1]µA1.
Otherwise, set A2 to A1.
If µA2 is not the same as (µB1)[K1], signal length-error.
If any item of the ravel-list of A2 is not a near-integer, signal domain-error.
Set A3 to the integer-array-nearest-to A2.

If any item of the ravel-list of A3 is not a nonnegative-integer, signal domain-
error.

If B1 is a vector,
If every item of A3 is near-Boolean return B1[(+/A3)µçA3].
Otherwise, return B1[(,A3±.¿°¶/0,A3)/,(°µB1)±.+0§°¶/0,A3].

Otherwise, return an array Z such that
The shape-list ofZ is((K1¥°µµB1)§µB1)+(K1=°µµB1)§+/A3, evaluated

with comparison-tolerance set to zero,
The ravel-list of Z has the property that if Z2 and B2 are corresponding vector-

items along-axis K1 of Z and B1 respectively, then Z2 is A3/B2.
The type of Z is the sufficient-type of the ravel-list of Z under the type of B.

APL Extended — DIS 8485(1997) 149

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

1 0 1 / 1 2 3
1 3

1 / 1 2 3
1 2 3

3 2 1/1 2 3
1 1 1 2 2 3

1 0 1/ 2
2 2

0 0 1 0 0 1 0 /[2] N2714
1311 1312 1313 1314

1611 1612 1613 1614

2311 2312 2313 2314

2611 2612 2613 2614
µ1/1

1
µµ(,1)/2

1
3 4/1 2

1 1 1 2 2 2 2

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

Note: If the left argument is boolean, the function may be called compress.

Note: 1/A for a scalar A, returns a vector.

1 May 1997 at 23:52

150 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.6 Expand

Z ¼ A \ B

Z ¼ A ñ B

Z ¼ A \[K] B

Z ¼ A ñ[K] B

Informal Description: Z is, for a near-Boolean scalar or vector A, an array of the same
type as B containing subarrays of B along a specified axis.

For vector B, Z is such that A/A\B is B and, if P is the typical-element ofB, (~A)/A\B
is (+/~A)µP; similarly, A/[K]A\[K]B is B, AðAñB is B, and (~A)/[K]A\[K]B
and (~A)ðAñB are arrays of the typical-element of B. Uses index-origin.

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
If any item of the ravel-list of A is not a near-Boolean, signal domain-error.
Set A1 to the Boolean-array-nearest-to ,A.
If B is a scalar, set B1 to (+/A1)µB.
Otherwise, set B1 to B.
For form A\B

Return A1\[µµB1] B1 evaluated with index-origin set to one.
For form AñB

Return A1\[1] B1 evaluated with index-origin set to one.
For forms A\[K] B and Añ[K] B

If K is not a valid-axis for B1, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If (µB1)[K1] differs from +/A1, signal length-error.
Return an array Z such that

the type of Z is the type of B,
the shape-list of Z is ((K1¥°µµB1)§µB1)+(K1=°µµB1)§µA1, evaluated

with comparison-tolerance set to zero, and
the ravel-list of Z has the property that A1/[K1]Z is B1 and (~A1)/[K1]Z

is an array consisting entirely of the typical-element of B.

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

APL Extended — DIS 8485(1997) 151

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

1 0 1 \1 3
1 0 3

1 1 1 0 1 \'ABCD'
ABC D

1 0 1\2
2 0 2

1 0 1\[2] 2 2 µ'ABCD'
A B
C D

1 0 1 1\1 2 3
1 0 2 3

1 0 1 1ñ3
3 0 3 3

0 1 \3 1 µ3.14 2E17 ¨47
0 3.14E0
0 2.00E17
0 ¨4.70E1

0 0\5
0 0

1 0 1 0\[2] N224
111 112 113 114
0 0 0 0

121 122 123 124
0 0 0 0

211 212 213 214
0 0 0 0

221 222 223 224
0 0 0 0

1 May 1997 at 23:52

152 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.7 Rotate

Z ¼ A ì B

Z ¼ A î B

Z ¼ A ì[K] B

Z ¼ A î[K] B

Informal Description: Z is an array of the same type and shape as B in which elements
have been shifted cyclically along a specified axis. The amount and direction of shift is
controlled by A. Uses index-origin.

Evaluation Sequence:

For form A ìB
If B is a scalar and A is either a scalar or a vector of length one,

If any item of the ravel-list of A is not a near-integer, signal domain-error.
Otherwise, return B.

Otherwise, return A ì[µµB] B evaluated with index-origin set to one.
For form A îB

If B is a scalar and A is either a scalar or a vector of length one,
If any item of the ravel-list of A is not a near-integer, signal domain-error.
Otherwise, return B.

Otherwise, return A ì[1] B evaluated with index-origin set to one.
For forms A ì[K] B and A î[K] B

If K is not a valid-axis for B, signal axis-error.
Otherwise, set K1 to the integer-nearest-to K.
If A is a scalar, set A1 to ((K1¥°µµB)/µB)µA, evaluated with comparison-

tolerance set to zero.
Otherwise, set A1 to A.
If A1 is a one-element-vector and B is a vector, set A2 to (°0)µA1.
Otherwise, set A2 to A1.
If the rank of B minus the rank of A2 is not one, signal rank-error.
If the shape-list of A2 is not the same as the shape-list of B with axis K1 omitted,

signal length-error.
If any item of the ravel-list of A2 is not a near-integer, signal domain-error.
Set A3 to the integer-array-nearest-to A2.
If A3 is a scalar and B is a vector, return B[1+(µB)|¨1+A3+°µB] evaluated

with comparison-tolerance set to zero.
Otherwise return Z, an array such that the shape-list of Z is the same as the shape-

list of B, the type of Z is the same as the type of B, and the ravel-list of Z has the
property that if Z0 is a vector-item along-axis K1 of Z, A0 is the corresponding
item of A3, and B0 is the corresponding vector-item along-axis K1 of B, then Z0
is A0 ìB0.

APL Extended — DIS 8485(1997) 153

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

3ì1 2 3 4 5
4 5 1 2 3

¨1ì1 2 3 4 5
5 1 2 3 4

¨7ì'ABCDEF'
FABCDE

1îN33
21 22 23
31 32 33
11 12 13

1ì[1]N33
21 22 23
31 32 33
11 12 13

1 2 3ìN34
12 13 14 11
23 24 21 22
34 31 32 33

N23ì[2]N243
141 112 123
111 122 133
121 132 143
131 142 113

221 232 243
231 242 213
241 212 223
211 222 233

Note: Various error checks have been performed on K by the phrase evaluators, and index-origin is
one, before this evaluation sequence is called.

1 May 1997 at 23:52

154 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.8 Base Value

Z ¼ A ª B

Informal Description: Z is, for A and B numeric vectors, a number produced by regarding
B as the representation of a number in the mixed radix number system specified byA. IfA
or B is an array of rank greater than one the value is like inner product: each vector-item
along the last axis of A is applied to each vector-item along the first axis of B.

Evaluation Sequence:

Set A0 to 1µì1,µA.
Set B0 to 1µ(µB),1.
If A0 differs from B0,

If A is a scalar or one-element-vector, return (B0µA)ªB.
If B is a scalar or one-element-vector, return AªA0µB.
Otherwise, signal length-error.

If A0 is the same as B0,
If any item of the ravel-list of A is not a number, signal domain-error.
If any item of the ravel-list of B is not a number, signal domain-error.
Return (ìí(ìµA)µí§\ìA,1)+.§B.

Examples:

10ª1 2 3
123

24 60 60 ª1 2 3
3723

²¼A¼2 3µ10 10 10 12 60 60
10 10 10
12 60 60

²¼B¼3 2µ1 4 2 5 3 6
1 4
2 5
3 6

AªB
123 456
3723 14706

¨.001 10 10ª1 2 3
123

60 ª1 2 3
3723

''ª3
0

'A'ª°0
0

APL Extended — DIS 8485(1997) 155

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Note: The shape requirements of A and B are intentionally stricter in this definition than in several
existing systems. Specifically, this standard does not require that if the last axis of A is one it be
replicated to match the first axis of B, or that if the first axis of B is one it be replicated to match the
last axis of A.

The first element of each left argument has no actual effect on the result of base value, but permits
use of the same left argument for base value and representation. If A is a positive numeric vector and
B a non-negative numeric scalar such that B<§/A, then AªA³B is B.

1 May 1997 at 23:52

156 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.9 Representation

Z ¼ A ³ B

Informal Description: Z is the representation of B in mixed radix number system A.

Evaluation Sequence:

If A or B is empty, return ((µA),µB)µ0.
If any item of the ravel-list of A is a character, signal domain-error.
If any item of the ravel-list of B is a character, signal domain-error.
If A is scalar, return A|B, evaluated with comparison-tolerance set to zero.
If A is a vector and B is a scalar,

Generate two numeric vectors Z and C that satisfy the following constraints:
The length of Z is µA.
The length of C is 1+µA.
C[1+µA] is B.
For all scalar indices I in °µA:
Z[I] is A[I]³C[I+1].
If A[I] is zero, C[I] is zero;
Otherwise, C[I] is (C[I+1]-Z[I])¦A[I].

Return Z.
Otherwise, return Z1, an array such that the type of Z1 is numeric, the shape-list of
Z1 is (µA),µB and the ravel-list of Z1 has the following property:
Let I stand for an item of the index-set of the ravel-along-axis one of A.
Let A1 stand for vector-item I of the ravel-along-axis one of A.
Let J stand for an item of the index-set of the ravel-list of B.
Let B1 stand for item J of the ravel-list of B.
Let N stand for the count of B.
Let P stand for J+(N§(I-1)).
Then, vector-item P of the ravel-list of Z1 along-axis one is A1³B1.

APL Extended — DIS 8485(1997) 157

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

10 10 10³123
1 2 3

10 10 10³123 456
1 4
2 5
3 6

A¼11 3µ10 16 2
'0123456789ABCDEF'[í1+A³1000 1024]

00000001000
000000003E8
01111101000

00000001024
00000000400
10000000000

2 2 2 ³¨1
1 1 1

0 2 2 ³¨1
¨1 1 1

0 1 ³3.75 ¨3.75
3 ¨4
0.75 0.25

Note: The shape of the result of representation is always (µA),µB.

The system-parameter comparison-tolerance is not an implicit argument of representation.

1 May 1997 at 23:52

158 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.10 Dyadic Transpose

Z ¼ A í B

Informal Description: Z is an array formed by rearranging and possibly coalescing the
axes of B according to the vector A. Each element of A corresponds to an axis of B by
position and to an axis of Z by value. The largest value in A determines the rank of
Z. All axes of Z must be present in A. If A contains no repeated elements, the shape
of Z is (µB)[æA]. Repeated elements in A select diagonals from B. The length of the
corresponding axis of Z is the shortest of the lengths of the designated axes of B. Uses
index-origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If A is a scalar, set A1 to ,A.
Otherwise, set A1 to A.
If A1 is not a vector, signal rank-error.
If the length of A1 is not the same as the rank of B, signal length-error.
If any item of the ravel-list of A1 is not a near-integer, signal domain-error.
Set A2 to the integer-array-nearest-to A1. Generate A3, a numeric array with

the shape-list of A2 such that each item of the ravel-list of A3 is (one minus
index-origin) plus the corresponding element of A2.

If ¤/A3­°¶/0,A3 evaluated with comparison-tolerance set to zero is not one,
signal domain-error.

If ¤/(°¶/0,A3)­A3 evaluated with comparison-tolerance set to zero is not one,
signal domain-error.

Return an array Z having the following properties:
The rank of Z is ¶/0,A3.
The shape-list of Z is such that for all I in the index-set of the shape-list of Z, item
I of the shape-list of Z is ¬/(A3=I)/µB, evaluated with comparison-tolerance
set to zero.

The ravel-list of Z is such that, for all J in the index-set of the ravel-list of Z, item
J of the ravel-list of Z is item 1+(µB)ª((µZ)³J-1)[A3] of the ravel-list of
B.

The type of Z is the sufficient-type of the ravel-list of Z under the type of B.

APL Extended — DIS 8485(1997) 159

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Examples:

1 3 2íN234
111 121 131
112 122 132
113 123 133
114 124 134

211 221 231
212 222 232
213 223 233
214 224 234

1 1íN34
11 22 33

3 1 2íN234
111 211
112 212
113 213
114 214

121 221
122 222
123 223
124 224

131 231
132 232
133 233
134 234

µµ(°0)í5
0

1 May 1997 at 23:52

160 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.11 Take

Z ¼ A õ B

Informal Description: Z is an array having shape ,|A. Informally, Z is a corner of B.
The choice of corner is based on the signs of the elements of A. If the absolute values of
elements of A are greater than corresponding elements of µB, then Z is padded with the
typical-element of B.

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
Set A1 to ,A.
If B is a scalar, set B1 to ((µA1)µ1)µB.
Otherwise, set B1 to B.
If the shape-list of A1 does not match the rank of B1, signal length-error.
If any item of the ravel-list of A1 is not a near-integer, signal domain-error.
Set A2 to the integer-array-nearest-to A1.
Return an array Z such that:

The shape-list of Z is |A2.
The ravel-list of Z has the property that for each scalar I in the index-set of the

ravel-list of Z, item I of the ravel-list of Z is determined as follows:
Let J stand for ((|A2)³I-1)+(A2<0)§A2+µB1 evaluated with
comparison-tolerance set to zero.
If each element of J is in the open-interval-between negative-one and

the corresponding element of µB1, item I of the ravel-list of Z is
(,B1)[1+(µB1)ªJ].

Otherwise, item I of the ravel-list of Z is the typical-element of B.
The type of Z is the sufficient-type of the ravel-of Z under the type of B.

Examples:

2õN5
1 2

¨2õN5
4 5

¨2 6õN44
31 32 33 34 0 0
41 42 43 44 0 0

¨4 ¨4õ99
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 99

2õ°0
0 0

APL Extended — DIS 8485(1997) 161

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.12 Drop

Z ¼ A · B

Informal Description: Z is a corner of B with shape 0¶(µB)-|A. The choice of corner
is based on the signs of the elements of A.

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
Set A1 to ,A.
If B is a scalar, set B1 to ((µA1)µ1)µB.
Otherwise, set B1 to B.
If the shape-list of A1 does not match the rank of B1, signal length-error.
If any item of the ravel-list of A1 is not a near-integer, signal domain-error.
Set A2 to the integer-array-nearest-to A1.
Return (((A2<0)§0¶A2+µB1)+(A2¿0)§0¬A2-µB1) õB1 evaluated with

comparison-tolerance set to zero.

Examples:

1·N5
2 3 4 5

2 ¨1·N44
31 32 33
41 42 43

µ1·5
0

µ0·5
1

µ1 2 3·4
0 0 0

''·5
5

µµ''·5
0

1 May 1997 at 23:52

162 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.13 Matrix Divide

Z ¼ A á B

Informal Description: Z is the least squares solution to a linear system specified by A and
B.

Evaluation Sequence:

If the rank of A or the rank of B is greater-than two, signal rank-error.
Set A1 to (2õ(µA),1 1)µA.
Set B1 to (2õ(µB),1 1)µB.
If 1õµA1 is not the same as 1õµB1, signal length-error.
If 1õµB1 is less-than ¨1õµB1, signal length-error.
If any item of the ravel-list of A is not a number, signal domain-error.
If any item of the ravel-list of B is not a number, signal domain-error.
Use the implementation-algorithm matrix-divide to generate an array Z, such that

the type of Z is numeric, the shape-list of Z is (¨1õµB1),¨1õµA1, and the
ravel-list of Z has the property that for each scalar I in °¨1õµA1, Z[;I] is such
that it minimises +/(A1[;I]-B1+.§Z[;I])*2.

If Z cannot be uniquely determined within a reasonable round-off criterion by the
above constraints, signal domain-error.

Return ((1·µB),1·µA)µZ.

Additional Requirement:

The round-off criterion discussed above is not specified by this standard.

Note: The following article describes an acceptable algorithm for matrix division:

Jenkins, M. A., Domino—An APL Primitive Function for Matrix Inversion—ItsImplementation
and Applications. APL Quote-Quad Vol III No. 4, February 1972, pp 4-15.

APL Extended — DIS 8485(1997) 163

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.14 Indexed Reference

Z ¼ A[I]

Informal Description: Z is an array consisting of elements of the array A selected and
structured by the position and values of the arrays in the index-listI. Uses index-origin.

Evaluation Sequence:

If the number-of-items in the index-list I does not match the rank of A, signal
rank-error.

In the following,
Let IX stand for (array) item X of I.
Let JX stand for (array) item X of J.
Let LX stand for (array) item X of L.
Let LY stand for (array) item X+1 of L.

Generate J, an index-list having the same count as I such that for every item X of
the index-set of I,
If IX is an elided-index-marker, set JX to ¨1+°(µA)[X].
Otherwise,

If any item of the ravel-list of IX is not a near-integer, signal domain-error.
Set JX to the integer-array-nearest-to IX.
Set JX to JX minus index-origin.
If any element of JX is not an element of ¨1+°(µA)[X], signal index-error.

Set JX to JX §§/ X·µA.
Generate L, an index-list with 1+µµA (array) items such that

Item 1+µµA of L is one.
For all X in °µµA, LX is JX ±.+ LY.

Let K stand for first-item in the list of arrays L.

Return (,A)[K].

Examples:

1 2 3[2]
2

N222[2 1;;2]
212 222
112 122

Note: Since an index-list has at least one item, indexing will always signal rank-error when
argumentA is a scalar.

The vector indexing on which this subsection is based is defined in the subsection evaluate-indexed-
reference.

1 May 1997 at 23:52

164 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.15 Indexed Assignment

Z ¼ V[I] ¼ B

Informal Description: Z is B. As a side effect, indexed assignment sets elements of
the array V selected by the position and values of the arrays in the index-list I to
corresponding elements of B. Note that, at this stage, V is known to be a variable-name,
not a value. Uses index-origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
Set A to the current-content of V.
If the number-of-items in the index-list I does not match the rank of A, signal

rank-error.
In the following,

Let IX stand for (array) item X of I.
Let JX stand for (array) item X of J.
Let LX stand for (array) item X of L.
Let LY stand for (array) item X+1 of L.

Generate J, an index-list having the same count as I such that for every item X of
the index-set of I,
If IX is an elided-index-marker, set JX to ¨1+°(µA)[X].
Otherwise,

If any item of the ravel-list of IX is not a near-integer, signal domain-error.
Set JX to the integer-array-nearest-to IX.
Set JX to JX minus index-origin.
If any element of JX is not an element of ¨1+°(µA)[X], signal index-error.

Set JX to JX §§/ X·µA.
Generate L, an index-list with 1+µµA (array) items such that

Item 1+µµA of L is one.
For all X in °µµA, LX is JX ±.+ LY.

Let K stand for first-item in the list of arrays L.
Set K1 to ((1¥µK)/µK)µK evaluated with comparison-tolerance set to zero.
Set B1 to ((1¥µB)/µB)µB evaluated with comparison-tolerance set to zero.
If B1 is a scalar, set B2 to (µK1)µB1.
Otherwise, set B2 to B1.
If the rank of K1 is not the same as the rank of B2, signal rank-error.
If any item of the shape-list of K1 is not the same as the corresponding item of the

shape-list of B2, signal length-error.
Set M to one.
Repeat:

If M is not greater-than the count of K1,
Let K2 stand for item M of the ravel-list of K1.
Set item K2 of the ravel-list of A to item M of the ravel-list of B.
Set M to M plus one.

Otherwise,

APL Extended — DIS 8485(1997) 165

1 May 1997 at 23:52

10. MIXED FUNCTIONS

Set the type of A to the sufficient-type of the ravel-list of A under the type mixed.
Set the current-referent ofV to a token whose class is variable and whose content

is A.
Return a token whose class is committed-value and whose content is B.

(End of repeated block)

Examples:

X 2 3
²¼X[3 2]¼4 5

4 5
X

1 5 4
²¼Y¼N222

111 112
121 122

211 212
221 222

²¼Y[2 1;;1]¼N12121
11111
11121

12111
12121

Y
12111 112
12121 122

11111 212
11121 222

Additional Requirements:

The evaluation sequence requires that after the statement A[1 1 1]¼1 2 3 has been
evaluated the value of A[1] be 3.

Indexed assignment exhibits atomic behaviour. If indexed assignment signals an error,
the value of V shall be unchanged.

Note: Since an index-list has at least one item, indexing will always signal rank-error when
argumentA is a scalar.

1 May 1997 at 23:52

166 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.16 Without

Z ¼ A ~ B

Informal Description: Z is a vector whose elements are the elements of A without those
that are also elements of B. Uses comparison-tolerance.

Evaluation Sequence:

If comparison-tolerance is nil, signal implicit-error. If the rank ofAorB is greater-
than one, signal rank-error. Set A1 to ,A; set B1 to ,B. Return (~A1­B1)/A1,
evaluated with the current value of comparison-tolerance.

Examples:

1 2 3 4 5~3 4 2
1 5

1 1 2 3 3 4 5~3 4 2
1 1 5

'NAPOLEON'~'NEON'
APL

10.2.17 Left

Z ¼ A Á B

Informal Description: Z is A.

Evaluation Sequence:

Return A.

Examples:

0Á1
0

1Á0
1

N2 Á'FRANCE'
1 2

APL Extended — DIS 8485(1997) 167

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.18 Right

Z ¼ A ½ B

Informal Description: Z is B.

Evaluation Sequence:

Return B.

Examples:

0½1
1

1½0
0

N2 ½'FRANCE'
FRANCE

10.2.19 Character Grade Definitions

A precedes B in C order: An operation that, for character-vectors A and B and character
array C of rank greater-than zero, returns a Boolean result determined by the following
evaluation sequence:

Evaluation Sequence:

Set AX to the rank of C.
Repeat

Set C1 to the array-of-vectors along-axis AX of C.
Generate AC, a numeric vector with the same length as A, such that for all I in the

index-set of A, AC[I] is the minimum of V°A[I] over all items V in C1.
Generate BC, a numeric vector with the same length as B, such that for all I in the

index-set of B, BC[I] is the minimum of V°B[I] over all items V in C1.
If ((AC<BC)°1) < (AC>BC)°1, return one.
Set AX to AX-1.
If AX equals zero, return zero.

(end of repeated sequence).

A identifies-with B in C order : An operation that returns zero if A precedes B in C
orderor B precedes A in C order and otherwise returns one.

1 May 1997 at 23:52

168 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.20 Character Grade Down

Z ¼A ç B

Informal Description: Z is a permutation of the index set of the first axis of B which
specifies a stable sort of the character subarrays crossing that axis into a non-increasing
sequence according to an ordering relation given in the collating array A. Uses index-
origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
Set IO to the numeric-scalar with value index-origin minus one.
If any item of the ravel-list of A is not a character, signal domain-error.
If any item of the ravel-list of B is not a character, signal domain-error.
If A is a scalar signal rank-error.
If A is empty, return IO+°1õµB.
Set B1 to ((1õµB),§/1·µB)µB.
If 1õµB is zero, return °0.
If 1õµB is one, return a one-element-vector Z such that the ravel-list of Z contains

index-origin.
Otherwise, generate Z, a permutation of °1õµB such that for every pair (I and J) of

elements of °1õµB where I is less-than J either:
B1[Z[J];] precedes B1[Z[I];] in A-order or
B1[Z[I];] identifies-with B1[Z[J];] in A-order and Z[I] is less-than
Z[J].

Return Z+IO.

APL Extended — DIS 8485(1997) 169

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.21 Character Grade Up

Z ¼A æ B

Informal Description: Z is a permutation of the index set of the first axis of B which
specifies a stable sort of the character subarrays crossing that axis into a non-decreasing
sequence according to an ordering relation given in the collating array A. Uses index-
origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
Set IO to the numeric-scalar with value index-origin minus one.
If any item of the ravel-list of A is not a character, signal domain-error.
If any item of the ravel-list of B is not a character, signal domain-error.
If A is a scalar signal rank-error.
If A is empty, return IO+°1õµB.
Set B1 to ((1õµB),§/1·µB)µB.
If 1õµB is zero, return °0.
If 1õµB is one, return a one-element-vector Z such that the ravel-list of Z contains

index-origin.
Otherwise, generate Z, a permutation of °1õµB such that for every pair (I and J) of

elements of °1õµB where I is less-than J either:
B1[Z[I];] precedes B1[Z[J];] in A-order or
B1[Z[I];] identifies-with B1[Z[J];] in A-order and Z[I] is less-than
Z[J].

Return Z+IO.

Note: In comparing rows of B1, differences at low index positions are more significant than those
at higher index positions. Thus, if 'a' comes before 'b' in A-order, the rows 'aa', 'ab', 'ba',
and 'bb' are in ascending A-order.

Every axis of the collating array A defines an ordering of the character set. A character ’s lowest
index along an axis defines its position in the order described by that axis (low indices precede high
indices). Characters not found in A are equal and occur after all characters in A.

The order given along A’s last axis is the most significant. The result of character grade groups
together rows of B which are equal under this (major) ordering. Within each such group, the result
arranges B’s rows according to the hierarchy of (minor) orderings along axes of A ending with the
first (least significant) axis. Character grade is stable; its results are equal under all the A-orderings
in the order that they occur in B.

Hierarchical sorting allows distinctions such as spelling, case, font, and length to carry their proper
lexicographic weight. For example, the rows of W (below) are taken in order from Webster’s New
Collegiate Dictionary.

1 May 1997 at 23:52

170 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

Examples:

(2 2µ'ABBA') æ 'AB'[?5 2µ2] Ý A AND B ARE EQUIVALENT
1 2 3 4 5

A¼2 14µ' abcdegiklmnrt ABCDEGIKLMNRT'
W W[(,A)æW;] W[(,íA)æW;] W[AæW;]
Ab aba aba Ab
AB abaca abaca AB
aba abecedarian abecedarian aba
ABA black Ab ABA
abaca black belt Abelian abaca
abecedarian blackball AB abecedarian
Abelian blacking ABA Abelian
black Ab black black
blackball Abelian black belt black belt
black belt AB blackball Black Mass
blacking ABA blacking blackball
Black Mass Black Mass Black Mass blacking

Note: Character grade is equivalent to the function SRT4 defined in Smith, Howard J., "Sorting –
A New/Old Problem", APL Quote-Quad 9, 1, June 1979, pp 123-127

APL Extended — DIS 8485(1997) 171

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.22 Pick

Z ¼ A º B

Informal Description: Z is an item selected from some level of B. A is a scalar or vector.
The items of A are selectors applying to one or more successive levels of B, such that the
first (or only) item of A selects an item from B, the next (if any) selects an item from this
item, and so on. The length of each item in A must agree with the rank of the object to
which it is to be applied. Uses index-origin.

Evaluation Sequence:

If index-origin is nil, signal implicit-error.
If the rank of A is greater-than one, signal rank-error.
If A is empty, return B.
If the count of a is one:

Set A1 to the first-thingy of A.
If A1 is not a simple array, signal domain-error.
If the rank of A1 is greater-than one, signal rank-error
Set A2 to the ravel-list of A1.
If any item in A2 is not a near-integer, signal domain-error.
Set A3 to a list with each item the integer-nearest-to the corresponding element of
A2.

If the number-of-items in A3 is not the same as the rank of B, signal rank-error
Set A4 to a list, with each item equal to the corresponding item in A3, minus

index-origin.
For every member X of the index-set of A4:

If item X of A4 is less-than zero, or greater-than-or-equal-to item X of the
shape-list of B, signal index-error.

Return item 1�(µB)ªA4 of the ravel-list of B.
Otherwise, return (1·A)º(1õA)ºB.

Examples:

3º'OSCAR'
C

(,3)º10 11 12 13
12

(»3 2)ºN44
32

1 5º(»'OSCAR'),(»'BEATA')
R

1 May 1997 at 23:52

172 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.23 Identical

Z ¼ A ô B

Informal Description: Returns 1 if A and B match with respect to structure and content,
and 0 otherwise.

Note: Identical is sometimes called “match”.

Evaluation Sequence:

If A and B are both simple-scalars, return A=B.
If the shape-list of A is different from the shape-list of B, return zero.
If A is empty, return (1õ,A)ô1õ,B.
Set A1 to the first item of the ravel-list of A, and B1 to the first item of the ravel-list

of B.
Set Z1 to A1ôB1.
If Z1 is zero, return zero.
Set A2 to the rest of the ravel-list of A, and B2 to the rest of the ravel-list of B.
If A2 is empty, return one.
Return A2ôB2.

Examples:

'SOLAR'ô'SOLAR'
1

(2 3 µ°6) ô°6
0

(1,0µ' ')ô1,0µ0
1

APL Extended — DIS 8485(1997) 173

1 May 1997 at 23:52

10. MIXED FUNCTIONS

10.2.24 Disclose

Z ¼ º B

Informal Description: For B, an array of shape A, all of whose items have the same rank
K, Z is an array of shape A,M where M is the maximum over the shapes of the items in
B, and each rank-K cell of Z is the result of Mõ of the corresponding item in B.

Evaluation Sequence:

Set M to max-shape-of B.
Set M1 to (µB),M.
Set K to µM.
Set S to the index-set of the ravel-list of B.
Return an array Z such that µZ is M1, and such that for every member I of S, the I’th

rank-K cell is mõC, where C is item I of the ravel-list of B.

Examples:

T ¼ (»'OSCAR'),(»'FRED')
µT

2
ºT

OSCAR
FRED

µºT
2 5

10.2.25 Disclose with Axis

Z ¼º[K] B

Informal Description: This is the same as Disclose, except that the function specifies
which axes in the result Z, are new. Uses index-origin.

Evaluation Sequence:

Set Z1 to ºB.

If index-origin is nil, signal implicit-error.
If A is not a simple vector, signal axis-error.
If any thingy-in A is not a valid-axis-ofZ1, signal axis-error.
Set A1 to the integer-array-nearest-to A.
If any item of the ravel-list of A1 is not distinct, signal axis-error.
If the count-of A1 is not the rank of the first-thingy-of B, signal axis-error.
Return (((°µµZ1)~A),A)íZ1.

1 May 1997 at 23:52

174 APL Extended — DIS 8485(1997)

10.2. DYADIC MIXED FUNCTIONS

10.2.26 Enclose

Z ¼ » B

Informal Description: Z is a scalar array whose only item is B.

Note: If B is a simple-scalar, Z is B.

Evaluation Sequence:

If B is a simple-scalar, return B.
Return an array whose shape-list is empty, and whose ravel-list has a single item, the

array B, and whose type is mixed.

Examples:

»'OSCAR'
OSCAR

µµ»'OSCAR'
0

2=»2
1

10.2.27 Enclose with Axis

Z ¼ » [K] B

Informal Description: Z is B with the indicated axes eliminated and replace by a
corresponding new level of nesting. K specifies the axis to be enclosed, and their order
in the resulting items. Uses index-origin.

Evaluation Sequence:

If, for some N, K = (-N)õ°µµB, return an array whose shape is (-N)·µB, and
whose ravel-list contains the rank-N cells of B.

Otherwise, return »[(-µK)õ°µµB](æ((°µµB)~K),K)íB.

APL Extended — DIS 8485(1997) 175

1 May 1997 at 23:52

10. MIXED FUNCTIONS

1 May 1997 at 23:52

176 APL Extended — DIS 8485(1997)

11

System Functions

11.1 Introduction

Note: System functions are primitive functions whose names are distinguished-identifiers rather
than primitives. System function names are not permitted in the locals-list of a defined-function
header-line.

The system functions related to shared-variables and defined-functions are specified in those
chapters.

11.2 Definitions

Note: Some system functions take an argument which is treated as an identifier-array.

– Identifier-Array: A character array of rank two each of whose rows matches the
character-diagram identifier-row.

– Event-Report: A representation of the most recent error.

– Event-Message: A character array giving, in an implementation-defined form, the
event-report and any other information the implementation deems helpful in locating
the error’s source.

– Empty-Event-Message: An empty array, of an implementation-defined shape,
indicating that the most recent event-type corresponds to no error.

APL Extended — DIS 8485(1997) 177

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.3 Diagram

Identifier-Row

- � �

� space �

simple-identifier � �

� space �

-

11.4 Niladic System Functions

Note: A niladic system function is an implementation-provided facility associated with a
distinguished-identifier. The primary difference between a niladic system function and a system
variable is that a niladic system function causes an error to be signalled if a value is assigned to it,
or its name is included in the list of locals of a defined function header.

11.4.1 Time Stamp

Z ¼ ²TS

Informal Description: Z is a seven-element numeric vector representing the current date
and time relative to an epoch and a time zone.

Evaluation Sequence:

Return the seven-element numeric vector result of the implementation-algorithm
time-stamp.

Example:

²TS
1789 7 14 11 14 45 586.4

Additional Requirements:

The first through sixth elements of the result returned by time-stamp are integral and
represent respectively the current year, month, day, hour, minute, and second relative to
the underlying epoch and time zone. The hour corresponds to the number of integral hours
that have elapsed within the current day.

The seventh and last element is a quantity, not necessarily integral, representing the
milliseconds that have elapsed within the current second.

The accuracy, resolution, epoch, and time zone for time-stamp are not specified by this
standard.

1 May 1997 at 23:52

178 APL Extended — DIS 8485(1997)

11.4. NILADIC SYSTEM FUNCTIONS

11.4.2 Atomic Vector

Z ¼ ²AV

Informal Description: Z is an implementation-defined character vector containing
every element of the required-character-set exactly once.

Evaluation Sequence:

Return atomic-vector.

Note: The elements of the atomic-vector are often ordered so that, in index-origin zero,
((¶2ëµ²AV)µ2) ³²AV°'X' gives the bit representation of X. This behaviour is not required.

11.4.3 Line Counter

Z ¼ ²LC

Informal Description: Z is a vector of statement numbers of active defined functions
ordered so that the most recently called function has the lowest index.

Evaluation Sequence:

Set Y to a numeric vector whose length is the same as the number-of-items in the
state-indicator, such that for every I in °µY, Y[I] is the current-line-number
of item I of the state-indicator, if the mode of item I of the state-indicator is
defined-function, and zero otherwise.

Set M to a Boolean vector whose length is the same as the number-of-items in the
state-indicator, such that for every I in °µM, M[I] is one if the mode of item I of
the state-indicator is defined-function, and zero otherwise.

Return M/Y.

Note: The subsections that affect the value of ²LC are discussed in the subsection defined-function-
control.

APL Extended — DIS 8485(1997) 179

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.4.4 Event Message

Z ¼ ²EM

Informal Description: When an error occurs, three lines of information are usually
displayed: the first line indicates what happened, the second line shows the line in
which the error was found, and the third line contains one or more carets pointing to the
place(s) in the second line where the error was detected. Event-message is commonly
a character matrix corresponding to this three-line message. It is set according to the
contents of event-type. If event-type is 0 0 then event-message is an empty three-row
matrix. Otherwise, event-message is set to an appropriate message. In some cases its
first row is blank (when event-message is set via ²ES) because there is no message for
the given value of event-type. (See the description of event-type for proposed values
and messages.)

event-message is local to a context.

Evaluation Sequence:

Return event-message.

Note: While the informal description speaks of a three line messageof a particular format, this is an
attempt to describe common usage, rather than prescribed behaviour. The format of event-message
is implementation defined.

1 May 1997 at 23:52

180 APL Extended — DIS 8485(1997)

11.5. MONADIC SYSTEM FUNCTIONS

11.4.5 Event Type

Z ¼ ²ET

Informal Description: The default value for event-type is 0 0 (no error). When an event
happens which halts execution event-type is set to a pair of integers specifying the class
and sub-class of the event. event-type is local to a context.

Evaluation Sequence:

Return event-type.

Note: Classes and subclasses of event-type:
0 0 – no error
0 1 – unclassified event

There may be additional implementation-defined types.

11.5 Monadic System Functions

Note: Refer to the Defined Functions chapter for definitions of ²FX and ²CR.

11.5.1 Delay

Z ¼ ²DL B

Informal Description: Z is the time, in seconds, for completion of this operation. As a
side effect, ²DL causes a delay in execution of at least B seconds.

Evaluation Sequence:

Set T0 to current-time seconds.
If B is not a scalar, signal rank-error.
If B is not a near-real-number, signal domain-error.
Set T1 to T0 plus B.
Wait until current-time is not less-than T1.
Return Z, a numeric scalar such that the first-item in the ravel-list of Z is current-

time minus T0.

Note: B may be fractional or negative.

APL Extended — DIS 8485(1997) 181

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.5.2 Name Class

Z ¼ ²NC B

Informal Description: Z is a vector of name classes giving the usage of the identifier in
the corresponding row of B. 0 means an identifier is available without current referent;
1, a label; 2, a variable or a shared variable; 3, a defined function; 4, a defined operator;
5, a system variable; 6, a system function.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
If B is empty, return °0.
Set B1 to (¨2õ1 1,µB)µB.
If any row of B1 does not match identifier-row, signal domain-error.
Generate Z, a numeric vector such that the length of Z is the same as the number-

of-rows in B1, and the ravel-list of Z has the property that for every I in °1õµB,
the following holds:
Let ZI stand for item I of the ravel-list of Z.
Let N stand for the token that matched the character-diagram simple-identifier

in the identifier-row.
If the current-class of N is nil, ZI is zero.
If the current-class of N is label, ZI is one.
If the current-class of N is variable or shared-variable, ZI is two.
If the current-class of N is defined-function or niladic-defined-function, ZI is

three.
If the current-class of N is defined-operator, ZI is four.
If the current-class of N is system-variable, ZI is five.
If the current-class of N is system-function, ZI is six.
Otherwise, signal domain-error.

Return Z.

Example:

®Z¼TEST;R0;R21;R22;R31;R32
[1] R1:R21¼1 ²SVO 'R22'
[2] Z¼²FX 1 3µ'R31'
[3] Z¼²FX 1 5µ'R32 X'
[4] Z¼²NC 6 3µ'R0 R1 R21R22R31R32'

®
TEST

0 1 2 2 3 3

1 May 1997 at 23:52

182 APL Extended — DIS 8485(1997)

11.5. MONADIC SYSTEM FUNCTIONS

11.5.3 Expunge

Z ¼ ²EX B

Informal Description: Z is a Boolean vector such that an element of Z is one if the
identifier in the corresponding row ofB is available for use when the operation completes.
Expunge changes the current-referent of symbols whose current-class is variable,
shared-variable, defined-function, defined-operator, or niladic-defined-function to
nil, making them available for redefinition. The symbols to be changed are named by
the rows of B, an identifier-array.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB .
For each row J of B1,

If row J of B1 does not match identifier-row, signal domain-error.
Let N stand for the token that matched the character-diagram simple-identifier

in identifier-row.
If the current-class of N is shared-variable, retract N.
If the current-class of N is variable, set the current-referent ofN to a token whose

class is nil.
If the current-class of N is defined-function or niladic-defined-function, and if

the current-referent of N is locally-erasable, set the current-referent of N to a
token whose class is nil.

Return ~§²NC B.

Additional Requirement:

The operation of Expunge is atomic: if Expunge signals an error, current-referents shall
be unchanged.

Note: Because of the definition of locally-erasable, a defined-function or defined-operator cannot
be expunged by a conforming-program while it is pendent or waiting. This does not prevent a
conforming-implementation from permitting such behaviour; it simply leaves the consequences to
a conforming-program undefined.

APL Extended — DIS 8485(1997) 183

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.5.4 Name List

Z ¼ ²NL B

Informal Description: Z is an identifier-array. An identifier occurs in Z if its name-
class is in B. Elements of B can be: 1, for labels; 2, for variables or shared variables;
3, for defined functions; 4, for defined operators; 5, for system variables; 6, for system
functions.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If any item of the ravel-list of B is not a near-integer, signal domain-error.
Set B1 to the integer-array-nearest-to B.
If B1 contains any numbers other than one, two, three, four, five, or six, signal

domain-error.
Generate Z, an identifier-array consisting of the names of symbols whose current-

class is label, variable, shared-variable, niladic-defined-function, defined-
function, defined-operator, system-variable or system-function. The symbol
names are left-justified in the rows of Z.

Set Z to ((²NC Z)­B1)ðZ.
Remove any all-blank trailing columns from Z.
Return Z.

Note: The rank of Z is always two. If there are no symbols with a name-class designated in B, Z is
0 0µ''.

1 May 1997 at 23:52

184 APL Extended — DIS 8485(1997)

11.5. MONADIC SYSTEM FUNCTIONS

11.5.5 Query Stop

Z ¼ ²STOP B

Informal Description: Z is an integer vector of line numbers in the function or operator
whose name is B that have stop control set.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If B does not match identifier-row, signal domain-error.
Let N stand for the token that matched the character-diagram simple-identifier in

identifier-row.
If the current-class of N is not defined-function, defined-operator or niladic-

defined-function, signal domain-error.
Return the stop-vector of the current-content of N.

Additional Requirement:

Query Stop is part of the optional-facility Trace-and-Stop-Control.

Note: Query Stop is not origin sensitive.

If no lines have stop control set, the result is °0.

APL Extended — DIS 8485(1997) 185

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.5.6 Query Trace

Z ¼ ²TRACE B

Informal Description: Z is an integer vector of line numbers in the function or operator
whose name is B that are being traced.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If B does not match identifier-row, signal domain-error.
Let N stand for the token that matched the character-diagram simple-identifier in

identifier-row.
If the current-class of N is not defined-function, defined-operator or niladic-

defined-function, signal domain-error.
Return the trace-vector of the current-content of N.

Additional Requirement:

Query Trace is part of the optional-facility Trace-and-Stop-Control.

Note: Query Trace is not origin sensitive.

If no lines are being traced, the result is °0.

1 May 1997 at 23:52

186 APL Extended — DIS 8485(1997)

11.6. DYADIC SYSTEM FUNCTIONS

11.5.7 Monadic Event Simulation

²ES B

Informal Description: An exception is created in the caller’s context. B is either a pair
of integers specifying the class and sub-class of the event, or a character vector.

If B is a pair of integers, event-type is set to B and event-message is set to an appropriate
message. If the pair of integers is undefined, the message part of event-message is blank,
but an exception is signalled and event-type is set. If B is 0 0 (no error), event-type
is set to 0 0 and event-message is set to empty-event-message, but no exception is
signalled.

If B is empty no action is taken. This allows for conditional signalling of an event.

Evaluation Sequence:

If the rank of B is greater-than one, signal a rank-error.
If B is empty, return nil.
If B is numeric,

If the rank of B is not one, signal rank-error.
If the count of items in B is not two, signal length-error.
If any item in B is not a near-integer, signal domain-error.
Set B1 to the integer-nearest-to B.
Set event-type to B1.
Set event-message to empty-event-message.
If B1 is not 0 0,

Set event-message as appropriate.
Signal event corresponding to event-type.

If B is character,
Set event-type to 0 1.
Set message portion of event-message to B.
Signal event corresponding to event-type.

11.6 Dyadic System Functions

11.6.1 Name List

Z ¼ A ²NL B

Informal Description: Z is an identifier-array of all names having a name-class in B that
begin with a letter in A.

Evaluation Sequence:

APL Extended — DIS 8485(1997) 187

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

If the rank of A is greater-than one, signal rank-error.
If any item of the ravel-list of A does not match letter, signal domain-error.
Set Z1 to ²NL B.
If 0­µZ1, return Z1.
Return (Z1[;1]­A)ðZ1.

11.6.2 Set Stop

Z ¼ A ²STOP B

Informal Description: Z is a numeric vector representing the stop controls in effect for
the function or operator whose name is in B before ²STOP began evaluation. As a side
effect, ²STOP sets stop controls for the function or operator whose name is in B at lines
specified by A.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If B does not match identifier-row, signal domain-error.
Let N stand for the token that matched the character-diagram simple-identifier in

identifier-row.
If the current-class of N is not defined-function, defined-operator or niladic-

defined-function, signal domain-error.
If the rank of A is greater-than one, signal rank-error.
If any item of the ravel-list of A is not a near-integer, signal domain-error.
Set A1 to the integer-array-nearest-to A.
If any item of the ravel-list of A1 is not a positive-integer, signal domain-error.
Set Z to ²STOP B.
Let M stand for the last-line-number of the current-content of N.
Set the stop-vector of the current-content of N to ((°M)­A1)/°M, evaluated with

index-origin one.
Return Z.

Additional Requirement:

Set Stop is part of the optional-facility Trace-and-Stop-Control.

Note: Stop controls are an attribute of defined-function objects. ²STOP affects the current-referent
of B only.

1 May 1997 at 23:52

188 APL Extended — DIS 8485(1997)

11.6. DYADIC SYSTEM FUNCTIONS

11.6.3 Set Trace

Z ¼ A ²TRACE B

Informal Description: Z is a numeric vector representing the lines being traced in the
function or operator whose name is in B before ²TRACE began evaluation. As a side
effect, ²TRACE begins tracing the lines specified by A in the function or operator whose
name is in B.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If B does not match identifier-row, signal domain-error.
Let N stand for the token that matched the character-diagram simple-identifier in

identifier-row.
If the current-class of N is not defined-function, defined-operator, or niladic-

defined-function, signal domain-error.
If the rank of A is greater-than one, signal rank-error.
If any item of the ravel-list of A is not a near-integer, signal domain-error.
Set A1 to the integer-array-nearest-to A.
If any item of the ravel-list of A1 is not a positive-integer, signal domain-error.
Set Z to ²TRACE B.
Let M stand for the last-line-number of the current-content of N.
Set the trace-vector of the current-content of N to ((°M)­A1)/°M, evaluated with

index-origin one.
Return Z.

Additional Requirement:

Set Trace is part of the optional-facility Trace-and-Stop-Control.

Note: Trace controls are an attribute of defined-function objects. ²TRACE affects the current-
referent of B only.

APL Extended — DIS 8485(1997) 189

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.6.4 Execute Alternate

Z ¼ A ²EA B

Informal Description: A and B are both character vectors representing executable
expressions. If execution of B is successful the result is Z. If there is an error or an
interrupt in the execution of B, execution is abandoned and A is executed. The execution
of A is subject to normal error handling.

It is possible to get a value-error if the successful execution of B does not return a result
and an explicit result is needed. A is not executed in this case.

Evaluation Sequence:

If the rank of either A or B is greater-than one signal rank-error.
If any item of the ravel-list of A is not a character, signal domain-error.
If any item of the ravel-list of B is not a character, signal domain-error.
Generate a new context in which

mode is execute,
current-line is the ravel-list of B,
current-function is 0 0µ' ',
current-line-number is one,
current-statement is the empty list of tokens,
stack is the empty list of tokens.

Append the new context to the state-indicator of the active-workspace as a new first
item.

Set Z to evaluate-line.
Remove the first context from the state-indicator.
If Z is not a member of error return Z,
Else return ßA

Note: See Conforming Programs in Compliance regarding hazards to conforming programs if
this facility is used.

1 May 1997 at 23:52

190 APL Extended — DIS 8485(1997)

11.6. DYADIC SYSTEM FUNCTIONS

11.6.5 Dyadic Event Simulation

A ²ES B

Informal Description: An exception is created in the caller’s context. A is a character
scalar or vector and B is either a pair of integers specifying the class and sub-class of
the event, or an empty vector.

Event-type is set to B and the message portion of event-message is set to A. If B is 0 0
(no error), event-type is set to 0 0 and event-message is set to empty-event-message,
and no event is signalled.

If B is empty no action is taken. This allows for conditional signalling of an event (for
example A ²ES cond /B).

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
If any item of A is not a character, signal domain-error.
If the rank of B is not one, signal rank-error.
If B is empty, return nil.
If the count of B is not two, signal length-error.
If any item in B is not a near-integer, signal domain-error.
Set B1 to the integer-nearest-to B.
Set event-type to B1.
Set event-message to empty-event-message.
If B1 is not 0 0,

Set the message portion of event-message to A.
Set the rest of event-message as appropriate.
Signal event corresponding to event-type.

APL Extended — DIS 8485(1997) 191

1 May 1997 at 23:52

11. SYSTEM FUNCTIONS

11.6.6 Transfer Form

Z ¼ A ²TF B

Informal Description: B is a character vector giving the name of the object for which
the transfer form is desired. If there is no transfer form for the item named by B (for
example, B names a system function, a label, or has no value) the result is an empty
character vector.

A is either one or two. If it is one B may name only defined functions, defined operators,
and simple homogeneous arrays. If it is two, B may also name mixed arrays.

For a given A, ²TF is its own inverse. For example, if ABC names a transferable object,
A ²TF A ²TF 'ABC' will reestablish the object named ABC and return the character
list 'ABC'.

If A is two, the result is an executable character vector giving the name and contents of
the object named by B. (Numeric conversions are carried out to full-print-precision.)

Evaluation Sequence:

If the rank of A is greater-than one signal rank-error.
If the count of A is not one signal length-error.
If any item of the ravel-list of A is not a near-integer, signal domain-error.
Set A1 to the integer-nearest-to A.
If A1 has the value one, set Z to produce-canonical-representation-vector of the

object named by B. (See Annex B).
If A1 has the value two,

If the rank of B is greater-than one signal rank-error.
If the type of B is not character signal domain-error.
Set NC to the name-class of B.
If NC is two:

Set B1 to ßB
Set Z to an executable string that will recreate the object named by B

If NC is three or four:
Set B1 to the character-representation of the object named by B
If the count of the shape of B is not zero

Set Z to an executable string that will recreate the object named by B
Else set Z to an empty character vector.

If NC is negative-one:
If ßB is successful, set Z to the name of the object created
Otherwise, set Z to an empty character vector

Otherwise signal domain-error
Otherwise, signal domain-error.

1 May 1997 at 23:52

192 APL Extended — DIS 8485(1997)

12

System Variables

12.1 Definitions

– System-Variable-Symbol: A symbol, having as its name a distinguished-identifier,
and as its referent-list a list of tokens representing the value assigned to an associated
system-parameter in each context of the state-indicator.

Note: System parameters are values used implicitly and set as side effects by primitive operations.

– Internal-Value-Set: An implementation-defined set of values that the tokens in the
referent-list of a system-variable-symbol can take on.

Note: When a system-variable-symbol is localised the initial class of its associated system-
parameter is nil. If a primitive operation is invoked that requires a system parameter whose class is
currently nil, the primitive operation signals implicit-error. Therefore,a conforming-program that
localises system-variable-symbols should assign them values from their internal-value-set before
calling primitive operations that require them.

The assignmentoperation for a system variable rejects attempts to set its associated system parameter
to a value outside its internal-value-set.

APL Extended — DIS 8485(1997) 193

1 May 1997 at 23:52

12. SYSTEM VARIABLES

12.2 Evaluation Sequences

12.2.1 Comparison Tolerance

Z ¼ ²CT ¼ B

Z ¼ ²CT

Informal Description: Z is the current value of comparison-tolerance.

The distance within which numbers are to be considered equal by certain primitives is a
function of comparison-tolerance.

Evaluation Sequence:

For form ²CT
Return comparison-tolerance.

For form ²CT ¼ B
If the rank of B is greater-than one, signal rank-error.
If the count of B is not one, signal length-error.
Let B1 be the first-scalar in B.
If B1 is not a nonnegative-number, signal domain-error.
If B1 is not in the internal-value-set of comparison-tolerance, signal limit-error.
Set comparison-tolerance to B1.
Return a token whose class is committed-value and whose content is B.

Additional Requirement:

The internal-value-set for comparison-tolerance consists of nonnegative-numbers not
greater than the implementation-parameter comparison-tolerance-limit.

The initial value of comparison-tolerance in a clear-workspace is that member of the
internal-value-set for comparison-tolerance given by the implementation-parameter
initial-comparison-tolerance.

Note: The following subsections reference comparison-tolerance: ceiling, equal, floor, greater
than or equal to, greater than, index of, less than or equal to, less than, member of, not equal,
residue, and, or and unique.

1 May 1997 at 23:52

194 APL Extended — DIS 8485(1997)

12.2. EVALUATION SEQUENCES

12.2.2 Random Link

Z ¼ ²RL ¼ B

Z ¼ ²RL

Informal Description: Z is the current value of random-link; random-link is the current
seed of the pseudorandom number generator.

Evaluation Sequence:

For form ²RL
Return random-link.

For form ²RL ¼ B
If the rank of B is greater-than one, signal rank-error.
If the count of B is not one, signal length-error.
Set B1 to the first-scalar in B.
If B1 is not a near-integer, signal domain-error.
Set B2 to the integer-nearest-to B1.
If B2 is less-than one, signal domain-error.
If B2 is not in the internal-value-set for random-link, signal limit-error.
Set random-link to B2.
Return a token whose class is committed-value and whose content is B.

Additional Requirement:

The internal-value-set of random-link is implementation-defined.

The initial value of random-link in a clear-workspace is that member of the internal-
value-set for random-link given by the implementation-parameter initial-random-link.

Note: The system parameter random-link is used and set by roll and deal. Roll gives a reference
for a suitable algorithm.

APL Extended — DIS 8485(1997) 195

1 May 1997 at 23:52

12. SYSTEM VARIABLES

12.2.3 Print Precision

Z ¼ ²PP ¼ B

Z ¼ ²PP

Informal Description: Z is the current value of print-precision, which controls the
number of significant positions in the output form produced by monadic format and
numeric-output-conversion.

Evaluation Sequence:

For form ²PP
Return print-precision.

For form ²PP ¼ B
If the rank of B is greater-than one, signal rank-error.
If the count of B is not one, signal length-error.
If B is not near-integer, signal domain-error.
Set B1 to the integer-nearest-to the first-scalar in B.
If B1 is less-than one, signal domain-error.
If B1 is not in the internal-value-set of print-precision, signal limit-error.
Set print-precision to B1.
Return a token whose class is committed-value and whose content is B.

Additional Requirements:

The internal-value-set of print-precision consists of the integer scalars in the closed-
interval-between one and print-precision-limit.

The initial value of print-precision in a clear-workspace is that member of the internal-
value-set for print-precision given by the implementation-parameter initial-print-
precision.

Note: The system parameter print-precision is used by monadic format and numeric-output-
conversion. Print-precision-limit should be greater than or equal to full-print-precision.

1 May 1997 at 23:52

196 APL Extended — DIS 8485(1997)

12.2. EVALUATION SEQUENCES

12.2.4 Index Origin

Z ¼ ²IO ¼ B

Z ¼ ²IO

Informal Description: Z is the current value of index-origin, which is the index associated
with the first position of any axis of non-zero length.

Evaluation Sequence:

For form ²IO
Return index-origin.

For form ²IO ¼ B
If the rank of B is greater-than one, signal rank-error.
If the count of B is not one, signal length-error.
If B is not a near-integer, signal domain-error.
Set B1 to the integer-nearest-to the first-scalar in B.
If B1 is not in the internal-value-set of index-origin, signal limit-error.
Set index-origin to B1.
Return a token whose class is committed-value and whose content is B.

Additional Requirement:

The internal-value-set for index-origin is the scalar integer values zero and one.

The initial value of index-origin in a clear-workspace is that member of the internal-
value-set for index-origin given by the implementation-parameter initial-index-origin.

Note: The following primitive operations refer to index-origin: deal, dyadic transpose, grade
down, grade up, index generator, index of, indexed assignment, indexed reference, roll, and all
functions that provide for axis specification when the form containing an axis is used.

APL Extended — DIS 8485(1997) 197

1 May 1997 at 23:52

12. SYSTEM VARIABLES

12.2.5 Latent Expression

Z ¼ ²LX ¼ B

Z ¼ ²LX

Z ¼ ²LX[I] ¼ B

Informal Description: Z is the current value of latent-expression, which is a character
vector that is executed when a workspace is activated.

Evaluation Sequence:

For form ²LX
Return latent-expression.

For form ²LX ¼ B
If the rank of B is greater-than one, signal rank-error.
If any item of the ravel-list of B is not a character, signal domain-error.
If B is not in the internal-value-set of latent-expression, signal limit-error.
Set latent-expression to ,B.
Return a token whose class is committed-value and whose content is B.

For form ²LX[I] ¼ B
Set LX to latent-expression.
Evaluate LX[I] ¼ B.
Set latent-expression to LX.
Return a token whose class is committed-value and whose content is B.

Additional Requirement:

The internal-value-set for latent-expression is an implementation-defined subset of the
set of all character vectors which includes the empty vector.

The initial value of latent-expression in a clear-workspace is that member of the internal-
value-set for latent-expression given by the implementation-parameter initial-latent-
expression.

1 May 1997 at 23:52

198 APL Extended — DIS 8485(1997)

13

Defined Functions

13.1 Introduction

Note: Algorithms written in APL are called defined functions. A defined function consists of a header
line and zero or more body lines. The header line indicates the name and syntax class of the function
and gives a list of names to be localised and, in the case of argument names, initialised. Each body
line consists of an optional label followed by an APL line to be evaluated. Body lines are evaluated
in the order in which they occur in the defined function unless a statement beginning with a right
arrow is evaluated. In this chapter, the term defined function also includes defined operator.

A defined function is established in a workspace by the system function ²FX, by actions in function
definition mode, or by the system command)COPY.

In this standard, a defined-function is represented as an object with three attributes: canonical-
representation, trace-vector, and stop-vector. A defined-function is called when its name occurs
in a prefix of the current-stack matching one of the patterns in the phrase-table.

A defined-function is called by the operation call-defined-function. This operation prefixes the
state-indicator with a new context, localises and initialises any local names in the header-line, and
calls the evaluation sequence in the subsection defined-function-control.

A defined-function ends the evaluation if defined-function-control finds current-line-number set
to a value not in the closed-interval-between one and last-line-number. At this point, the first item
of the state-indicator is discarded and a token of class result is returned, via call-defined-function,
to the phrase-evaluator that called it.

The returned token may be constant (for functions returning a value), nil (for functions that return
no value), unwind (for functions that end through the evaluation of an escape arrow), or clear-state-
indicator (as the result of an)SIC command).

If a line in a defined-function signals an error, immediate-execution is called to report the error
and suspend the defined-function. Immediate-execution may return either a branch to indicate
that evaluation of the defined-function should continue, or an escape or clear-state-indicator to
indicate that the defined-function context should be removed from the state-indicator.

APL Extended — DIS 8485(1997) 199

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

13.2 Definitions

Note: The following term defines the subset of arrays that can be used to create defined-functions.

– Proper-Defined-Function: An array A is a proper-defined-function if
The type of A is character.
The rank of A is two.
A has at least one row.
The first row of A matches the character-diagram header-line.
No identifier in the first row of A is the distinguished-identifier ² or ä or is a system-

function-name or niladic-system-function-name.
All rows after the first in A match the character-diagram body-line.

Note: The following definitions give properties of arrays that are proper-defined-functions.

– Niladic: A, an array that is a proper-defined-function, is niladic if the form of the first
row of A is niladic-function-header.

– Monadic: A, an array that is a proper-defined-function, is monadic if the form of the
first row of A is monadic-function-header.

– Ambivalent: A, an array that is a proper-defined-function, is ambivalent if the form
of the first row of A is ambivalent-function-header.

– Monadic-Monadic-Operator: A, an array that is a proper-defined-function, is
monadic-monadic-operator if the form of the first row of A is monadic-monadic-
operator-header.

– Monadic-Dyadic-Operator: A, an array that is a proper-defined-function, is
monadic-dyadic-operator if the form of the first row ofA is monadic-dyadic-operator-
header.

– Ambivalent-Monadic-Operator: A, an array that is a proper-defined-function, is
ambivalent-monadic-operator if the form of the first row ofA is ambivalent-monadic-
operator-header.

– Ambivalent-Dyadic-Operator: A, an array that is a proper-defined-function, is
ambivalent-dyadic-operator if the form of the first row of A is ambivalent-dyadic-
operator-header.

– Value-Returning: A, an array that is a proper-defined-function, is value-returning
if, when header-line is threaded with the first row of A, the diagram result is threaded.

Note: The following terms categorise defined-functions according to their presence on or absence
from the state-indicator.

1 May 1997 at 23:52

200 APL Extended — DIS 8485(1997)

13.2. DEFINITIONS

– Suspended: N, a simple-identifier, is suspended if it is the function-name of a context
that immediately follows an immediate-execution context.

– Pendent: N, a simple-identifier, is pendent if it is the function-name of a context that
does not immediately follow an immediate-execution context.

– Waiting: N, a simple-identifier, is waiting if a token whose class is defined-function-
name and whose content is the content of N occurs in the stack of some context in the
state-indicator of the active-workspace, and is not the first defined-function-name in
that stack.

Note: For example, if F and G are defined function names, G is waiting during the evaluation of (F
2) in the line

(F 2) G 3.

– Editable: N, a simple-identifier, is editable if the current-referent of N is nil, or if all
the following are true:
The current-class of N is defined-function, defined-operator or niladic-defined-

function.
The number-of-items in its referent-list is one.
N is neither pendent nor waiting.
N, if suspended, is suspended in only the current-context.

Note: This definition requires that a conforming-implementation be capable of editing the top
function on the state indicator as long as it has not been localised and occursnowhereelse on the state
indicator. This minimal definition is included to be certain that all conforming-implementations be
capable of interactive program correction.

– Globally-Erasable: Globally-Erasable is defined forN, a simple-identifier, as follows:
If no context of the state-indicator contains, in its current-statement, a defined-name

with content that of N, then N is globally-erasable.
Otherwise, let L be the last (most global) context in whose local-name-list N appears.
If there is no such context then N is not globally-erasable.
Otherwise, letC be the last (most global) context in whose current-statement a defined-

name with content that of N appears.
If the index of L is greater-than or equal to that of C then N is globally-erasable.

Note: Informally, N is globally-erasable if it was localised before it was made waiting or pendent.

– Locally-Erasable: Locally-Erasable is defined for N, a simple-identifier, as follows:
If no context of the state-indicator contains, in its current-statement, a defined-name

with content that of N, then N is locally-erasable.
Otherwise, let L be the first (most local) context in whose local-name-list N appears.
If there is no such context then N is not locally-erasable.
Otherwise, let C be the first (most local) context in whose current-statement a defined-

name with content that of N appears.
If the index of C is greater than that of L, then N is locally-erasable.

Note: Informally,N is locally-erasable if it has been localised since the last time it was made waiting
or pendent. This definition is used in ²EX to specify that the expression (²EX'F') F 1 be the

APL Extended — DIS 8485(1997) 201

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

same as 0 F 1; it is used in ²FX to specify that the expression (²FX 1 1µ'F') F 1 signal a
domain-error.

Note: The following operations provide information about arrays that are proper-defined-
functions.

– Function-Name of A: For A a proper-defined-function, the simple-identifier that
matches function-name when the character-diagram header-line is threaded with the
first row of A.

– Last-Line-Number of A: For A a proper-defined-function, negative-one plus the
number-of-rows in A.

– Header-Name-List of A: For A a proper-defined-function, a list of identifiers
developed as follows:
Thread the character-diagram header-line with the first row of A.
Return a list of tokens consisting of identifiers that matched any of the character-

diagrams local-name, result-name, left-argument-name, right-argument-name
right-operand-name, or left-operand-name.

– Label-Name-List of A: For A a proper-defined-function, a list of simple-identifiers
developed as follows:
Set Z to the empty-list of tokens.
For each index I in the closed-interval-between one and last-line-number of A,

Thread the character-diagram body-line with row I plus one of A.
If labelled-line was matched, append the simple-identifier token that matched the

character-diagram label-name to Z as a new last item.
Return Z.

– Local-Name-List of A: For A a proper-defined-function, a list of identifiers consisting
of the label-name-list followed by the header-name-list.

– Identifier-Matching D in A: For A a proper-defined-function and D a character-
diagram, a simple-identifier token developed as follows:
Thread the character-diagram header-line with the first row of A.
Return a token of class simple-identifier whose content is the list of characters that

matched D.

Note: Identifier-Matching is used to refer to the arguments and result of an arbitrary defined
function.

– Function-Line I of A: For A a proper-defined-function, a list of characters developed
as follows:
Thread the character-diagram body-line with row I plus one of A.
Return the list of characters that matched the character-diagram line in body-line.

Note: The following operations affect symbols.

1 May 1997 at 23:52

202 APL Extended — DIS 8485(1997)

13.3. DIAGRAMS

– Localise N:
Append a new first item, a token of class nil, to the referent-list of the symbol-named-

by N.

– Delocalise N:
If the current-class of N is shared-variable, retract N.
Remove the first item from the referent-list of the symbol-named-by N.

– Current-Canonical-Representation: The canonical-representation of the current-
function of the current-context in the active-workspace.

– Current-Function-Line I: Function-LineI of the current-canonical-representation.

– Current-Last-Line-Number: The last-line-number of the current-canonical-
representation.

– Current-Stop-Vector: The stop-vector of the current-function of the current-context
in the active-workspace.

– Current-Trace-Vector: The trace-vector of the current-function of the current-
context in the active-workspace.

– Current-Local-Names: The local-name-listof the current-canonical-representation.

– Current-Right-Argument-Name: The identifier-matching right-argument-name in
the current-canonical-representation.

– Current-Left-Argument-Name: The identifier-matching left-argument-name in the
current-canonical-representation.

– Current-Result-Name: The identifier-matching result-name in the current-
canonical-representation.

– Current-Left-Operand-Name: The identifier-matching left-operand-name in the
current-canonical-representation.

– Current-Right-Operand-Name: The identifier-matching right-operand-name in the
current-canonical-representation.

13.3 Diagrams

In these diagrams,
b stands for permitted-blanks.
r stands for required-blanks.

Header-Line

- b � �

� result �

b form b � �

� locals-list �

-

APL Extended — DIS 8485(1997) 203

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

Example:

Z ¼A F B;C;²IO

Note: The header line indicates the name and syntactic class of the defined-function. It also gives
a list of identifiers to be localised when the defined-function is called.

This standard does not provide for end-of-line comments in header lines.

Result

- result-name b assignment-arrow -

Result-Name

- simple-identifier -

Form

- � niladic-function-header �

� monadic-function-header �

� ambivalent-function-header �

� monadic-monadic-operator-header �

� monadic-dyadic-operator-header �

� ambivalent-monadic-operator-header �

� ambivalent-dyadic-operator-header �

-

Niladic-Function-Header

- function-name -

Monadic-Function-Header

- function-name r right-argument-name -

Ambivalent-Function-Header

- left-argument-name r function-name r right-argument-name -

In the next four diagrams,

1 May 1997 at 23:52

204 APL Extended — DIS 8485(1997)

13.3. DIAGRAMS

la stands for left-argument-name

ra stands for right-argument-name

mop stands for monadic-operator-part

dop stands for dyadic-operator-part

Monadic-Monadic-Operator-Header

- b mop b ra -

Monadic-Dyadic-Operator-Header

- b dop b ra -

Ambivalent-Monadic-Operator-Header

- la b mop b ra -

Ambivalent-Dyadic-Operator-Header

- la b dop b ra -

Monadic-Operator-Part

- (b left-operand-name r function-name b) -

Dyadic-Operator-Part

- (b left-operand-name r function-name r right-operand-name b) -

Right-Argument-Name

- simple-identifier -

Left-Argument-Name

- simple-identifier -

APL Extended — DIS 8485(1997) 205

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

Right-Operand-Name

- simple-identifier -

Left-Operand-Name

- simple-identifier -

Locals-List

- � �

� �local-marker b local-name b �

� �

�

-

Colon

- : -

Local-Marker

- ; -

Function-Name

- simple-identifier -

Local-Name

- identifier -

Label-Name

- simple-identifier -

Body-Line

- b �labelled-line �

� line �

-

1 May 1997 at 23:52

206 APL Extended — DIS 8485(1997)

13.4. OPERATIONS

Labelled-Line

- label-name b colon b line -

Permitted-Blanks

- � �

� blank �

-

Required-Blanks

- �blank �

� �

-

13.4 Operations

13.4.1 Call-Defined-Function

Z ¼ DFN

Z ¼ DFN B

Z ¼ A DFN B

Z ¼ f DFN B

Z ¼ A f DFN B

Z ¼ f DFN g B

Z ¼ A f DFN g B

Informal Description: Z is the value of the variable given as the result name in the header
line of the defined function whose name is DFN. If there is no result name, Z is nil.

Evaluation Sequence:

Generate a new context in which
mode is defined-function,
current-line is the empty list of characters,
current-function is the current-referent of DFN,
current-line-number is one,
current-statement is the empty list of tokens, and
stack is the empty list of tokens.

APL Extended — DIS 8485(1997) 207

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

Append the new context to the state-indicator of the active-workspace as a new first
item.

Localise the current-local-names.
For form Z¼A f DFN g B

If current-function is not ambivalent-defined-dyadic-operator, signal valence-
error.

Set the symbol-named-by current-left-argument-name to A.
Set the symbol-named-by current-left-operand-name to f.
Set the symbol-named-by current-right-operand-name to g.
Set the symbol-named-by current-right-argument-name to B.

For form Z¼f DFN g B
If current-function is not monadic-defined-dyadic-operator, signal valence-

error.
Set the symbol-named-by current-left-operand-name to f.
Set the symbol-named-by current-right-operand-name to g.
Set the symbol-named-by current-right-argument-name to B.

For form Z¼A f DFN B
If current-function is not ambivalent-defined-monadic-operator, signal

valence-error.
Set the symbol-named-by current-left-argument-name to A.
Set the symbol-named-by current-left-operand-name to f.
Set the symbol-named-by current-right-argument-name to B.

For form Z¼f DFN B
If current-function is not monadic-defined-monadic-operator, signal valence-

error.
Set the symbol-named-by current-left-operand-name to f.
Set the symbol-named-by current-right-argument-name to B.

For form Z ¼A DFN B
If current-function is not ambivalent, signal valence-error.
Set the symbol-named-by current-left-argument-name to A.
Set the symbol-named-by current-right-argument-name to B.

For form Z ¼DFN
If current-function is not niladic, signal valence-error.

For all indices I in the closed-interval-between one and current-last-line-number,
If row I plus one of canonical-representation matches the diagram labelled-line,

set the current-referent of the simple-identifier that matches label-name to a
token of class label and content the numeric-scalar with value I.

Set Z to defined-function-control.
Delocalise the current-local-names.
Remove the first-item in the state-indicator of the active-workspace.
If Z is escape, signal unwind.
Otherwise, return Z.

Note: Tokens of class escape are converted to tokens of class unwind so that immediate-execution
can distinguish an escape issued in immediate-execution mode from one issued in a defined-
function.

The context attribute current-function includes the function itself plus its trace and stop vectors.

1 May 1997 at 23:52

208 APL Extended — DIS 8485(1997)

13.4. OPERATIONS

13.4.2 Defined-Function-Control

Informal Description: This procedure controls the execution of a user defined function.

Evaluation Sequence:

Set Z to a token whose class is nil.
Let I stand for current-line-number.
Set I to one.
Repeat:

If I is in the current-stop-vector, set attention-flag to one.
If Z is an error or attention-flag is one,

Set N to immediate-execution with Z.
If N is escape or clear-state-indicator, return N.
If N is branch, set I to the content of N.

If I is not in the closed-interval-between one and current-last-line-number,
If the current-function is not value-returning, return nil.
If the current-class of the current-result-name is variable or nil, return the

current-referent of the current-result-name.
Otherwise, signal value-error.

Set Z to evaluate-line of current-function-line I.
If Z is escape, unwind, or clear-state-indicator, return Z.
If Z is branch, set I to the content of Z.
If Z is value or nil, set I to I plus one.

(End of repeated block)

Note: The attention-flag is reset by the user facility enter.

The class of the token returned by evaluate-line for ¾°0 is nil, not branch.

The value-error signalled from defined-function-control is signalled in the line that invoked the
defined function; the error is introduced to prevent conforming-programs from exiting a defined-
function with the current-class of the result-name set to such classes as defined-function, niladic-
defined-function, and shared-variable.

APL Extended — DIS 8485(1997) 209

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

13.4.3 Function Fix

Z ¼ ²FX B

Informal Description: Z is, for B the canonical-representation of a defined function or
operator having function-name N, a character vector holding N. As a side effect, the
defined function that B represents is established as the current referent of N. Rows of B
that are all blanks give rise to blank lines in the established function.

Evaluation Sequence:

If the rank of B is not two, signal rank-error.
If B is an empty array, signal length-error.
If any item of the ravel-list of B is not a character, signal domain-error.
If B is not a proper-defined-function, signal domain-error.
If identifiers are duplicated in the local-name-list of B, signal domain-error.
Let N stand for the simple-identifier that matches function-name in the first row of
B.

If the current-class of N is not defined-operator, defined-function, niladic-defined-
function, or nil, signal domain-error.

If N is not locally-erasable, signal domain-error.
Set the current-referent of N to a defined-function or defined-operator for which

canonical-representation is set from B,
stop-vector is °0,
trace-vector is °0.

Return a character vector Z such that the length of Z is the number-of-items in the
content of N and the ravel-list of Z is the content of N.

1 May 1997 at 23:52

210 APL Extended — DIS 8485(1997)

13.5. FUNCTION EDITING

13.4.4 Character Representation

Z ¼ ²CR B

Informal Description: Z is a character matrix representation of the defined function or
operator named by B.

Evaluation Sequence:

If the rank of B is greater-than one, signal rank-error.
If the length of B is zero, signal length-error.
If B does not match the character-diagram identifier-row, signal domain-error.
If the current-class of B is not defined-operator, defined-function or niladic-

defined-function, signal domain-error.
Otherwise return a token whose class is constant and whose content is the canonical-

representation of the current-content of B.

Additional Requirement:

The formal model of APL used in this standard assumes that the internal representation
of a defined function is precisely the character matrix satisfying the requirements for a
proper-defined-function that was supplied as an argument to function fix. Representation
of defined functions in this way in an implementation is neither required nor suggested.

The preservation of numeric literals and blanks as entered is desirable in the character
representation, but it is not required by this standard. ²CR ²FX ²CR ²FX X shall be the
same as ²CR ²FX X, if X is a proper-defined-function.

If numeric-literals are stored as numbers in defined-functions, they are to be formatted
with print-precision set to full-print-precision.

13.5 Function Editing

Note: The function editing facilities described here are included to provide the APL programmer
with a standard method for entering and correcting defined functions.

13.5.1 Evaluate-Function-Definition-Request

Evaluate-Function-Definition-Request Q.

Note: This subsection provides minimal facilities for the establishment and alteration of defined-
functions.

APL Extended — DIS 8485(1997) 211

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

An identifier can be edited by the function editing facilities only if it is is editable. The header line
of a defined-function can be altered only if the function-name is locally-erasable.

In function-definition mode, lines of the function being edited are temporarily associated with
numbers in decimal-rational form by an unspecified mechanism. When a function is closed, the
order of the lines given by the line number associated with each line is maintained.

The display of a function should be the same as the entries required to add the function to a clear-
workspace.

This operation is called by immediate-execution when it recognises a function-definition-line.

Evaluation Sequence:

Thread opening-request with Q; if Q does not match opening-request, signal
definition-error.

Rethread opening-request with Q, taking the following actions:
When creation-request is matched,

Set G to the list of characters that matched creation-request.
Set N to the simple-identifier that matched function-name in G.
If the current-class of N is not nil and G does not match identifier-row, signal

definition-error.
When change-request is matched,

Set N to the simple-identifier that matched the diagram subject-function in
change-request.

Set G to the list of characters that matched initial-request.
If the current-class of N is nil, set M to a new defined-function for which

Canonical-Representation is 0 0µ' '
Stop-Vector is °0
Trace-Vector is °0.

Otherwise,
If N is not editable, signal definition-error.
Set M to the current-referent of N.

Generate a new context in which
mode is function-definition,
current-line is G,
current-function is M,
current-line-number is the number-of-rows in the canonical-representation of
M,

current-statement is the empty list of tokens, and
stack is the empty list of tokens.

Append the context as a new first item to the state-indicator.
Repeat:

Set Z to evaluate-editing-request.
If Z is command-complete,

Remove the first-item in the state-indicator of the active-workspace.
Return Z.

If Z is an error, display Z.
Set current-prompt to function-definition-prompt of current-line-number.
Set current-line to read-keyboard.

1 May 1997 at 23:52

212 APL Extended — DIS 8485(1997)

13.5. FUNCTION EDITING

(End of repeated block)

Additional Requirement:

The prompt in definition mode is a line number enclosed in brackets. Line numbers are
always displayed in decimal-rational form. The line number of the header is always zero;
it is not affected by index-origin.

13.5.2 Evaluate-Editing-Request

Evaluate-Editing-Request

Informal Description: This subsection acts on a single line of input to the editor.

Evaluation Sequence:

Let C stand for the current-canonical-representation.
Let N stand for the simple-identifier that matches function-name in function-line.
Let S stand for the current-stop-vector.
Let T stand for the current-trace-vector.
Thread general-request with current-line; if general-request does not match

current-line, signal definition-error.
Otherwise, rethread general-request with current-line, taking the following actions:

When positioning-request is threaded,
Set L to the numeric-input-conversion of the list of characters that matched

line-number in positioning-request.
If L is a negative-number, signal definition-error.
If L is greater-than definition-line-limit, signal limit-error.
Set current-line-number to L.

When deletion-request is threaded,
Set L to the numeric-input-conversion of the list of characters that matched

line-number in deletion-request.
If L is not a positive-number, signal definition-error.
If L is greater-than definition-line-limit, signal limit-error.
Set current-line-number to L.
Delete from C the row associated with L, if it exists.
Delete from S and T the item associated with L, if it exists.

When display-request is threaded, display function-display of C.
When function-line is threaded, if function-line does not match permitted-blanks,

If current-line-number is zero,
If function-line does not match header-line, signal definition-error.
If N is not locally-erasable, signal definition-error.

Set the row of C associated with current-line-number to the list of characters
that matched function-line.

If current-line-number is not an integer, or is greater-than current-last-line-

APL Extended — DIS 8485(1997) 213

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

number, set the items of S and T associated with current-line-number to
zero.

Set current-line-number to next-definition-line of current-line-number.
When end-definition is matched,

If C is not a proper-defined-function, signal definition-error.
If identifiers are duplicated in the local-name-list of C, signal definition-error.
Set the current-referent of N to a defined-function for which

Canonical-Representation is C.
Stop-Vector is S.
Trace-Vector is T.

Return command-complete.

13.5.3 Diagrams

In these diagrams,
b stands for permitted-blanks.

Opening-Request

- b del � creation-request �

� change-request �

-

Creation-Request

- header-line -

Change-Request

- b subject-function b initial-request -

Initial-Request

- left-bracket �any �

� �

-

1 May 1997 at 23:52

214 APL Extended — DIS 8485(1997)

13.5. FUNCTION EDITING

General-Request

- b � �positioning-request �

� b �

� �

� function-line �

�

� � �

� �positioning-request �

� b �

�

� deletion-request �

� display-request �

�

� �

� end-definition �

-

Positioning-Request

- left-bracket b line-number right-bracket -

Deletion-Request

- left-bracket b delta b line-number right-bracket -

Display-Request

- left-bracket b quad b right-bracket -

Function-Line

- body-line -

End-Definition

- b del b -

Line-Number

- decimal-rational b -

Subject-Function

- simple-identifier -

Delta

- ¯ -

APL Extended — DIS 8485(1997) 215

1 May 1997 at 23:52

13. DEFINED FUNCTIONS

Left-Bracket

- [-

Right-Bracket

-] -

1 May 1997 at 23:52

216 APL Extended — DIS 8485(1997)

14

Shared Variables

14.1 Informal Introduction

This section gives an informal introduction to the Shared-Variable-Protocol. The
evaluation sequences which follow this introduction determine the required behaviour
of shared-variables exactly.

The Shared-Variable-Protocol is an optional-facility. The Shared-Variable-Protocol
is described in this document as an interface between cooperating sessions, but it may
also be used to provide an interface between a session and an auxiliary processor. An
auxiliary processor is a program, written in any programming language, that typically
provides access to facilities in the underlying operating system, such as file systems.

A shared-variable can be shared by precisely two partners, each either a session or an
auxiliary processor.

Conforming-programs that use the Shared-Variable-Protocol should document this fact,
since the Shared-Variable-Protocol is not a defined-facility of this standard.

Operations

There are conceptually four operations involved in the Shared-Variable-Protocol: offer,
retract, set, and reference.

Sharing

Offer is an operation provided to permit sessions to share shared-variables. A given
shared-variable can be shared between at most two sessions. Once a shared-variable has
been shared, assignments made to it in one session are visible in the other session.

In the evaluation sequences for the Shared-Variable-Protocol, sharing is accomplished
by appending tokens of class shared-variable to the shared-variable-list which can be

APL Extended — DIS 8485(1997) 217

1 May 1997 at 23:52

14. SHARED VARIABLES

accessed by all active-workspaces in the system.

Any Shared-Variable-Protocol operation may cause a session to be delayed while another
session changes a shared-variable or adds an item to the shared-variable-list.

Sharing begins when one session offers to share a symbol whose current-class is nil
or variable. The system adds a new shared-variable to the shared-variable-list and
returns the shared-variable to the offering session. The shared-variable then replaces the
current-referent of the offered symbol.

There are two forms of offers. A specific-offer identifies a particular session as the partner;
the general-offer does not.

Two offers match if both sessions use the same shared-name and:
At least one of the offers is a specific-offer.
Either specific-offer identifies the other session.

Consequently, two general-offers do not match.

Once both sessions have shared the shared-variable, the shared-variable is the current-
referent of a symbol in both active-workspaces, and a change made to the shared-variable
by one session will be visible to the other session.

Note that two sessions can share more than one shared-variable, that a given session can
share shared-variables with more that one other session, and that each shared-variable
can be shared by only two sessions.

Retracting

Two sessions, coupled by a shared-variable, decouple when either retracts the shared-
variable. This leaves the shared-variable in the same state it would have been had the
remaining session made a specific-offer to the session that retracted. If the remaining
session retracts, the shared-variable becomes inaccessible to the sessions.

Degree of Coupling

All symbols in the symbol-table of an active-workspace have a degree of coupling.
This is zero if the current-referent is not a shared-variable, one if the current-referent
is a shared-variable that is offered to another session, and two if current-referent is a
shared-variable shared with another session.

Naming

For any session, there are two identifiers associated with a given shared-variable. The first
is the name of the symbol whose current-referent is the shared-variable; the second is
the shared-name of the shared-variable. The shared-name is the name used in matching
offers to share.

Only the name of the symbol is required for invokingany of the Shared-Variable-Protocol

1 May 1997 at 23:52

218 APL Extended — DIS 8485(1997)

14.1. INFORMAL INTRODUCTION

system functions other than Shared Variable Offer.

Setting, Referencing, and Using

Each partner can set and reference the shared-variable.

A shared-variable is set when the operation shared-variable-assignment or shared-
variable-indexed-assignment is called. A shared-variable is referenced when the
operation shared-variable-reference is called. A shared-variable is used when it is either
set or referenced. Both indexed assignment and indexed reference of shared-variables
are possible.

Synchronisation

Synchronisationof sessions sharing a shared-variable is achieved by access control. With
each shared-variable is associated an access-control-vector, which is designated here as
the ACV. The ACV is a four element Boolean vector that is accessible to a session through
the Shared-Variable-Access-Control-Inquiry operation.

The order of the elements in the ACV is relative to the viewing session. When session A,
sharing a shared-variable with session B, views the ACV, its elements have the following
meanings:

– If ACV[1] is one, once A has set the shared-variable B must use it before A can set it
again.

– If ACV[2] is one, once B has set the shared-variable A must use it before B can set it
again.

– If ACV[3] is one, once A has used the shared-variable B must set it before A can
reference it again.

– If ACV[4] is one, once B has used the shared-variable A must set it before B can
reference it again.

If a session attempts to use a shared-variable when not permitted to by the above rules, it
is delayed until the partner has performed the required intermediate operation.

The rules can be summarised in a three-state state diagram. Let A be the session that made
the initial offer. Then the states are as follows:

– State 0: The shared-variable has been referenced by the partner of the session that
last set it.

– State 1: The shared-variable was last set by A and has not been referenced by B since
then.

– State 2: The shared-variable was last set by B and has not been referenced by A since
then.

APL Extended — DIS 8485(1997) 219

1 May 1997 at 23:52

14. SHARED VARIABLES

Action attempted: SET by A SET by B REF by A REF by B

Current state: 0 + + 3 4
1 1 + 3 +
2 + 2 + 4

Next state: 0 1 2 0 1 2 0 1 2 0 1 2

Figure 2: Shared Variable Access Rules.

State 0 is the state entered when the shared-variable is initially offered. Note that only
an explicit assignment is considered a set to the shared-variable. The act of transferring
the current-content of a symbol to the shared-value of a shared-variable when an offer
is made is not a set. The state is not affected by retraction and re-sharing. Figure 2
summarises the state transitions permitted. In the figure, the action is always permitted if
there is a + in the row corresponding to the input state. The column in which the + appears
determines the output state. A digit in the row indicates that the corresponding element in
the ACV as seen by A must be zero.

For example, if the state of a shared-variable is 0 and the ACV is 0 0 1 0, session A can
assign a new value to the variable (SET by A), but must wait until the variable is in state 2
to refer to it (REF by A).

Note that all digits lie along the diagonal in these matrices, indicating that only actions that
do not change the state can be blocked by the ACV. That is, the ACV can only prevent a
given session from referencing or setting a shared-variable twice in a row.

Other Rules

Retraction of all the shared-variables in a session takes place when a new workspace
is loaded, the active-workspace is cleared, or the session ends. A shared-variable is
automatically retracted when the shared-variable is erased, expunged, or replaced by
a)COPY command, or, if it is local, when the function to which it is local terminates
execution. The state of sharing is not saved in a library workspace.

The shared variable mechanism must appear to the user to be consistent with one in which
there exists a single copy of each shared-variable. Specifically, this means:

– When a shared-variable is initially offered, its value, if any, becomes the shared-value
of the shared-variable.

– When an offered shared-variable is matched, it retains its value if it has one. If it does
not have a value, it takes on the value (if any) in the matcher’s workspace.

– When a shared-variable is retracted, its value in the retractor’s workspace is the value
last set by either partner before the retraction.

Note that, since there is conceptually a single copy across a period of sharing, no use is

1 May 1997 at 23:52

220 APL Extended — DIS 8485(1997)

14.2. DEFINITIONS

implied in the above rules for making the value of a shared-variable available.

It must appear to the APL user that sessions communicating via shared-variables are
independently scheduled. Any synchronisation between the sessions must appear to be by
means of the delays caused by accessing shared-variables. The procedures used to describe
the Shared-Variable-Protocol are written as though synchronisation conflicts do not occur
when two sessions are accessing the shared-variable-list or the same shared-variable.

A limit-error may occur during the retraction of an active shared-variable if there is
not enough room in a workspace for the shared-value of the shared-variable. When the
expected system action is to ignore the variable (as in the case of)CLEAR or delocalisation),
a limit-error is not signalled.

14.2 Definitions

– Identifier-Pair-Array: A character array of rank two in which each row matches the
character-diagram identifier-pair-row.

14.3 Diagrams

In the following, b stands for blank.

Identifier-Pair-Row

- � �

� b �

simple-identifier � � �

� b �

�

� b identifier-row �

-

14.4 Operations

14.4.1 Primary-Name

Primary-Name in A: For A, a character vector that matches identifier-pair-row, the first
simple-identifier matched in identifier-pair-row.

14.4.2 Surrogate-Name

Surrogate-Name in A: For A, a character vector that matches identifier-pair-row, the
last simple-identifier matched in identifier-pair-row.

APL Extended — DIS 8485(1997) 221

1 May 1997 at 23:52

14. SHARED VARIABLES

14.4.3 Degree-of-Coupling

Degree-of-Coupling of N: For symbol N, a number defined as follows:
If the current-class of N is not shared-variable, zero.
Otherwise, using the current-referent of N, the sum of session-A-active and session-

B-active.

14.4.4 Access-Control-Vector

Access-Control-Vector of N: An operation that, for N a shared-variable, is defined as
follows:

Using N,
Let ACVA stand for session-A-ACV and ACVB stand for session-B-ACV.
If this-session is session-A, return ACVA£ACVB.
If this-session is session-B, return (ACVA£ACVB)[2 1 4 3].

14.4.5 Offer

Offer S to P with value V: An operation defined as follows:
Let X stand for the item in the shared-variable-list with the smallest index such that

shared-name is S.
session-A is this-session or, if P is not general-offer, general-offer.
session-A-active is zero.
session-B is P.
session-B-active is one.

or
shared-name is S.
session-A is P.
session-A-active is one.
session-B is this-session or, if P is not general-offer, general-offer.
session-B-active is zero.

If such a shared-variable exists,
If shared-value is nil, set shared-value to V.

If session-A-active is zero,
Set session-B-event to one.
Set session-A-active to one.
Set session-A to this-session.

If session-B-active is zero,
Set session-A-event to one.
Set session-B-active to one.
Set session-B to this-session.

Return X.
Otherwise, create a new shared-variable, Y, as follows:

shared-name is S.

1 May 1997 at 23:52

222 APL Extended — DIS 8485(1997)

14.4. OPERATIONS

session-A is this-session.
session-A-active is one.
session-A-ACV is 0 0 0 0.
session-B is P.
session-B-active is zero.
session-B-ACV is 0 0 0 0.
shared-value is V.
state is zero.
session-A-event is zero.
session-B-event is one.

Append Y to the shared-variable-list as a new last item.
Return Y.

14.4.6 Retract

Retract N: An operation that, for N a shared-variable, is defined as follows:
Using N,

If session-A is this-session, set session-A-active to zero.
If session-B is this-session, set session-B-active to zero.
Signal-event.
Clear-event.

14.4.7 Shared-Variable-Reset

Shared-Variable-Reset
For each item in the shared-variable-list,

If session-A is this-session, set session-A-active to zero.
If session-B is this-session, set session-B-active to zero.

For each symbol N of the symbol-table of the active-workspace,
For each token T in the referent-list of N,

If T is a shared-variable, set T to a token whose class is nil.

Note: In the model, a shared-variable is never reused. It is effectively discarded once session-A-
active and session-B-active are both zero.

14.4.8 Report-State

Report-State for N: An operation that, for N a shared-variable, is defined as follows:
Using N,

If state is zero, return 0 0 1 1.
Otherwise,

If state is one and session-A is this-session,
or if state is two and session-B is this-session,

APL Extended — DIS 8485(1997) 223

1 May 1997 at 23:52

14. SHARED VARIABLES

Return 1 0 1 0.
Otherwise return 0 1 0 1.

14.4.9 Signal-Event

Signal-Event for N: An operation that, for N a shared-variable, is defined as follows:
Using N,

If session-A is this-session, set session-B-event to one.
If session-B is this-session, set session-A-event to one.

14.4.10 Clear-Event

Clear-Event for N: An operation that, for N a shared-variable, is defined as follows:
Using N,

If session-A is this-session, set session-A-event to zero.
If session-B is this-session, set session-B-event to zero.

14.5 Shared Variable Forms

14.5.1 Shared Variable Reference

Z ¼ SHV

Informal Description: Return the value of a shared variable.

Evaluation Sequence:

Using the current-content of SHV,
Let ACV stand for access-control-vector.
Let ASV stand for report-state.
Set A to ACV¤ASV.
If A[2] or A[3] is one, signal-event.
Wait until at least one of the following is true:
ACV[3] is zero.
State is two and session-A is this-session.
State is one and session-B is this-session.

If either of the following is true, set State to zero:
State is two and session-A is this-session.
State is one and session-B is this-session.

Clear-event.
Return Shared-Value.

1 May 1997 at 23:52

224 APL Extended — DIS 8485(1997)

14.5. SHARED VARIABLE FORMS

Note: This operation is all that is requiredfor shared-variable-indexed-reference, since the phrase-
evaluator calls indexed reference with a value, not a name.

14.5.2 Shared Variable Assignment

Z ¼ SHV ¼ B

Informal Description: Z isB. As a side effect, the valueB is assigned to the shared variable
SHV.

Evaluation Sequence:

Using the current-content of SHV,
Let ACV stand for access-control-vector.
Let ASV stand for report-state.
Set A to ACV¤ASV.
If A[1] or A[4] is one, signal-event.
Wait until at least one of the following is true:
ACV[1] is zero.
State is not one and session-A is this-session.
State is not two and session-B is this-session.

Set shared-value to B.
If session-A is this-session, set state to one.
If session-B is this-session, set state to two.
Clear-event.
Return a token whose class is committed-value and whose content is B.

APL Extended — DIS 8485(1997) 225

1 May 1997 at 23:52

14. SHARED VARIABLES

14.5.3 Shared Variable Indexed Assignment

Z ¼ SHV[I] ¼ B

Informal Description: Z is B. As a side effect, elements of the array SHV selected by the
position and values of the arrays in the index-list I are replaced by elements of the array
B.

Evaluation Sequence:

Using the current-content of SHV,
Let ACV stand for access-control-vector.
Let ASV stand for report-state.
Set A to ACV¤ASV.
If A[1] or A[4] is one, signal-event.
Wait until at least one of the following is true:
ACV[1] is zero.
session-A is this-session and state is not one.
session-B is this-session and state is not two.

If the current-class of shared-value is nil, signal value-error.
Set C to shared-value.
Search the form-table for Z ¼V[I] ¼B.
Call the corresponding evaluation sequence, passing C as the value of V.
Set Z to the token it returns.
If Z is an exception, return Z.
Otherwise,

Set shared-value to C.
If session-A is this-session, set state to one.
If session-B is this-session, set state to two.
Clear-event.
Return Z.

Note: Indexed assignment of a shared variable constitutes a set, not a reference, of the shared-
variable.

14.6 Shared Variable System Functions

14.6.1 Shared Variable Access Control Inquiry

Z ¼ ²SVC B

Informal Description: Each row of Z is the access-control-vector of the shared variable
named by the corresponding row of B.

Evaluation Sequence:

1 May 1997 at 23:52

226 APL Extended — DIS 8485(1997)

14.6. SHARED VARIABLE SYSTEM FUNCTIONS

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB.
If any item of the ravel-list of B1 is not a character, signal domain-error.
Set Z to ((1õµB1),4)µ0.
For every I in °1õµB1, evaluated with index-origin set to one,

Let B2 stand for row I of B1.
If B2 matches identifier-row,

Set N to the simple-identifier in B2.
If the current-class of N is shared-variable,

Set row I of Z to access-control-vector of the current-referent of N.
Otherwise, signal domain-error.

Return ((¨1·µB),4)µZ.

APL Extended — DIS 8485(1997) 227

1 May 1997 at 23:52

14. SHARED VARIABLES

14.6.2 Shared Variable Query

Z ¼ ²SVQ B

Informal Description: Z is one of the following:
An array representing sessions offering to share variables with this session.
An array representing the names of shared variables offered to this session by another

session.

Evaluation Sequence:

If session-identification-type is character, and B is the general-offer,
Set Z to 0 0µ' '.
Using each item of the shared-variable-list,

If
session-A is this-session and
session-A-active is zero and
session-B-active is one,

Set S to session-B.
Set Z to ((µZ)¶0,µS),[1]((¨1õµZ)¶µS)õS, evaluated with index-

origin set to one.
If

session-A-active is one and
session-B is this-session and
session-B-active is zero,

Set S to session-B.
Set Z to ((µZ)¶0,µS),[1]((¨1õµZ)¶µS)õS, evaluated with index-

origin set to one.
Return Z.

If session-identification-type is numeric, and B is zero, signal domain-error.
If session-identification-type is numeric, and B is °0,

Set Z to °0.
Using each item of the shared-variable-list,

If all of the following are true,
session-A is this-session.
session-A-active is zero.
session-B-active is one.

append session-B as a new last element to the vector Z.
If all of the following are true,

session-A-active is one.
session-B is this-session.
session-B-active is zero.

append session-A as a new last element to the vector Z.
Return ((Z°Z)=°µZ)/Z.

Otherwise,
If B is not a session-identification, signal domain-error.
If B is this-session, signal domain-error.

1 May 1997 at 23:52

228 APL Extended — DIS 8485(1997)

14.6. SHARED VARIABLE SYSTEM FUNCTIONS

Set Z to the empty character array of rank two.
Using each item of the shared-variable-list,

If all of the following are true,
session-A is this-session.
session-A-active is zero.
session-B is B.
session-B-active is one.

append shared-name as a new last row to the identifier-array Z.
If all of the following are true,

session-A is B.
session-A-active is one.
session-B is this-session.
session-B-active is zero.

append shared-name as a new last row to the identifier-array Z.
Return Z.

14.6.3 Shared Variable Degree of Coupling

Z ¼ ²SVO B

Informal Description: Z is a numeric vector in which each element is the degree of
coupling of the symbol named by the corresponding row of B.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB.
If any item of the ravel-list of B1 is not a character, signal domain-error.
Set Z to (1õµB1)µ0.
For every I in °1õµB1,

Let B2 stand for row I of B1.
If B2 matches identifier-row,

Set N to the primary-name in B2.
Set item I of the ravel-list of Z to degree-of-coupling of the symbol-named-by
N.

Otherwise, signal domain-error.
Return Z.

Note: Degree-of-coupling is a property of symbols, not shared-variables.

APL Extended — DIS 8485(1997) 229

1 May 1997 at 23:52

14. SHARED VARIABLES

14.6.4 Shared Variable Offer

Z ¼ A ²SVO B

Informal Description: Z is a numeric vector representing the degree-of-coupling of the
identifiers in the rows of the identifier-pair-array B after the operation. As a side
effect, dyadic ²SVO shares variables with another session. B is an identifier-pair-
array representing the names of variables to be shared. A is a session-identification,
representing the session with which the names in B are to be shared.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
If any item of the ravel-list of B is not a character, signal domain-error.
If A is not a valid session-identification, signal domain-error.
If this-session is A, signal domain-error.
Set B1 to (¨2õ1 1,µB)µB.
For every I in °1õµB1,

Let B2 stand for row I of B1.
If B2 does not match identifier-pair-row, signal domain-error.
Otherwise,

Set N to the primary-name in B2.
Set S to the surrogate-name in B2.
If the current-class of N is neither shared-variable, variable nor nil, signal

domain-error.
If the current-class of N is variable or nil,

Set V to the current-referent of N.
Set Y to offer S to A with value V.
Set the current-referent of N to Y.

Return ²SVO B.

Note: This operation does not allow for multiple session-identifications.

1 May 1997 at 23:52

230 APL Extended — DIS 8485(1997)

14.6. SHARED VARIABLE SYSTEM FUNCTIONS

14.6.5 Shared Variable Retraction

Z ¼ ²SVR B

Informal Description: Elements of Z hold the degree of coupling that the identifier
represented in the corresponding row of the identifier-array B had, before this retraction.
As a side effect, ²SVR retracts any shared-variables named in B.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB.
Set Z to ²SVO B1.
If Z is an error, return Z.
For every I in °1õµB1,

Let B2 stand for row I of B1.
If B2 matches identifier-row,

Set N to the simple-identifier in B2.
If the current-class of N is shared-variable,

Set SV to the current-referent of N.
Set the current-referent of N to shared-value of SV.
Retract SV.

Otherwise, signal domain-error.
Return Z.

APL Extended — DIS 8485(1997) 231

1 May 1997 at 23:52

14. SHARED VARIABLES

14.6.6 Shared Variable Access Control Set

Z ¼ A ²SVC B

Informal Description: Z is the access-control-vector of each of the shared variables
represented by the identifier-array B when ²SVC completes. As a side effect, ²SVC
sets to A the contribution this session makes to the combined access control vector of the
shared variables.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB.
If the rank of A is greater-than two, signal rank-error.
If the first item of (¨1õ4,µA) is not four, signal length-error.
If A is a scalar or a vector, set A1 to ((1õµB1),4)µA.
Otherwise, set A1 to A.
If 1õµA1 is not the same as 1õµB1, signal length-error.
If any item of the ravel-list of B1 is not a character, signal domain-error.
If any item of the ravel-list of A1 is not a near-Boolean, signal domain-error.
Set A2 to the Boolean-array-nearest-to A1.
For every I in °1õµB1,

Let B2 stand for row I of B1.
If B2 matches identifier-row,

Set N to the simple-identifier in B2.
If the current-class of N is shared-variable,

Let ACV stand for row I of A2.
Using the current-content of N,

If session-A is this-session, set session-A-ACV to ACV.
If session-B is this-session, set session-B-ACV to ACV[2 1 4 3].
Signal-event.

Otherwise, signal domain-error.
Return ²SVC B.

1 May 1997 at 23:52

232 APL Extended — DIS 8485(1997)

14.6. SHARED VARIABLE SYSTEM FUNCTIONS

14.6.7 Shared Variable State Inquiry

Z ¼ ²SVS B

Informal Description: Each row of Z is a boolean 4-element representation of the state
of the shared variable named by the corresponding row of B, as seen by this-session.
It may be combined with the access-state-vector to show which accesses are currently
possible for the shared-variable.

Evaluation Sequence:

If the rank of B is greater-than two, signal rank-error.
Set B1 to (¨2õ1 1,µB)µB.
If any item of the ravel-list of B1 is not a character, signal domain-error.
Set Z to ((1õµB1),4)µ0.
For every I in °1õµB1, evaluated with index-origin set to one,

Let B2 stand for row I of B1.
If B2 matches identifier-row,

Set N to the simple-identifier in B2.
If the current-class of N is shared-variable,

Set row I of Z to report-state of the current-referent of N.
Otherwise, signal domain-error.

Return ((¨1·µB),4)µZ.

APL Extended — DIS 8485(1997) 233

1 May 1997 at 23:52

14. SHARED VARIABLES

14.6.8 Shared Variable Event

²SVE ¼ B

Z ¼ ²SVE

Informal Description: Assignment to the system variable starts a timer. The specified
number of seconds is the maximum time the program will wait for a shared-variable-
event.

Reference to the system variable suspends program execution until a shared-variable-
event occurs, or until maximum time has elapsed. Then Z is the remaining time in the
timer, and all outstanding shared-variable-events are cleared.

A shared-variable-event occurs whenever a new offer to share a variable occurs, or
whenever certain operations are performed on a shared variable by the partner (see the
various Evaluation Sequences in this chapter).

Evaluation Sequence:

For form ²SVE ¼ B
Set T0 to current-time in seconds.
If B is not a scalar, signal rank-error.
If any item of the ravel-list of B is not a nonnegative-number, signal domain-

error.
Set event-time to T0 plus B.

For form Z ¼ ²SVE
Wait until at least one of the following is true:

current-time is not less-than event-time.
For any item N in the shared-variable-list,

Using N,
If session-A is this-session, session-A-event is one.
If session-B is this-session, session-B-event is one.

Return event-time minus current-time.
For each item N in the shared-variable-list, clear-event for N.

1 May 1997 at 23:52

234 APL Extended — DIS 8485(1997)

15

Formatting and Numeric Conversion

15.1 Introduction

The mapping of arrays of numbers into arrays of characters is referred to as formatting.

Note: The form, field width, and number of digits in a formatted number can be specified explicitly
through the use of dyadic format, or left to be chosen by the system. Conforming-programs that
depend upon a particular selection of formatting parameters should employ dyadic format.

15.2 Numeric Conversion

Note: Conversion involves the transformation of lists of characters to and from numbers.
This conversion is performed by the implementation-algorithms numeric-input-conversion and
numeric-output-conversion.

The accuracy and roundingproperties of numeric-input-conversion and numeric-output-
conversion are interdependent. The most significant property of these implementation-
algorithms is the following:

For any numeric scalar X, when print-precision is set to full-print-precision, X shall
be the same as ßàX.

15.2.1 Numeric-Input-Conversion

Numeric-Input-Conversion of C.

Informal Description: Numeric input conversion converts numeric values represented in
decimal notation as lists of characters into equivalent numbers—numeric quantities
whose format is implementation-defined.

APL Extended — DIS 8485(1997) 235

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

In the following, C stands for a real-number, or the real-part or imaginary-part of a
complex-number.

Evaluation Sequence:

Let L and G be respectively the most negative and the most positive abstract numeric
values represented by all numeric-scalar-literals producible by numeric-output-
conversion for all numbers and all valid values of print-precision.

Let T be the set of all lists of characters that match the diagram numeric-scalar-
literal and have abstract numeric values lying in the closed interval between L and
G.

If C is not an element of T, signal limit-error.
Otherwise,

Let c stand for the abstract numeric value of C.
If c is the same as some number N, return N.
If c is greater than positive-number-limit, return positive-number-limit.
If c is less-than negative-number-limit, return negative-number-limit.
Otherwise, c lies between two numbers. Return one that permits numeric-input-

conversion to satisfy the following property:
For any two numeric-scalar-literals C1 and C2, if the abstract numeric value

of C1 is less than the abstract numeric value of C2, then numeric-input-
conversion of C1 is not greater-than numeric-input-conversion of C2.

Examples:

1-1.000000000000000000000000000000000001
0

1-0.999999999999999999999999999999999999
0

0.00000000000000000001E20
1

0E999
0

1E¨9999 = 0
1

2.5E4-25000
0

Note: In many programming languages, the syntactic form of a literal is used to determine the
datatype of the corresponding number. This is not so in APL. Therefore, it is important that the input
conversion routine not make distinctions between different forms of the same abstract numeric value.
2.5E4 should produce the same number as 25000 does and 002 should produce the same number
as 2 does.

Every number can be obtained by converting some numeric-scalar-literal.

The set T in the evaluation sequence above may include numbers with real-part or imaginary-part
having abstract numeric values less than negative-number-limit or greater than positive-number-
limit, due to rounding by numeric-output-conversion.

1 May 1997 at 23:52

236 APL Extended — DIS 8485(1997)

15.2. NUMERIC CONVERSION

There is no number N for which the expression ßàN signals a limit-error.

15.2.2 Numeric-Output-Conversion

E Numeric-Output-Conversion of N.

E Numeric-Output-Conversion of N to P places.

Informal Description: Numeric output conversion converts numeric values represented
as numbers—numeric quantities whose format is implementation-defined—into the
same numeric quantities represented in decimal notation as lists of characters.

For E a character-diagram, and N and P numbers, numeric output conversion returns a
numeric-scalar-literal that matches E and represents the abstract numeric value of the
real-part of N either to P decimal places, if P is specified, or else to print-precision
places.

Note: Any imaginary-part of the numeric input to Numeric-Output-Conversion is simply ignored;
only the real-part of a complex-number is used.

Evaluation Sequence:

If E is minimal-decimal-exponential,
Return a list of characters whose abstract numeric value is a good approximation

of N.

Note: The choice of approximation is implementation-defined, but can be characterised as
follows:

Let DS be the set whose members D are lists of characters that match minimal-decimal-
exponential and have at most print-precision digits to the left of the exponent-marker.

Let DT be the subset of DS for which |N-ßD is minimal.
Let DM be the subset of DT whose members have the fewest digits.
Choose the member of DM whose abstract numeric value has the largest magnitude.

If E is fixed-decimal,
Let DF be the set whose members are lists of characters that match fixed-decimal

and have P digits to the right of the units digit.
Return a member D of DF for which |N-ßD is minimal.

If E is decimal-exponential,
Let DE be the set whose members are lists of characters that match diagram

decimal-exponential and have P digits to the left of the exponent-marker.
Select a member D of DE for which |N-ßD is minimal.
Let W stand for exponent-field-width.
Return (W+D°'E')õD.

Note: When P is not specified,E is always minimal-decimal-exponential.

Fixed-decimal and decimal-exponential cases are used only by dyadic format. They are permitted,
but not required, to return results of arbitrarily high precision. They should, however, return accurate

APL Extended — DIS 8485(1997) 237

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

results if no more than full-print-precision significant digits are requested.

15.3 Diagrams

Note: The following character-diagrams characterise the outputs of both monadic and dyadic
format as subsets of the set of lists of characters that match numeric-scalar-literal.

Zero-Digit

- �

0

� -

Nonzero-Digit

- �

1

�

�

2

�

�

3

�

�

4

�

�

5

�

�

6

�

�

7

�

�

8

�

�

9

� -

Sign

- � �

� overbar �

-

Decimal-Integer

- � zero-digit �

� sign nonzero-digit � �

� digit �

�

-

Examples:

¨44 0 622 1066 1215 1415 1685 1750 1776 1812 1867 1944

In the following diagrams,

– b stands for blank.

– d stands for digit.

1 May 1997 at 23:52

238 APL Extended — DIS 8485(1997)

15.3. DIAGRAMS

– e stands for exponent-marker.

– i stands for decimal-integer.

– m stands for overbar.

– n stands for nonzero-digit.

– p stands for dot.

– s stands for sign.

– z stands for zero-digit.

Decimal-Rational

- � i � �

� p � �

� d �

n �

�

� m z p � �

� d �

n �

-

Examples:

98.6 212 ¨2.001 ¨0.00000000001

Decimal-Rational-Row

- �� �

� b �

decimal-rational � �

� b �

�

� �

-

Minimal-Decimal-Exponential

- � z e z �

� s � �

� n p � �

� d �

�

n e i �

-

Examples:

¨1.234567E¨890 1E1 ¨1.1111E1 1E¨11111 0E0

APL Extended — DIS 8485(1997) 239

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

Decimal-Exponential

- �s n � �

� p �d �

� �

�

e i �

� z � �

� p � z �

� �

�

e z �

-

Examples:

¨1.23456700000E¨890 0.00000000E0 ¨1.0000E¨10

Decimal-Exponential-Row

- �� �

� b �

decimal-exponential � �

� b �

�

� b �

-

Fixed-Decimal

- � i �

� z p � z �

� �

�

� s n � �

� d �

p �d �

� �

�

� s z p � �

� d �

n � �

� d �

�

-

Examples:

0 ¨1 12 0.00000000 12.30 0.1235 ¨0.1235 0.1 ¨0.00010000

15.4 Operations

15.4.1 Monadic Format

Z ¼ à B

1 May 1997 at 23:52

240 APL Extended — DIS 8485(1997)

15.4. OPERATIONS

Informal Description: Z is a character array. If B is a character array, then Z is B. If B is
a numeric array, then Z is a character array arranged so that each row of Z is a decimal
representation of the corresponding row of B. The output form chosen for a column of
B is determined by print-precision and the values of elements in that column. Uses
print-precision

Evaluation Sequence:

If print-precision is nil, signal implicit-error.
If the type of B is character, return B.
If B is empty, return an array Z0 such that the type of Z0 is character, the shape-list

of Z0 is the shape-list of B, and the ravel-list of Z0 is the empty-list.
If the rank of B is less-than two,
return ,à(¨2õ1 1,µB)µB.
If the last item of the shape-list of B is not one,
return (à((¨1·µB),1)õB),' ',à((-µµB)õ1)·B.
Otherwise, choose U, E, and W, and return an array Z for which the type of Z is

character, the shape-list of Z is (¨1·µB),W, and one of the following statements
is true:
Every row of Z is the decimal-exponential-row equivalent of the minimal-

decimal-exponential numeric-output-conversion of the corresponding row of
B, and has its exponent-marker at position E and its first digit at position U.

Every row of Z is the decimal-rational-row equivalent of the minimal-decimal-
exponential numeric-output-conversion of the corresponding row of B, and has
its units digit at position U.

Every row of Z is formatted independently for each element B1 of B. The results
are padded with blanks to width W.

If B1 is a character, use B1.
If B1 is a number, and the imaginary-part of B1 is 0, use (àB1).
If B1 is a number, and the imaginary-part of B1 is not 0, then

Let B2 be the real-part of B1.
Let B3 be the imaginary-part of B1.
Let CI be the character representation of the Complex-Marker.
Use ((àB2), CI, àB3).

Note: This form of output must match the diagram numeric-scalar-literal.

Note: The quantities W, U and E and the choice of formatting form are not standardised here,
since this is currently impractical. However, the following algorithm is recommendedfor all future
implementations of APL:

If any of the following conditions holds for any element X of B
X is greater-than positive-counting-number-limit.
X is less-than negative-counting-number-limit.
The decimal-rational equivalent of the minimal-decimal-exponential numeric-output-

conversion of X would have more than print-precision significant digits to the left of the
decimal point.

The decimal-rational equivalent of the minimal-decimal-exponential numeric-output-
conversion of X would have more than five zero digits to the right of the decimal point and
to the left of the first nonzero digit.

APL Extended — DIS 8485(1997) 241

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

then select decimal-exponential form.
Otherwise, select decimal-rational form.
If decimal-exponential form is selected,

Let S be one if any element of B is a negative-number.
Let M be the maximum number of characters to the left of the exponent-marker in the

minimal-decimal-exponential numeric-output-conversion of any element of B.
Let N be the maximum number of characters to the right of the exponent-marker in the

minimal-decimal-exponential numeric-output-conversion of any element of B.
Set U to S+1.
Set E to M+1.
Set W to M+1+N.

If decimal-rational form is selected,
Let M be the maximum number of characters to the left of the units position in the decimal-

rational equivalent of the minimal-decimal-exponential numeric-output-conversion of
any number in B.

Let N be the maximum number of characters to the right of the units position in the decimal-
rational equivalent of the minimal-decimal-exponential numeric-output-conversion of
any number in B.

Set U to M+1.
Set W to M+1+N.

Note: There is no uniformity in the display of an array containing mixed types, nor in the display
of a column containing complex numbers. Suggested methods for displaying these are as follows:

For an array containing mixed types, format each simple array, and provide enough space in
each column to contain the widest element.

For a column containing at least one complex number, right-justify each number in the column,
making no attempt to align other numeric elements.

Examples:

²PP¼10
'|',(à5 ¨6 7 8 9 10±.¦°5),'|'

| 5 2.5 1.666666667 1.25 1 |
|¨6 ¨3 ¨2 ¨1.5 ¨1.2 |
| 7 3.5 2.333333333 1.75 1.4 |
| 8 4 2.666666667 2 1.6 |
| 9 4.5 3 2.25 1.8 |
|10 5 3.333333333 2.5 2 |

1 May 1997 at 23:52

242 APL Extended — DIS 8485(1997)

15.4. OPERATIONS

D¼0.7 0.8 0.9, 7 8 9¦10
àD

0.7 0.8 0.9 0.7 0.8 0.9
D-ßàD

0 0 0 0 ¨1.387778781E¨17 0
²PP¼999
àD

0.7 0.8 0.9 0.7 0.79999999999999999 0.9
D-ßàD

0 0 0 0 0 0
²PP¼4
M¼0.78901§(10*°6)±.§1 1E¨10 1E¨6 0.01 0.1
àM

7.89E0 7.89E¨10 0.00000789 0.0789 7.89E¨1
7.89E1 7.89E¨9 0.0000789 0.789 7.89E0
7.89E2 7.89E¨8 0.000789 7.89 7.89E1
7.89E3 7.89E¨7 0.00789 78.9 7.89E2
7.89E4 7.89E¨6 0.0789 789 7.89E3
7.89E5 7.89E¨5 0.789 7890 7.89E4

à5µM
7.89 7.89E¨10 0.00000789 0.0789 0.789

à1 5µM
7.89 7.89E¨10 0.00000789 0.0789 0.789

Note: When print-precision has a value in its internal-value-set greater than or equal to full-
print-precision, the result produced for N is unique and is unaffected by increases in the value of
print-precision. At such settings of print-precision, N is the same as ßàN for any numeric scalar
N.

APL Extended — DIS 8485(1997) 243

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

15.4.2 Dyadic Format

Z ¼ A à B

Informal Description: Z is a character array representing the numbers in B formatted
according to the specifications in A. A consists of pairs of integers. One pair is associated
with each column of B. The first integer in the pair specifies the field width—the number
of columns in the character result—for the formatted numeric values.

If A has only two elements then all elements of B are formatted according to A.

Note: For complex elements ofB, the precision specifier applies to each part of the representation.

A non-negative second integer indicates that the field is to have fixed-decimal form and
gives the number of digits to the right of the decimal point, with zero indicating no
decimal places and no decimal point. A negative second integer indicates that the field
is to have decimal exponential form; the absolute value specifies the number of digits in
the mantissa.

Evaluation Sequence:

If the rank of A is greater-than one, signal rank-error.
If µ,A is not 2§¨1õ1,µB

If µA is two, return ((2§¨1õµB)µA)àB.
Otherwise, signal length-error.

If any item of the ravel-list of A is not a near-integer, signal domain-error.
If any item of the ravel-list of B is not a real-number, signal domain-error.
Set A1 to the integer-array-nearest-to A.
If B is empty,

Set W to +/((µA1)µ1 0)/A1.
Return ((¨1·µB),W)µ' '.

If µA1 is not two, return ((2õA1)à((¨1·µB),1)õB),(2·A1)à((-
µµB)õ1)·B.

If B is not a scalar,
If A1[1] is not a positive-integer, signal domain-error.
Return a character array Z such that the shape-list of Z is (¨1·µB),A1[1] and

the ravel-list of Z has the property that each vector-item along-axis µµZ of Z is
A1 àB0, where B0 is the corresponding (scalar) item of (¨1·µB)µB.

If B is a scalar,
If A1[2] is not less-than zero, set R to the
fixed-decimal numeric-output-conversion of B to A1[2] places.
Otherwise, set R to the decimal-exponential numeric-output-conversion of B to
|A1[2] places.

If A1[1] is less-than µR, signal domain-error.
Otherwise, return (-A1[1])õR.

1 May 1997 at 23:52

244 APL Extended — DIS 8485(1997)

15.4. OPERATIONS

Examples:

– In the following examples, exponent-field-width is 3.

D ¼ ¨1 ¨0.1 0 0.1 1 ±.§ 5µ0.5
'|',(9 ¨3 7 ¨1 6 3 5 1 3 0 à D),'|'

| ¨5.00E¨1 ¨5E¨1 ¨0.500 ¨0.5 ¨1 |
| ¨5.00E¨2 ¨5E¨2 ¨0.050 ¨0.1 0 |
| 0.00E0 0E0 0.000 0.0 0 |
| 5.00E¨2 5E¨2 0.050 0.1 0 |
| 5.00E¨1 5E¨1 0.500 0.5 1 |

µ 1 0 2 0 4 0 8 0à0 4µ1
0 15

31 0 à 2*100
1267650600228229401496703205376

31 20 à .07
0.07000000000000000666

4 1 à ¨.99 ¨.89 0 7.5 11.5
¨1.0¨0.9 0.0 7.511.5

Note: Like other axis lengths, the field width A[1] is limited only by index-limit.

APL Extended — DIS 8485(1997) 245

1 May 1997 at 23:52

15. FORMATTING AND NUMERIC CONVERSION

1 May 1997 at 23:52

246 APL Extended — DIS 8485(1997)

16

Input and Output

16.1 Introduction

Note: A user interacts with an APL system through a session, an abstraction that represents a
hypothetical machine capable of carrying out the evaluation sequences in this standard.

The protocol for the use of a session takes the form of a dialogue: the user makes an entry and passes
control to the APL system. The system processes the entry, produces a response, and returns control
to the user.

The user makes entries on a keyboard, and obtains responses by seeing them presented on a display-
device. The combination of a keyboard and a display-device is intended to represent, abstractly, a
terminal. This standard does not require the use of any particular terminal, keyboard, display or
method of encoding characters. The ISO 2022.2 APL character encoding reproduced in Annex A is
widely used.

The display-device is considereda window into an unboundedsequenceof past entries and responses.
The mapping between this unbounded sequence and the display-device is not specified by this
standard.

The system obtains entries as tokens of class constant or interrupt by calling the session operation
read-keyboard. It presents responses by calling the session operation display with a token of class
result. The transformations from entry to token and from token to response are not specified by this
standard, but certain desirable characteristics of these transformations are given as comments.

Because the dialogue protocol described here alternates between user and system, the session is
always in one of two logical keyboard-states, open-keyboard or locked-keyboard, depending
upon whether the user is making an entry or the system is producing a response. The user can request
a change in keyboard-state from locked-keyboard to open-keyboardby using the signal-attention
facility. In addition, the user can force a change in keyboard-state by signalling interrupt.

APL Extended — DIS 8485(1997) 247

1 May 1997 at 23:52

16. INPUT AND OUTPUT

16.2 Definitions

16.2.1 User Facilities

A user should have the following facilities.

– Edit-Actions: A collection of implementation-defined facilities that permit the user to
make entries.

Note: Typical edit-actions include inserting, deleting, replacing and superimposinggraphic symbols
within the current entry and combining display-lines from the presentation-space with the current
entry.

– Enter: A facility, available to the user when the terminal is in open-keyboard state, for
changing the keyboard-state to locked-keyboard and returning to the caller of read-
keyboard either an interrupt or a character vector. Enter sets the value of the session
attribute attention-flag to zero.

– Signal-Attention: A facility, available to the user when the terminal is in locked-
keyboard state, for setting the value of the session attribute attention-flag to one.

– Signal-Interrupt: A facility, available to the user at all times, for interrupting any
evaluation sequence, causing it to return an interrupt token to the current caller of
evaluate-line. Any atomic operation so interrupted has no effect on the state of the
active-workspace.

Note: Signal-interrupt can be issued in open-keyboard state and in locked-keyboard state,although
the particular means of invoking the operation may be different for the two states. Transmitting the
superimposition of the graphics for O U and T is a typical means of signalling interrupt in open-
keyboard state.

16.2.2 Implementation Algorithms

– Read-Keyboard: An operation, available to the system when the session is in locked-
keyboard state, that returns either an interrupt token or a token of class constant and
content a character vector.

Note: Read-keyboard should display current-prompt, then change the keyboard-state to open-
keyboard to permit the user to use edit-actions to enter a list of characters or to signal an interrupt.

A concept long honoured in APL is that of visual fidelity: the graphic symbols that appear on the
display as the result of edit-actions should correspond exactly to those returned to the system as the
result of read-keyboard.

– Presentation Space: an unbounded sequence of past entries and responses.

– Display T: An operation, available when the session is in locked-keyboard state, for
presenting the token T on the display-device. T is either a value or an error.

1 May 1997 at 23:52

248 APL Extended — DIS 8485(1997)

16.2. DEFINITIONS

Note: The following is a suggested, but not required, evaluation sequence for display T:
If quote-quad-prompt is not the empty character vector,

Append to the presentation-space as a new last item a display-line whose graphic symbols
represent the characters in quote-quad-prompt.

Set quote-quad-prompt to the empty character vector.
If T is an error, append to the presentation-space as a new last item an indication of

The class of the error.
The point in current-line at which evaluation was stopped.
If the mode is defined-function, the function-name and current-line-number of the current-
context.

If T is a value,
Let A stand for the content of T.
If A is numeric, display àA.
Otherwise,
If A is a scalar or vector, append to the presentation-space as a new last item a display-line
whose graphic symbols represent the characters in A.

Otherwise,
Set I to zero.
Set M to ((§/¨1·µA),¨1õµA)µA.
Repeat the following 1õµM times:

Set I to I+1.
Display row I of M.
Append (¨1+µµA)|+/¤\0=ì(¨1·µA)³I blank display-lines to the end of the

presentation-space.
(End of repeated block)

16.2.3 Prompts

Note: The following implementation-defined arrays are used to indicate to the user the type of
entry required.

– Indent-Prompt: An implementation-defined character array, typically a vector of
six blanks.

– Quad-Prompt: An implementation-defined character array, whose first row typically
begins with ²: and whose second row is the indent-prompt.

– Function-Definition-Prompt: An implementation-defined character array, typically
a vector beginning with [nn] where nn is a line-number.

APL Extended — DIS 8485(1997) 249

1 May 1997 at 23:52

16. INPUT AND OUTPUT

16.3 Diagrams

System-Command-Line

- right-parenthesis � �

� any �

-

Function-Definition-Line

- del � �

� any �

-

16.4 Operations

16.4.1 Immediate-Execution

Immediate-Execution with X.

Informal Description: Immediate-execution mode is the primal mode, the first evaluation
sequence processed by the system to enter into a dialogue with a user. X is either an
error token or nil.

The system also calls immediate-execution when an error or the attention-flag causes
a defined function to be suspended. In this case, immediate-execution displays a status
indication before prompting for input.

Evaluation Sequence:

Display X.
Repeat:

Set current-prompt to indent-prompt.
Set E to read-keyboard.
If E is a constant,

Let Q stand for the content of E.
If Q matches system-command-line, set T to evaluate-system-command Q.
If Q matches function-definition-line, set T to evaluate-function-definition-

request Q.
Otherwise,

Generate a new context in which
mode is immediate-execution,
current-line is Q,
current-function is 0 0µ' ',
current-line-number is one,

1 May 1997 at 23:52

250 APL Extended — DIS 8485(1997)

16.4. OPERATIONS

current-statement is the empty list of tokens, and
stack is the empty list of tokens.

Append the new context to the state-indicator of the active-workspace as a
new first item.

Set T to evaluate-line.
Remove the first-item in the state-indicator of the active-workspace.

If T is a branch, a clear-state-indicator, or an escape and the state-indicator
of the active-workspace is not an empty-list, return T.

If T is an error or a constant, display T.
(End of repeated block)

APL Extended — DIS 8485(1997) 251

1 May 1997 at 23:52

16. INPUT AND OUTPUT

16.4.2 Quad Input

Z ¼ ²

Informal Description: Z is an array provided by the user in response to a prompt.

Evaluation Sequence:

Repeat:
Set current-prompt to quad-prompt.
Set E to read-keyboard.
If E is an interrupt, return E.
Let Q stand for the content of E.
If some element of Q is not blank,

Generate a new context in which
mode is quad-input,
current-line is Q,
current-function is 0 0µ' ',
current-line-number is one,
current-statement is the empty list of tokens, and
stack is the empty list of tokens.

Append the new context to the state-indicator of the active-workspace as a
new first item.

Set Z to evaluate-line.
Remove the first-item in the state-indicator.
If Z is escape, signal unwind.
If Z is unwind or clear-state-indicator, return Z.
If Z is a value, return a token with class constant and content that of Z.
If Z is an error, display Z.
Otherwise, display value-error. (see note)

(End of repeated block)

Note: The display value-error line in the above evaluation sequence is introduced to permit certain
consistent-extensions. In the evaluation sequence, errors are displayed rather than signalled, since
signalling would terminate the Repeat loop and force Return.

Quad-input returns only tokens of class escape and unwind (from ¾), clear-state-indicator (from
)SIC), constant (from 2*.5) and interrupt. It reports an error and reprompts for all other results.
Note that it reprompts without an error report if the input was empty or all blank.

1 May 1997 at 23:52

252 APL Extended — DIS 8485(1997)

16.4. OPERATIONS

16.4.3 Quote Quad Input

Z ¼ ä

Informal Description: Z is a character vector. Input in response to ä is treated as a
character value. Z is a vector whose length is the number of positions from the left
margin up to the rightmost character of the input, including explicitly entered trailing
blanks.

Evaluation Sequence:

Set current-prompt to quote-quad-prompt.
Set quote-quad-prompt to the empty character vector.
Set E to read-keyboard.
Return E.

Note: The behaviour required here differs from that of some existing systems, in which a single
character response to ä is returned as a scalar.

16.4.4 Quad Output

Z ¼ ² ¼ B

Informal Description: Z is B. As a side effect, the array B is displayed on the terminal.

Evaluation Sequence:

Display B.
Return a committed-value with content B.

APL Extended — DIS 8485(1997) 253

1 May 1997 at 23:52

16. INPUT AND OUTPUT

16.4.5 Quote Quad Output

Z ¼ ä ¼ B

Informal Description: Z is B, and quote-quad-prompt is set to B.

Evaluation Sequence:

If any item of the ravel-list of B is not a character, signal domain-error.
If the rank of B is greater-than one, signal rank-error.
If the count of B is greater-than quote-quad-output-limit, signal limit-error.
If quote-quad-prompt is not empty, signal limit-error.
Set quote-quad-prompt to B.
Return a committed-value with content B.

Example:

®Z¼PROMPT X
[1] ä¼X¼,àX
[2] Z¼(µX)·ä
®

PROMPT '1 CLEANSPACE DATE? '
1 CLEANSPACE DATE? 1966-11-27
1966-11-27

Note: Quote-quad output is difficult to standardisebecause it is implemented in severaldifferent ways
in existing systems, and, in each system, is heavily used. There is, however, sufficient commonality to
permit the inclusion of this restricted form of quote-quad output. Quote-quad output on a conforming-
implementation should support the prompt function shown in the example.

1 May 1997 at 23:52

254 APL Extended — DIS 8485(1997)

17

System Commands

17.1 Introduction

Note: Any line of input in immediate-execution whose first non-blank character is a right
parenthesis is considered to be a system command.

17.2 Definitions

– Global-Referent of T: For T a classified-name, the last-item in the referent-list of the
symbol-named-by T.

– Global-Context The last context in the state-indicator of the active-workspace.

– Library-Workspace-Named A: For workspace-identifier A, the item of the library
whose owner is this-owner, and whose workspace-name is A.

– Already-Exists: A workspace already-exists if its existential-property is present.

– Does-Not-Exist: A workspace does-not-exist if its existential-property is absent.

Note: The model of libraries used in this standard assumes that a workspace object exists in
the library for all possible workspace-identifiers. Workspaces that have been dropped or that
have never been saved are distinguished from those that have been saved by the setting of their
existential-property: the existential-property of saved workspaces is present, while that of
unsaved workspaces is absent.

– Attempt-to-Erase A: For A, a simple-identifier, an operation defined as follows:
If A is globally-erasable,

If the current-class of A is shared-variable, retract A.
Set A to nil.

APL Extended — DIS 8485(1997) 255

1 May 1997 at 23:52

17. SYSTEM COMMANDS

Return command-complete.
Otherwise, signal not-erased.

Copy A from W: For simple-identifier A, and workspace-identifier W, an operation
defined as follows:
Let GA stand for the global-referent of A in the active-workspace.
Let GB stand for the global-referent of A in the library-workspace-named W.
Set Z to attempt-to-erase GA.
If Z is an exception, signal not-copied.
If GB is a shared-variable, set GA to the shared-value of GB.
Otherwise, set GA to GB.
Return command-complete.

17.3 Diagrams

Workspace-Identifier

- alphabetic � �

� alphabetic �

� digit �

-

Example:

CLEANSPACE

Alphabetic

- �

A

�

�

B

�

�

C

�

�

D

�

�

E

�

�

F

�

�

G

�

�

H

�

�

I

�

�

J

�

�

K

�

�

L

�

�

M

�

�

N

�

�

O

�

�

P

�

�

Q

�

�

R

�

�

S

�

�

T

�

�

U

�

�

V

�

�

W

�

�

X

�

�

Y

�

�

Z

�

�

�

-

17.4 Operations

17.4.1 Evaluate-System-Command

Evaluate-System-Command Q.

Note: The forms of system commands are not regular enough to permit much generalisation.
Therefore, the forms themselves are used as the key to the evaluation sequences.

Evaluation Sequence:

1 May 1997 at 23:52

256 APL Extended — DIS 8485(1997)

17.5. DIAGRAMS AND EVALUATION SEQUENCES

Find an entry that matches Q in the system-command evaluation sequences.
If no such entry is found, signal incorrect-command.
Otherwise, call the corresponding evaluation sequence.
Return the token it returns.

17.5 Diagrams and Evaluation Sequences

In the following,

– p stands for permitted-blanks,

– r stands for required-blanks,

– w stands for workspace-identifier, and

– a stands for simple-identifier.

Clear Active Workspace

- p) p CLEAR p -

Call Shared-Variable-Reset.
Set the active-workspace to the clear-workspace.
Set comparison-tolerance to initial-comparison-tolerance.
Set event-message to initial-event-message.
Set event-type to initial-event-type.
Set index-origin to initial-index-origin.
Set latent-expression to initial-latent-expression.
Set print-precision to initial-print-precision.
Set quote-quad-prompt to the empty character vector.
Set random-link to initial-random-link.
Return command-complete.

Copy Library Workspace Object

- p) p COPY r w r a p -

If the library-workspace-named w does-not-exist, signal not-found.
If the global-referent of a in w is not a defined-function, defined-operator, niladic-

defined-function, variable, or shared-variable, signal incorrect-command.
Set Z to copy a from w.
Return Z.

Copy Library Workspace

- p) p COPY r w p -

APL Extended — DIS 8485(1997) 257

1 May 1997 at 23:52

17. SYSTEM COMMANDS

If the library-workspace-named w does-not-exist, signal not-found.
For each symbol S of the library-workspace-named w

Let A stand for the name of S.
If the global-referent of A in w is a defined-function, defined-operator, niladic-

defined-function, variable, or shared-variable,
Set Z to copy A from w.
If Z is an exception, return Z.

Return command-complete.

Drop Library Workspace

- p) p DROP r w p -

If the library-workspace-named w does-not-exist, signal not-found.
Set the existential-property of the library-workspace-named w to absent.
Return command-complete.

Erase Global Referent

- p) p ERASE r a p -

Let GA stand for the global-referent of a in the active-workspace.
If the global-referent of a is not a defined-function, defined-operator, niladic-defined-

function, variable, or shared-variable, signal incorrect-command.
Set Z to attempt-to-erase GA.
Return Z.

List Global Function Names

- p) p FNS p -

For each symbol A whose global-referent is a defined-function or a niladic-defined-
function, display the name of A.

Return command-complete.

List Library Directory

- p) p LIB p -

For each workspace W whose existential-property is present and whose owner is
this-owner, display the workspace-name of W.

Return command-complete.

Load Library Workspace

- p) p LOAD r w p -

If the library-workspace-named w does-not-exist, signal not-found.
Set the active-workspace to the library-workspace-named w.

1 May 1997 at 23:52

258 APL Extended — DIS 8485(1997)

17.5. DIAGRAMS AND EVALUATION SEQUENCES

Call Shared-Variable-Reset.
If latent-expression is not nil,

Generate a new context in which
mode is immediate-execution,
current-line is the ravel-list of latent-expression,
current-function is 0 0µ' ',
current-line-number is one,
current-statement is the empty list of tokens, and
stack is the empty list of tokens.

Append the new context to the state-indicator of the active-workspace as a new first
item.

Set T to evaluate-line.
Remove the first item from the state-indicator of the active-workspace.
Return T.

Otherwise, return command-complete.

Note: Shared-variable-reset has the effect of retracting and expunging all variables that were
shared in the library-workspace. This means that conforming-programs cannot depend upon the
values of variables that were shared when a)SAVE command was issued.

List Global Names and their Name Class

- p) p NMS p -

For each symbol A whose global-referent is a variable, defined-function, niladic-
defined-function, or defined-operator, display the name of A appended with a dot
followed by the name-class (for example FN.3, OP.4).

Return command-complete.

List Global Operator Names

- p) p OPS p -

For each symbol A whose global-referent is a defined-operator, display the name of
A.

Return command-complete.

Save Active Workspace

- p) p SAVE p -

Set W to the workspace-name of the active-workspace.
If W is clear-workspace-identifier, signal not-saved.
Replace the library-workspace-named W with the active-workspace.
Set the existential-property of the library-workspace-named W to present.
Return command-complete.

Note: See)LOAD for a discussion of shared variable values.

APL Extended — DIS 8485(1997) 259

1 May 1997 at 23:52

17. SYSTEM COMMANDS

Save Active Workspace with Name

- p) p SAVE r w p -

If the workspace-name of the active-workspace is not w,
If the library-workspace-named w already-exists, signal not-saved.
Otherwise, set the workspace-name of the active-workspace to w.

Replace the library-workspace-named w with the active-workspace.
Set the existential-property of the library-workspace-named w to present.
Return command-complete.

Note: See)LOAD for a discussion of shared variable values.

List State Indicator

- p) p SI p -

Let N stand for the number-of-items in the state-indicator of the active-workspace.
Set I to zero.
Repeat:

Set I to I plus one.
If I is greater-than N, return command-complete.
If the mode of itemI of the state-indicator is defined-function or defined-operator,

display the function-name and current-line-number of item I of the state-
indicator, along with an indication of whether the function-name is suspended.

(End of repeated block)

Clear State Indicator

- p) p SIC p -

Return clear-state-indicator.

List State Indicator and Local Names

- p) p SINL p -

Let N stand for the number-of-items in the state-indicator of the active-workspace.
Set I to zero.
Repeat:

Set I to I plus one.
If I is greater-than N, return command-complete.
If the mode of itemI of the state-indicator is defined-function or defined-operator,

display the function-name, current-line-number, and local-name-list of item I
of the state-indicator, along with an indication of whether the function-name is
suspended.

(End of repeated block)

1 May 1997 at 23:52

260 APL Extended — DIS 8485(1997)

17.5. DIAGRAMS AND EVALUATION SEQUENCES

List Global Variable Names

- p) p VARS p -

For each symbol A whose global-referent is a variable, display the name of A.
Return command-complete.

List Workspace Identification

- p) p WSID p -

Display the workspace-name of the active-workspace.
Return command-complete.

Change Workspace Identification

- p) p WSID r w p -

Set the workspace-name of the active-workspace to w.
Return command-complete.

APL Extended — DIS 8485(1997) 261

1 May 1997 at 23:52

17. SYSTEM COMMANDS

1 May 1997 at 23:52

262 APL Extended — DIS 8485(1997)

Annex A

Component Files (normative)

Informal Description: This annex describes a minimal set of functions which a
conforming implementation must provide. There are, therefore, many facilities (such as
shared libraries, access control, etc.) which are intentionally excluded from this annex,
although it is expected that they will be available on most systems.

In particular, file names are severely restricted and access is provided only to a default
library, in order to ensure compatible behaviour, on all systems, of the functions defined
here.

This annex does not addresss the migration of the component files themselves, although it
is presumed that at the very least one will be able to retrieve the objects into a workspace,
migrate the workspace, and recreate the file, using these functions.

The user interface (arguments, function name, and result) are described here. When an
error is signalled it implies that suspension will occur in the caller (that is, by means of
²ES).

A.1 Definitions of arguments and results

– A—Any array

– CID—Component id, must be a positive integer

– FH—File handle, an integer

– FHL—A list of file handles

– FL—File names, a character matrix with rows giving names of files

– FNM—File name, a character vector composed of 1–8 characters, the first chosen from
A-Z, and any others chosen from A-Z and 0-9

– NFNM— New file name, see FNM above

APL Extended — DIS 8485(1997) 263

1 May 1997 at 23:52

ANNEX A. COMPONENT FILES (NORMATIVE)

A.2 Definition of functions

– FL¼CF LIST A

If A is an empty vector, FL is a character matrix containing the names of files existing in
the default library.

If A is not empty, an error will be signalled. An implementation may provide a consistent
extension where A is a library identifier.

If there are no component files in the library, FL will be an empty character matrix.

– FH¼CF CREATE FNM

Creates a file with name FNM and returns a numeric handle for the file. If the operation
is unsuccessful, an error will be signalled.

– Z¼CF ERASE FNM (Z is 0 0µ0)

Erase the file specified in FNM. If successful an empty numeric matrix will be returned.
Success implies that the file no longer exists (either it has been erased or it never existed).
If the operation is unsuccessful an error will be signalled.

– Z¼NFNM CF RENAME FNM (Z is 0 0µ0)

The file named by FNM is renamed NFNM. If this is successful an empty numeric matrix
is returned. If the operation is unsuccessful an error is signalled.

– FH¼[FH] CF OPEN FNM

The file named by FNM is opened and a file handle is returned. The left argument is
optional. The presence of the left argument indicates that the file is to be opened with
the specified file handle. If the operation is unsuccessful an error is signalled.

Note: If a left argument is present but the file cannot be opened with the specifiedFH, the open will
be unsuccessful.

– Z¼CF CLOSE FHL (Z is 0 0µ0)

Each file listed in FHL is closed. The presence of the result indicates that all files named
in FHL are now closed. An error will be signalled if the close is unsuccessful (for
example, an invalid FH or unable to close the file).

– FHL¼CF INUSE

The result FHL is a list of file handles (FH) that are currently valid. It will be empty if
there are no valid file handles current.

– Z¼ A CF WRITE FH,CID (Z is 0 0µ0)

Array A is written to component CID in file FH. The presence of the result indicates
success. An error will be signalled if the operation is unsuccessful.

– CID¼ A CF APPEND FH

Array A is appended to the file FH and CID is its component id in the file. An error is
signalled if the operation is unsuccessful.

1 May 1997 at 23:52

264 APL Extended — DIS 8485(1997)

A.3. ERRORS

– A¼CF READ FH,CID

The result A is component CID of file FH. An error is signalled if the operation is
unsuccessful.

– CID¼CF NEXT FH

The result is the component id that will be returned for the next successful use of
CF APPEND with file FH. An empty file will return a CID of one. An error is signalled
if the operation is unsuccessful.

A.3 Errors

The functions described here must be written so that they do not suspend. Any errors
encountered or detected must be passed to the context from which the function was invoked.

APL Extended — DIS 8485(1997) 265

1 May 1997 at 23:52

ANNEX A. COMPONENT FILES (NORMATIVE)

1 May 1997 at 23:52

266 APL Extended — DIS 8485(1997)

Bibliography (informative)

The following publications are referred to in this standard to provide general background
and guidance for the benefit of implementers. The standard does not rely upon the content
of these documents for its interpretation, and implementers are under no obligation to
consult these documents or to use the information contained in them.

Hart, J. F., Computer Approximations, Robert C. Krieger Publishing Company,
Huntington, NY. 1978.

Iverson, K. E., A Programming Language, John Wiley and Sons, Inc., 1962.

Jenkins, M. A., “Domino—An APL Primitive Function for Matrix Inversion—Its
Implementation and Applications”, APL Quote-Quad 3, 4, February 1972, pp 4-15.

Knuth, D. E., Seminumerical Algorithms, Addison-Wesley Publishing Company, Menlo
Park, CA, 1969.

McDonnell, E. E., “Complex Floor”, APL Congress 73, North-Holland Publishing Co.,
1973.

National Bureau of Standards Handbook of Mathematical Functions, U. S.
Government Printing Office, Washington DC, 1964.

Penfield, Paul, “Principal Values and Branch Cuts in Complex APL”, APL81 Conference
Proceedings, APL Quote-Quad 12, 1, September 1981, pp 248-256

Smith, H. J. Jr., “Sorting–A New/Old Problem”, APL79 Conference Proceedings, APL
Quote-Quad 9, 1, June 1979, pp 123-127

Woodrum, L. J., “Internal Sorting with Minimal Comparing”, IBM System Journal, Vol.
8, No. 3, pp 189-203, 1969.

APL Extended — DIS 8485(1997) 267

1 May 1997 at 23:52

Index

A

absent, 34, 255, 258. See workspace-
presence

access-control-vector, 219, 224–227,
232

(operation), 222
(subsection), 222

access-state-vector, 233
access control, 219
active-users, 37
active-workspace, 35, 141, 190, 201,

203, 208, 212, 218, 220, 223,
248, 251–252, 255–261

A identifies-with B in C order , 168
along-axis, 27, 116, 119, 122, 127, 138,

144, 149, 153, 157, 168, 244
alpha

(diagram), 45
alphabetic

(diagram), 256
already-exists, 255, 260
ambivalent, 200, 208
ambivalent-dyadic-operator, 200
ambivalent-dyadic-operator-header

(diagram), 200, 205
ambivalent-function-header

(diagram), 200, 204
ambivalent-monadic-operator, 200
ambivalent-monadic-operator-header

(diagram), 200, 205
and

(subsection), 194
and/lcm

(operation), 75, 97
any

(diagram), 47, 214
A precedes B in C order, 168

A Programming Language, 1
arc, 19, 96
array, 148

(diagram), 172, 174
(object), 7, 25, 26–28, 30, 38, 41, 54,

59, 65, 70, 79, 108–109, 113,
116–117, 122, 126–127, 133,
135, 138, 144, 149, 151, 153,
157, 159, 161, 163–165, 177,
200, 202, 210, 221, 229, 241,
244, 249

attributes:
ravel-list, 25
shape-list, 25
type, 25

operations:
axis, 26
boolean-array-nearest-to, 27
count, 26
first-scalar, 27
first-thingy, 26
function-line, 202
header-name-list, 202
identifier-matching, 202
integer-array-nearest-to, 27
label-name-list, 202
last-line-number, 202
length, 26
local-name-list, 202
max-shape-of, 25
number-of-rows, 27
numeric-scalar, 26
primary-name, 221
rank, 25
ravel-along-axis, 27
remainder-of, 27
row, 27
sufficient-type, 25

1 May 1997 at 23:52

268 APL Extended — DIS 8485(1997)

INDEX

surrogate-name, 221
typical-element, 26
valid-axis, 26

related terms
along-axis, 27
ambivalent, 200
ambivalent-dyadic-operator, 200
ambivalent-monadic-operator, 200
empty, 26
empty-event-message, 177
event-message, 177
event-report, 177
identifier-array, 177
matrix, 26

monadic, 200
monadic-dyadic-operator, 200
monadic-monadic-operator, 200
niladic, 200
one-element-vector, 26
proper-defined-function, 200
scalar, 25
simple, 25
simple-scalar, 25
value-returning, 200
vector, 26

array-of-vectors, 168
(object), 25, 26, 27

attributes:
ravel-list, 26
shape-list, 26
type, 27

related terms
vector-item, 27

array-type, 7, 25, 27, 39
assignment

(diagram), 55
assignment-arrow

(class), 29, 30–31, 55, 59, 62
(diagram), 58, 204

atomic, 42, 74, 134, 148, 166, 183, 248
atomic-vector, 37

(implementation parameter), 12, 15,
179

atomic vector
(operation), 77, 179

attempt-to-erase, 255, 256, 258
attention-flag, 35, 209, 248, 250

auxiliary processor, 217
axis, 26, 27, 117, 144, 153, 155–156
axis-error

(class), 29, 31
Definitions, 33
Mixed Functions, 138, 143–144,

149, 151, 153, 174
Operators, 116, 119, 121
Syntax and Evaluation, 66–68

axis-monadic-operator
(diagram), 55, 57

axis-specification
(diagram), 55

B

base value
(operation), 77, 155

bind-token-class
(operation), 52, 53
(subsection), 53

binomial
(operation), 75, 94

blank
(diagram), 46–47, 50, 207, 221, 238,

249, 252
body-line

(diagram), 200, 202, 206, 215
boolean, 8, 18, 23, 35–37, 179
boolean-array-nearest-to, 27, 151, 232
B precedes A in C order , 168
branch. See opn

(class), 29, 33, 44, 64, 73, 199, 209,
251

content: An array, 31
branch-arrow

(class), 29, 30–31, 62
(diagram), 54, 58

build-index-list
(phrase evaluator), 60, 62, 72
(subsection), 72

C

call-defined-function
(operation), 78, 199, 207

canonical-representation, 28, 199, 203,
208, 210–212, 214

APL Extended — DIS 8485(1997) 269

1 May 1997 at 23:52

INDEX

catenate. See join along an axis
ceiling

(operation), 75, 82
(subsection), 194

cell, 129
change-request

(diagram), 212, 214
change workspace identification

(diagram), 261
character, 15, 25, 141, 169–170, 190,

198, 210, 227, 229, 232–233
(array type), 25, 26, 28, 30, 35, 37,

39, 44, 54, 141, 177, 179, 198,
200, 210–211, 221, 228–229,
241, 244, 248–249, 253

not cross-indexed. See page 8
related terms:

character-diagram, 41
character-diagram, 41, 42–44, 177,

182–183, 185–186, 188–189,
200, 202, 211, 221, 237–238

character-literal
(class), 29, 30, 51, 54

content: A list of characters, 31
(diagram), 45, 47, 54

character-representation, 192
character-set

(implementation parameter), 7, 12, 15
related terms:

character, 15
character-vector, 168
character grade definitions

(operation), 168
character grade down

(operation), 77, 169
character grade up

(operation), 77, 170
character representation

(operation), 78, 211
circular functions

(operation), 75, 95
class, 29

not cross-indexed. See page 8
class-names, 7–8, 29, 30
classified-name

(metaclass), 30, 52, 255
CLEAR

(system command), 221
clear-event, 223–226, 234

(operation), 224
(subsection), 224

clear-state-indicator
(class), 29, 31, 33, 44, 199, 209, 251–

252, 260
clear-workspace, 34, 36–37, 194–198,

212, 257
clear-workspace-identifier, 38

(implementation parameter), 34, 259
clear active workspace

(diagram), 257
clear state indicator

(diagram), 260
closed-interval-between, 22, 95, 109,

144, 148, 196, 199, 202, 208–
209

colon
(class), 29, 31
(diagram), 206–207

command-complete
(class), 29, 31, 258–259

Defined Functions, 212, 214
System Commands, 256–261

comment
(diagram), 45, 47

committed-value
(class), 29, 30, 44, 64, 71, 166, 194–

198, 225, 253–254
content: An array, 31

commute
(operation), 76, 124

comparison-tolerance
(system parameter), 35, 36–39, 82,

93, 97–98, 100–105, 136–137,
144, 146–147, 149, 151, 153,
157–159, 161–162, 165, 167,
194, 257

comparison-tolerance-limit, 38
(implementation parameter), 38, 194

comparison tolerance
(operation), 77, 194

complete-index-list
(class), 29, 60, 62, 73–74

content: An index-list, 31
complex-arithmetic-facility, 96

1 May 1997 at 23:52

270 APL Extended — DIS 8485(1997)

INDEX

(optional facility), 12
complex-integer, 19, 23, 82
complex-marker, 241

(diagram), 49
complex-number, 19, 236–237
complex-plane, 19
compress, 150
conform, 129
conforming-implementation

(conformance term), 3, 8, 11, 12–15,
17, 53, 134, 183, 201, 254

conforming-program
(conformance term), 11, 13–14, 20,

53, 183, 193, 209, 217, 235,
259

conjugate
(implementation algorithm), 20
(operation), 75, 80

consistent-extension
(conformance term), 10, 11–13, 252

constant
(class), 29, 30, 33, 36–37, 41, 44, 52–

54, 56, 59, 61, 64, 74, 199, 211,
247–248, 250–252

content: An array, 31
content, 30

not cross-indexed. See page 8
context, 180–181, 187, 190–191

(object), 7, 33, 34, 74, 141, 193, 199,
201, 207–208, 212, 250–252,
255, 259

attributes:
current-function, 33
current-line, 33
current-line-number, 33
current-statement, 33
mode, 33
stack, 33

copy, 256, 257–258
COPY

(system command), 199, 220
copy from, 256
copy library workspace

(diagram), 257
copy library workspace object

(diagram), 257
cosine

(implementation algorithm), 20,22, 95
count, 26, 38, 107, 109, 112, 119, 126,

149, 157, 164–165, 187, 191–
192, 194–197, 254

(diagram), 172
count-limit, 38

(implementation parameter), 38
counting-number, 19, 20, 38
creation-request

(diagram), 212, 214
current-canonical-representation, 203,

213
current-class, 35, 53, 65, 68, 71–72,

182–186, 188–189, 201, 203,
209–212, 218, 222, 226–227,
230–233, 255

current-content, 35, 36, 53, 72, 165,
185–186, 188–189, 211, 220,
224–226, 232

current-context, 35, 52, 201, 203, 249
current-function, 33, 141, 190, 203,

207–209, 212, 250, 252, 259
current-function-line, 203, 209
current-last-line-number, 203, 208–

209, 214
current-left-argument-name, 203, 208
current-left-operand-name, 203, 208
current-line, 33, 43–44, 50, 59, 141,

190, 207, 212–213, 249–250,
252, 259

current-line-number, 33, 52, 141, 179,
190, 199, 207, 209, 212–214,
249–250, 252, 259–260

current-local-names, 203, 208
current-prompt, 35, 212, 248, 250,

252–253
current-referent, 35, 71, 166, 183, 188–

189, 201, 207–210, 212, 214,
218, 222, 227, 230–231, 233

current-result-name, 203, 209
current-right-argument-name, 203, 208
current-right-operand-name, 203, 208
current-stack, 35, 60–61, 199
current-statement, 33, 44, 51–53, 59–

60, 141, 190, 201, 207, 212,
251–252, 259

current-stop-vector, 203, 209, 213

APL Extended — DIS 8485(1997) 271

1 May 1997 at 23:52

INDEX

current-time, 234
(implementation algorithm), 20, 181

current-trace-vector, 52, 203, 213

D

deal
(implementation algorithm), 20, 148
(operation), 76, 148, 195
(subsection), 197

decimal-exponential
(diagram), 237, 240, 242, 244

decimal-exponential-row
(diagram), 240–241

decimal-integer
(diagram), 238–240

decimal-rational
(diagram), 212–213, 215, 239, 241–

242
decimal-rational-row

(diagram), 239, 241
defined-dyadic-operator

(class), 29, 30, 53
content: A defined-function, 31

defined-dyadic-operator-name
(class), 29, 30, 53

content: A list of characters, 31
defined-dyadic-operator-name-token

(diagram), 57
defined-facility

(conformance term), 10, 11, 217
defined-function

(class), 29, 53, 65, 68, 74, 182–186,
188–189, 201, 209–211, 257–
259

content: A defined-function, 31
(context mode), 33, 52, 141, 179, 199,

207, 249, 260
(object), 7, 27, 28, 30, 33, 177, 183,

199–200, 204, 208–209, 211–
212, 214

attributes:
canonical-representation, 28
stop-vector, 28
trace-vector, 28

operations:
function-name, 202

defined-function-control
(operation), 43, 208, 209
(subsection), 43–44, 179, 199

defined-function-name
(class), 29, 30, 53, 55, 59, 62, 65, 68,

201
content: A list of characters, 31

defined-function-name-token
(diagram), 57

defined-monadic-operator
(class), 29, 30, 53

content: A defined-function, 31
defined-monadic-operator-name

(class), 29, 30, 53
content: A list of characters, 31

defined-monadic-operator-name-token
(diagram), 57

defined-name
(metaclass), 30, 201

defined-operator
(class), 74, 182–186, 188–189, 201,

210–211, 259
(metaclass), 30
(context mode), 260
(object), 7

defined-operators, 27
defined functions, 27
definition-error

(class), 29, 31
Defined Functions, 212–214

definition-line-limit, 39
(implementation parameter), 213

degree-of-coupling, 222, 229–230
degree of coupling, 218
del

(diagram), 47, 50, 215
del-tilde

(diagram), 47, 50
delay

(operation), 77, 181
deletion-request

(diagram), 213, 215
delimiter

(metaclass), 30
delocalise, 203, 208
delta

(diagram), 215

1 May 1997 at 23:52

272 APL Extended — DIS 8485(1997)

INDEX

depth
(operation), 111

derived-function
(diagram), 55, 57

diaeresis-jot
(diagram), 57

diaeresis-tilde
(diagram), 57–58

diagrams
(subsection), 7–8, 41

diamond. See statement-separator
(diagram), 50

digit
(diagram), 45–48, 238–240

direct-identifier
(diagram), 45

direction, 22, 81
(operation), 75, 81

disclose
(operation), 174

disclose with axis
(operation), 174

display
(implementation algorithm), 20, 44,

212–213, 247–248, 248, 249–
253, 258–261

display-request
(diagram), 213, 215

distance-between, 23
distinguished-identifier

(class), 29, 30, 51, 53
content: A list of characters, 31

(diagram), 45–46, 74, 177–178, 193,
200

divide
(operation), 75, 89

divided-by
(implementation algorithm), 17–19,

20, 22, 81, 89, 92–93, 100–101
does-not-exist, 255, 257–258
domain-error

(class), 17, 29, 31
Defined Functions, 202, 210–211
Definitions, 17, 33
Formatting and Numeric Conver-

sion, 244
Input and Output, 254

Mixed Functions, 133, 135, 141,
148–149, 151, 153, 155, 157,
159, 161–165, 169–170, 172

Operators, 118, 121, 123, 125, 130–
131

Scalar Functions, 79–95, 97–99,
101–102, 104–105

Shared Variables, 227–234
Structural Primitive Functions, 109,

112
Syntax and Evaluation, 70, 73
System Functions, 181–192
System Variables, 194–198

dot
(diagram), 49, 55, 239–240

drop, 122
(operation), 77, 162

drop library workspace
(diagram), 258

duplicate
(operation), 76, 124

dyadic-function
(diagram), 116, 119, 121, 126–127

dyadic-operator
(class), 29

content: A character, 31
(diagram), 57, 62

dyadic-operator-name-token
(diagram), 55

dyadic-operator-part
(diagram), 205

dyadic-scalar-extension, 68–69
dyadic event simulation

(operation), 77, 191
dyadic format

(operation), 78, 235, 237, 244
(subsection), 38

dyadic transpose
(operation), 77, 159
(subsection), 139, 197

E

e, 83
each

(operation), 125
edit-actions, 248

APL Extended — DIS 8485(1997) 273

1 May 1997 at 23:52

INDEX

editable, 201, 212
elementary-operation, 17
elided-index-marker

(class), 29, 30–31, 33, 70, 73, 164–165
empty, 26, 73, 109, 113–114, 117, 157,

182, 210, 229, 241, 244, 249,
253

empty-event-message, 177, 187, 191
empty-list, 24, 44, 60, 202, 241, 251
enclose

(operation), 175
enclose-reduction-style, 38, 115–116
enclose with axis

(operation), 175
end-definition

(diagram), 214–215
enlist

(operation), 112
enter, 209, 248
enumerated-set

related terms
required-character-set, 7

related terms:
array-type, 25
class-names, 29
keyboard-states, 35
mode-names, 33
workspace-presence, 34

equal
(operation), 75, 100
(subsection), 194

equals, 22, 23, 135
erase global referent

(diagram), 258
error

(class), 10
(metaclass), 17, 22, 30, 33, 41, 44, 209,

212, 231, 248–252
escape. See opn

(class), 29, 31, 33, 44, 64, 73, 199,
208–209, 251–252

evaluate-assignment
(phrase evaluator), 62, 71
(subsection), 71

evaluate-dyadic-function
(diagram), 125
(phrase evaluator), 61–62, 67, 69, 87

(subsection), 67
evaluate-dyadic-operator

(phrase evaluator), 62, 69
(subsection), 69

evaluate-editing-request
(operation), 212, 213
(subsection), 213

evaluate-function-definition-request
(operation), 211, 250

evaluate-indexed-assignment
(phrase evaluator), 62, 71
(subsection), 71

evaluate-indexed-reference, 164
(phrase evaluator), 62, 70
(subsection), 70

evaluate-line, 190
(operation), 43, 44, 50, 52, 59, 141,

209, 248, 251–252, 259
(subsection), 43

evaluate-monadic-function
(diagram), 125
(phrase evaluator), 61–62, 65, 66, 80
(subsection), 65

evaluate-monadic-operator
(phrase evaluator), 62, 66
(subsection), 66

evaluate-niladic-function
(phrase evaluator), 62, 64
(subsection), 64

evaluate-statement
(operation), 43–44, 51, 52, 59–60, 64
(subsection), 43, 51

evaluate-system-command
(operation), 250, 256
(subsection), 256

evaluate-variable
(phrase evaluator), 62, 72
(subsection), 72

evaluation sequence
(subsection), 8

evaluation sequence phrases
(subsection), 40

evaluation sequences
(subsection), 7, 39

event-message, 35, 177, 180
event-report, 35, 177
event-time, 35, 234

1 May 1997 at 23:52

274 APL Extended — DIS 8485(1997)

INDEX

event-type, 12, 35, 177, 181
event message

(operation), 77, 180
event type

(operation), 77, 181
exception

(metaclass), 33, 44, 52, 60, 226, 256,
258

execute, 190
(context mode), 33, 141
(operation), 43, 76, 141
(subsection), 43–44

execute-alternate
(subsection), 44

execute alternate
(operation), 77, 190

existential-property, 34, 255, 258–260
expand

(operation), 76, 151
exponent

(diagram), 46
exponent-field-width, 38

(implementation parameter), 237, 245
exponent-marker

(diagram), 46, 49, 237, 239–242
exponent-overflow, 17, 93, 101
exponent-underflow, 17, 93, 100–101
exponential

(implementation algorithm), 21,22, 83
(operation), 75, 83

expression
(diagram), 8, 54–56

expunge
(operation), 77, 183

F

facility
(conformance term), 10–11, 13

factorial
(operation), 75, 85

figure 1, 61
figure 2, 220
first

(operation), 143
first-item, 24, 25–27, 35, 66–68, 70, 73,

127, 130, 164–165, 181, 208,

212, 251–252
(diagram), 125–127

first-quadrant-associate, 20
first-scalar, 27, 54, 73, 113, 116, 194–

197
first-thingy, 26

(diagram), 172
five, 18

not cross-indexed. See page 18
fixed-decimal

(diagram), 237, 240, 244
floor, 82

(operation), 75, 82
(subsection), 194

for all
(evaluation sequence phrase), 40

for form
(evaluation sequence phrase), 40

form
(diagram), 200, 203–204

form-table, 53, 61, 64–72, 74, 226
for pattern

(evaluation sequence phrase), 40
four, 18

not cross-indexed. See page 18
fraction, 19, 93
fractional-part, 82
frame, 129
full-print-precision, 38, 192

(implementation parameter), 38, 196,
211, 235, 238, 243

function
(diagram), 55, 57

function-definition
(context mode), 33, 39, 212

function-definition-line
(diagram), 212, 250

function-definition-prompt, 39
(implementation parameter), 212, 249

function-display
(implementation algorithm), 21, 213

function-line, 202, 203
(diagram), 213, 215

function-name, 201, 202, 210, 212, 249,
260

(diagram), 202, 204–206, 210, 213
function fix

APL Extended — DIS 8485(1997) 275

1 May 1997 at 23:52

INDEX

(operation), 78, 210, 211

G

gamma-function
(implementation algorithm), 21,22, 85

general-offer, 36–37, 39, 218, 222, 228
general-request

(diagram), 213, 215
global-context, 255
global-referent, 255, 256–259, 261
globally-erasable, 201, 255
grade down, 137

(operation), 76, 137
(subsection), 197

grade up, 136
(operation), 76, 135
(subsection), 197

greater-than, 22, 23–25, 38, 54, 70, 73,
90, 101, 104–105, 109, 112,
116–117, 119, 122, 135, 140–
141, 148–149, 151, 161–163,
165, 182–186, 188–189, 194–
198, 211, 213, 227, 229–233,
236, 241, 244, 254, 260

(diagram), 172
greater-than-or-equal-to, 82

(diagram), 172
greater than

(operation), 75, 105
(subsection), 194

greater than or equal to
(operation), 75, 104
(subsection), 194

greatest-common-divisor, 97–98
(implementation algorithm), 21

H

half-plane, 19, 23
header-line

(diagram), 177, 199–200, 202–203,
213

header-name-list, 202
hyperbolic-cosine

(implementation algorithm), 21,22, 95
hyperbolic-sine

(implementation algorithm), 21,22, 95

hyperbolic-tangent
(implementation algorithm), 21,22, 96

I

identical
(operation), 173

identifier
(diagram), 36–38, 45, 200, 206, 218
(metaclass), 30, 51–53, 59, 202, 210,

214
identifier-array, 177, 183–184, 187,

229, 231–232
identifier-length-limit, 38

(implementation parameter), 13, 51
identifier-matching, 202, 203
identifier-pair-array, 221, 230
identifier-pair-row

(diagram), 221, 230
identifier-row

(diagram), 178, 182–183, 185–186,
188–189, 211–212, 221, 227,
229, 231–233

ideogram
(diagram), 47, 49, 54

if
(evaluation sequence phrase), 40

imaginary-marker
(diagram), 46

imaginary-one, 18, 23
not cross-indexed. See page 18

imaginary-part, 19–20, 23, 80, 82, 96,
236–237, 241

(diagram), 46
immediate-execution

(context mode), 33, 39, 141, 201, 208,
250, 255, 259

(operation), 43, 199, 208–209, 212,
250

(subsection), 43–44, 250
implementation

(conformance term), 10, 11
implementation-algorithm, 12, 14, 17,

20, 22, 54, 93, 97, 133, 148,
163, 178, 235

implementation-algorithms
(subsection), 17

1 May 1997 at 23:52

276 APL Extended — DIS 8485(1997)

INDEX

implementation-defined, 177
(conformance term), 7, 10, 15, 17–18,

20, 36–37, 179, 193, 195, 198,
235, 237, 248–249

implementation-defined-algorithm, 98
implementation-defined-facility

(conformance term), 10, 11–12
implementation-parameter

(conformance term), 8, 12–14, 34, 87,
194–198

implementation-parameters, 37
implementation parameter

(object)
related terms

atomic-vector, 37
clear-workspace-identifier, 38
comparison-tolerance-limit, 38
count-limit, 38
definition-line-limit, 39
exponent-field-width, 38
full-print-precision, 38
function-definition-prompt, 39
general-offer, 39
identifier-length-limit, 38
indent-prompt, 39
index-limit, 38
initial-comparison-tolerance, 37
initial-event-message, 38
initial-event-type, 38
initial-index-origin, 37
initial-latent-expression, 37
initial-print-precision, 37
initial-random-link, 37
integer-tolerance, 38
line-limit, 39
negative-counting-number-limit, 38
negative-number-limit, 38
positive-counting-number-limit, 38
positive-number-limit, 38
print-precision-limit, 38
quad-prompt, 39
quote-quad-output-limit, 38
rank-limit, 38
real-tolerance, 38
reduction-style, 38, 115–116
session-identification-type, 39
user-identification-type, 39

workspace-name-length-limit, 38
implicit-error

(class), 29, 31
Definitions, 33
Formatting and Numeric Conver-

sion, 241
Mixed Functions, 133, 135, 146–

148, 159, 165, 167, 169–170,
172, 174

Scalar Functions, 82, 93, 97–98,
100–105

Structural Primitive Functions, 109
Syntax and Evaluation, 66–68, 70–

71
System Variables, 193

incorrect-command
(class), 29, 31

Definitions, 33
System Commands, 257–258

indent-prompt, 39
(implementation parameter), 249–250

index, 24, 33, 38, 52, 202, 222
(diagram), 55–56

index-error
(class), 29, 31

Definitions, 33
Mixed Functions, 164–165, 172
Syntax and Evaluation, 70

index-limit, 38
(implementation parameter), 24, 38,

245
index-list, 30, 33, 66–68, 70, 73, 126,

164–166, 226
index-origin, 169–170

(diagram), 172
(system parameter), 36, 37, 66–68,

70–71, 109, 115, 119–121,
133, 135–139, 143–144, 146,
148–151, 153–154, 159, 164–
165, 169–170, 172, 174–175,
179, 188–189, 197, 213, 227–
228, 233, 257

index-separator
(class), 29, 31, 56, 59, 62
(diagram), 58

index-set, 24, 25–26, 40, 52, 65, 68, 70,
113, 119, 126–127, 133, 157,

APL Extended — DIS 8485(1997) 277

1 May 1997 at 23:52

INDEX

159, 161, 164–165, 168
(diagram), 125, 172, 174

indexed assignment
(operation), 77, 165, 166
(subsection), 42, 197

indexed reference
(operation), 77, 164, 225
(subsection), 197

indexed reference of shared variable.
See shared variable reference

index generator
(operation), 75, 109
(subsection), 197

index of
(operation), 76, 146
(subsection), 194, 197

index origin
(operation), 78, 197

indices. See index
indices, 208
initial-comparison-tolerance, 37

(implementation parameter), 194, 257
initial-event-message, 38
initial-event-type, 38
initial-index-origin, 37

(implementation parameter), 197, 257
initial-latent-expression, 37

(implementation parameter), 198, 257
initial-print-precision, 37

(implementation parameter), 196, 257
initial-random-link, 37

(implementation parameter), 195, 257
initial-request

(diagram), 212, 214
inner product

(operation), 76, 127
insert-reduction-style, 38, 116
integer, 19, 20, 36–37, 70, 82, 109, 148,

196–197, 213
integer-array-nearest-to, 27, 112, 149,

153, 159, 161–162, 164–165,
184, 188–189, 244

integer-nearest-to, 23, 26–27, 70, 73,
87, 95, 109, 116, 119, 121,
133, 138, 144, 148–149, 151,
153, 187, 191–192, 195–197

(diagram), 172

integer-tolerance, 38
(implementation parameter), 23, 87,

144
integral-within, 23, 93
internal-value-set, 12, 37, 193, 194–

198, 243
interrupt

(class), 29, 31
Definitions, 33
Input and Output, 247–248, 252
Syntax and Evaluation, 44

inverse-cosine
(implementation algorithm), 21,22, 95

inverse-hyperbolic-cosine
(implementation algorithm), 21,22, 95

inverse-hyperbolic-sine
(implementation algorithm), 21,22, 95

inverse-hyperbolic-tangent
(implementation algorithm), 21,22, 95

inverse-sine
(implementation algorithm), 21,22, 95

inverse-tangent
(implementation algorithm), 21,22, 95

item, 24, 232
not cross-indexed. See page 8

J

join
(operation), 75, 114, 143
(subsection), 114

join along an axis
(operation), 76, 143
(subsection), 114

K

keyboard-state, 35, 247–248
keyboard-states, 7, 35. See locked-

keyboard, See also open-
keyboard

L

label
(class), 29, 53, 182, 184, 208

content: An array, 31
label-name

1 May 1997 at 23:52

278 APL Extended — DIS 8485(1997)

INDEX

(class), 29, 30
content: A list of characters, 31

(diagram), 202, 206–208
label-name-list, 202
labelled-line

(diagram), 202, 206–208
laminate. See join along an axis
lamp

(diagram), 47, 50
larger-magnitude, 22, 23
last-item, 24, 127, 255
last-line-number, 188–189, 199, 202,

203
latent-expression

(system parameter), 36, 37, 198, 257,
259

latent expression
(operation), 78, 198

left
(operation), 77, 167

left-argument-name
(class), 29, 30

content: A list of characters, 31
(diagram), 202–205

left-axis-bracket
(class), 29, 30–31, 55, 59, 62
(diagram), 58

left-bracket
(diagram), 214–216

left-end-of-statement
(class), 29, 30–31, 52, 59, 61–62

left-index-bracket
(class), 29, 30–31, 56, 59, 62
(diagram), 58

left-operand-name
(class), 29

content: A list of characters, 31
(diagram), 202–203, 205–206

left-parenthesis
(class), 29, 30–31, 62
(diagram), 56, 58

length, 26, 27, 36, 54, 116, 148, 153,
157, 159, 179, 182, 210–211

length-error
(class), 29, 31

Defined Functions, 210–211
Definitions, 33

Formatting and Numeric Conver-
sion, 244

Mixed Functions, 144, 148–149,
151, 153, 155, 159, 161–163,
165

Operators, 121, 125, 127, 130–131
Scalar Functions, 79
Shared Variables, 232
Structural Primitive Functions, 109,

113
Syntax and Evaluation, 68–69
System Functions, 187, 191–192
System Variables, 194–197

less-than, 22, 23, 38, 101–102, 119, 133,
135, 163, 181, 195–196, 241,
244

(diagram), 172
less than

(operation), 75, 101
(subsection), 194

less than or equal to
(operation), 75, 102
(subsection), 194

let
(evaluation sequence phrase), 40

letter
(diagram), 45–48, 188

lexical-unit
(metaclass), 30, 43, 51

library, 37, 255
library-workspace-named, 255, 256–

260
limit-error

(class), 13, 29, 31
Compliance, 13
Defined Functions, 213
Definitions, 17, 33, 39
Formatting and Numeric Conver-

sion, 236–237
Input and Output, 254
Scalar Functions, 93–94, 100
Shared Variables, 221
Syntax and Evaluation, 51
System Variables, 194–198

line
(diagram), 43–45, 51, 64, 202, 206–

207

APL Extended — DIS 8485(1997) 279

1 May 1997 at 23:52

INDEX

line-limit, 39
line-number

(diagram), 213, 215, 249
line counter

(operation), 77, 179
list

(object), 7, 24, 25–26, 30, 33–34, 37–
39, 41–43, 51, 54, 59–60, 74,
107–108, 113–114, 141, 164–
165, 193, 202, 207, 212–213,
235–238, 248, 251–252, 259

attributes:
index-set, 24
value-set, 24

operations:
first-item, 24
item, 24
last-item, 24
number-of-items, 24
product-of, 24
rest-of, 24

related terms
empty-list, 24
nonempty-list, 24

related terms:
prefix, 25

list global function names
(diagram), 258

list global names and their name class
(diagram), 259

list global operator names
(diagram), 259

list global variable names
(diagram), 261

list library directory
(diagram), 258

list state indicator
(diagram), 260

list state indicator and local names
(diagram), 260

list workspace identification
(diagram), 261

literal
(metaclass), 30, 52, 54, 59

literal-conversion
(operation), 52, 54
(subsection), 54

literal-identifier
(diagram), 45

load library workspace
(diagram), 258

local-marker
(diagram), 206

local-name
(class), 29, 30

content: A list of characters, 32
(diagram), 202, 206

local-name-list,201, 202, 203, 210, 214,
260

localise, 193, 199, 201, 203, 204, 208
locally-erasable, 183, 201, 210, 212–

213
locals-list

(diagram), 177, 203, 206
locked-keyboard, 35, 247–248. See

keyboard-states
logarithm

(operation), 75, 92

M

magnitude, 20, 22, 23, 81, 84
(implementation algorithm), 21, 22
(operation), 75, 84

match
(evaluation sequence phrase), 42

matrix, 26
matrix-divide

(implementation algorithm), 21, 163
matrix divide

(operation), 77, 140, 163
matrix inverse

(operation), 76, 140
max-shape-of, 25

(diagram), 174
maximum

(operation), 75, 90
member of

(operation), 76, 147
(subsection), 194

metaclass, 17, 30, 33, 40, 60. See class
minimal-decimal-exponential

(diagram), 237, 239, 241–242
minimum

1 May 1997 at 23:52

280 APL Extended — DIS 8485(1997)

INDEX

(operation), 75, 90
minus

(implementation algorithm), 17–18,
21, 22–24, 66–68, 70, 80, 88,
100–101, 109, 135, 144, 148,
159, 164–165, 181

(operation), 75, 88
mixed, 25, 114, 144, 166, 192
mode, 33, 52, 141, 179, 190, 207, 212,

249–250, 252, 259–260
mode-names, 7, 33
modulo

(implementation algorithm), 21,22, 93
monadic, 200
monadic-dyadic-operator, 200
monadic-dyadic-operator-header

(diagram), 200, 205
monadic-function-header

(diagram), 200, 204
monadic-monadic-operator, 200
monadic-monadic-operator-header

(diagram), 200, 205
monadic-operator

(class), 29
content: A character, 32

(diagram), 57, 62
monadic-operator-name-token

(diagram), 55
monadic-operator-part

(diagram), 205
monadic-scalar-extension, 65–66
monadic event simulation

(operation), 77, 187
monadic format

(operation), 78, 196, 240
monadic transpose

(operation), 76, 139

N

n-wise reduction, 121
(operation), 76, 121

name, 33, 34–35, 184, 199, 218, 258–
259, 261

name-class, 192, 259
(operation), 184, 187

name class

(operation), 77, 182
name list

(operation), 77, 184, 187
nand

(operation), 75, 98
natural-logarithm, 19

(implementation algorithm), 21, 22,
83, 92

natural logarithm
(operation), 75, 83

near-boolean, 23, 27, 87, 98–99, 149,
151, 232

near-integer, 23, 26–27, 70, 73, 95, 109,
112, 121, 133, 143–144, 148–
149, 153, 159, 161–162, 164–
165, 184, 187–189, 191–192,
195–197, 244

(diagram), 172
near-real, 23
near-real number, 102, 104–105, 135
negation, 22, 23, 80, 82
negative

(operation), 75, 80
negative-counting-number, 18, 19
negative-counting-number-limit, 38

(implementation parameter), 241
negative-integer, 19, 85, 94
negative-number, 19, 22, 213, 242
negative-number-limit, 38

(implementation parameter), 100, 118,
123, 236

negative-one, 18
not cross-indexed. See page 18

next-definition-line
(implementation algorithm), 21, 214

nil, 187, 191
(class), 8, 29, 30, 32–34, 36–37,

44, 53, 64, 66–68, 70–73, 82,
93, 97–98, 100–105, 109, 133,
135, 146–148, 159, 165, 167,
169–170, 172, 174, 182–183,
193, 199, 201, 203, 207, 209–
210, 212, 218, 222–223, 226,
230, 241, 250, 255, 259

niladic, 200, 208
niladic-defined-function

(class), 29, 53, 65, 182–186, 188–189,

APL Extended — DIS 8485(1997) 281

1 May 1997 at 23:52

INDEX

201, 209–211, 257–259
content: A defined-function, 32

niladic-defined-function-name
(class), 29, 30, 53, 56, 62, 65

content: A list of characters, 32
niladic-function-header

(diagram), 200, 204
niladic-system-function-name

(class), 29, 30, 53, 62, 65, 200
content: A list of characters, 32

niladic system function, 178
nonempty-list, 24, 25
nonnegative-counting-number, 18, 19,

24–26, 38, 112
nonnegative-integer, 19, 85, 94, 109,

133, 149
nonnegative-number, 19, 20, 23, 35, 95,

148, 194, 234
nonquote

(diagram), 47
nonzero-digit

(diagram), 238–240
nor

(operation), 75, 99
not

(operation), 75, 87
not-copied

(class), 29, 32
Definitions, 33
System Commands, 256

not-erased
(class), 29, 32

Definitions, 33
System Commands, 256

not-found
(class), 29, 32

Definitions, 33
System Commands, 257–258

not-saved
(class), 29, 32

Definitions, 33
System Commands, 259–260

not equal
(operation), 75, 103
(subsection), 194

number, 12, 17, 19–20, 25, 83, 97–98,
155, 163

not cross-indexed. See page 8
operations:

closed-interval-between, 22
direction, 22
distance-between, 23
equals, 22
greater-than, 22
integer-nearest-to, 23
integral-within, 23
larger-magnitude, 22
less-than, 22
magnitude, 22
near-boolean, 23
near-integer, 23
near-real, 23
negation, 22
open-interval-between, 22
tolerant-floor, 23
tolerantly-equal, 23

related terms:
arc, 19
boolean, 18
complex-integer, 19
complex-number, 19
counting-number, 19
first-quadrant-associate, 20
five, 18
four, 18
fraction, 19
half-plane, 19
imaginary-one, 18
index, 24
integer, 19
negative-counting-number, 18
negative-integer, 19
negative-number, 19
negative-one, 18
nonnegative-counting-number, 18
nonnegative-integer, 19
one, 18
one-half, 18
positive-counting-number, 18
positive-integer, 19
positive-number, 19
real-number, 19
six, 18
three, 18

1 May 1997 at 23:52

282 APL Extended — DIS 8485(1997)

INDEX

two, 18
unit-square, 19
zero, 18

number-of-items, 24, 25–26, 51, 70,
108, 127, 164–165, 179, 201,
210, 260

(diagram), 172
number-of-rows, 27, 182, 202, 212
number-set, 17
numeric, 235, 249

(array type), 25, 26–28, 39, 54, 65,
68, 70, 80, 100, 108–109, 133,
135, 148, 157, 159, 163, 178–
179, 181–182, 228, 243

numeric-input-conversion
(implementation algorithm), 21, 54,

213, 235, 236
(subsection), 235

numeric-literal
(class), 29, 30, 51, 54, 211

content: A list of numbers, 32
(diagram), 45–46, 54

numeric-output-conversion
(implementation algorithm), 21, 38,

196, 235–236, 237, 241–242,
244

(subsection), 237
numeric-scalar, 26, 73, 208
numeric-scalar-literal

(diagram), 38, 46, 54, 236–238, 241

O

object, 24
object, 7
offer

(operation), 222
(subsection), 222

offer
(operation), 217, 230

omega
(diagram), 45

one, 18
not cross-indexed. See page 18

one-element-vector, 26, 66–68, 127,
135, 148, 153, 155

one-half, 18

not cross-indexed. See page 18
open-interval-between, 22, 95, 143, 161
open-keyboard, 35, 247–248. See

keyboard-states
opening-request

(diagram), 212, 214
operand

(diagram), 54–56
operation

(diagram), 54–55
optional-facility

(conformance term), 10, 11–13, 36,
39, 44, 51, 185–186, 188–189,
217

or
(subsection), 194

or/gcd
(operation), 75, 98

otherwise
(evaluation sequence phrase), 40

outer product
(operation), 76, 126

overbar
(diagram), 46, 50, 238–240

owner, 34, 37, 255, 258

P

partial-index-list
(class), 29, 60, 62, 73

content: An index-list, 32
pattern, 60–61, 199
pendent, 183, 201
permitted-blanks

(diagram), 203, 207, 213–214, 257
phrase, 60, 64
phrase-evaluator, 53, 60–61, 64, 80, 87,

199, 225
phrase-table, 60–61, 199
phrase evaluators, 62

Build-Index-List, 72
Evaluate-Assignment, 71
Evaluate-Dyadic-Function, 67
Evaluate-Dyadic-Operator, 69
Evaluate-Indexed-Assignment, 71
Evaluate-Indexed-Reference, 70
Evaluate-Monadic-Function, 65

APL Extended — DIS 8485(1997) 283

1 May 1997 at 23:52

INDEX

Evaluate-Monadic-Operator, 66
Evaluate-Niladic-Function, 64
Evaluate-Variable, 72
Process-End-of-Statement, 73
Remove-Parentheses, 64

pi-times
(implementation algorithm), 21,22, 86

pick
(operation), 172

pi times
(operation), 75, 86

plus
(implementation algorithm), 17–19,

21, 22, 24, 27, 66–68, 70, 85,
88, 109, 133, 135, 143, 146,
148, 159, 165, 181, 202, 208,
260

(operation), 75, 88
positioning-request

(diagram), 213, 215
positive-counting-number, 18, 19, 24,

38–39
positive-counting-number-limit, 38

(implementation parameter), 241
positive-integer, 19, 133, 188–189, 244
positive-number, 19, 20, 22, 39, 91, 213
positive-number-limit, 38

(implementation parameter), 100, 118,
123, 236

power
(operation), 75, 91

prefix, 25, 60–61, 199
present, 34, 255, 258–260. See

workspace-presence
presentation-space, 249
presentation space

(implementation algorithm), 248
primary-name, 221, 229–230
primitive

(class), 29, 30, 51–52, 54, 59
content: A character, 32

(diagram), 45, 47, 177
primitive-dyadic-operator

(class), 69
(diagram), 57

primitive-dyadic-scalar-function
(diagram), 64, 68

primitive-function
(class), 29, 30, 59, 61–62, 65–68, 74

content: A character, 32
(diagram), 55–57

primitive-monadic-operator
(diagram), 57

primitive-monadic-scalar-function
(diagram), 64–65

print-precision
(system parameter), 35, 36–38, 91, 93,

196, 211, 235–237, 241, 243,
257

print-precision-limit, 38
(implementation parameter), 38, 196

print precision
(operation), 77, 196

process-end-of-statement
(phrase evaluator), 60, 62, 73
(subsection), 73

produce-canonical-representation-vec-
tor, 192

(implementation algorithm), 21
product-of, 24, 25–27, 112
program

(conformance term), 9, 10, 13
proper-defined-function, 200, 202,

210–211, 214
pseudorandom-number-generator

(implementation algorithm), 21, 133–
134

Q

quad
(diagram), 46–47, 50, 215

²EX, 201
²FX, 199, 202
²IO, 74
quad-input

(context mode), 33, 39, 252
(subsection), 44

quad-prompt, 39
(implementation parameter), 249, 252

quad input
(operation), 43, 78, 252
(subsection), 43

quad output

1 May 1997 at 23:52

284 APL Extended — DIS 8485(1997)

INDEX

(operation), 78, 253
query stop

(operation), 77, 185
query trace

(operation), 77, 186
quote

(diagram), 47, 49
quote-quad

(diagram), 46–47, 50
quote-quad-output-limit, 38

(implementation parameter), 254
quote-quad-prompt, 35, 249, 253–254,

257
quote quad input

(operation), 78, 253
quote quad output

(operation), 78, 254
(subsection), 38

R

random-link
(system parameter), 35, 36–37, 74,

133–134, 148, 195, 257
random link

(operation), 77, 195
rank, 25, 26–28, 38, 68, 70, 73, 109, 112,

116, 119, 122, 129, 135, 140–
141, 143–144, 148–149, 151,
153, 159, 161–165, 174, 182–
186, 188–189, 194–198, 200,
210–211, 221, 227, 229–233,
241, 244, 254

(diagram), 172
(operation), 76

rank-error
(class), 29, 32

Defined Functions, 210–211
Definitions, 26, 33
Formatting and Numeric Conver-

sion, 244
Input and Output, 254
Mixed Functions, 135, 140–144,

146, 148–149, 151, 153, 159,
161–167, 169–170, 172

Operators, 121, 125, 131
Scalar Functions, 79

Shared Variables, 227, 229–234
Structural Primitive Functions, 109,

112
Syntax and Evaluation, 68–70, 73
System Functions, 181–189, 191–

192
System Variables, 194–198

rank-limit, 38
rank-vector, 129
rank operator definitions

(operation), 129
rank operator deriving dyadic func-

tion
(operation), 131

rank operator deriving monadic func-
tion

(operation), 130
ravel

(operation), 75, 107
ravel-along-axis, 27, 127, 157
ravel-list, 25, 26, 27, 40, 54, 65–68, 70,

107–109, 112–114, 116–117,
119, 121–122, 125–127, 133,
135, 138, 141, 144, 149, 151,
153, 155, 157, 159, 161–166,
169–170, 172–174, 181–182,
184, 188–190, 192, 198, 210,
227, 229–230, 232–234, 241,
244, 254, 259

(diagram), 172
read-keyboard

(implementation algorithm), 21, 212,
247–248, 250, 252–253

real-number, 19, 82, 236, 244
real-part, 19–20, 23, 82, 91, 96, 236–

237, 241
real-scalar-literal

(diagram), 46
real-tolerance, 23, 38
real-within, 23
reciprocal

(operation), 75, 81
reduce-statement

(operation), 43, 52, 59, 60
(subsection), 43, 52, 59

reduction, 121
(operation), 76, 115, 120

APL Extended — DIS 8485(1997) 285

1 May 1997 at 23:52

INDEX

reduction-style, 38, 115–116
referent-list, 33, 34–35, 193, 201, 203,

223, 255
remainder-of, 27, 116
remove-parentheses

(phrase evaluator), 62, 64
(subsection), 64

repeat
(evaluation sequence phrase), 40

replicate
(operation), 76, 149

report
(metaclass), 33

report-state, 224–226, 233
(operation), 223
(subsection), 223

representation
(operation), 77, 157, 158

required-blanks
(diagram), 203, 207, 257

required-character-set
(conformance term), 12, 15, 44
(implementation parameter), 37, 179

required-documentation
(conformance term), 17

reshape
(operation), 68, 75, 112

residue
(operation), 75, 93
(subsection), 194

rest-of, 24, 25, 27, 73
result

(diagram), 200, 203–204
(metaclass), 33, 43–44, 52, 60, 62,

199, 247, 252
result-name

(class), 29, 30
content: A list of characters, 32

(diagram), 202–204, 209
resultant-prefix, 60–61, 62
rethread

(evaluation sequence phrase), 41–42
retract

(operation), 183, 203, 223, 231, 255
(subsection), 223

return
(evaluation sequence phrase), 40–41

reverse
(operation), 76, 138

right
(operation), 77, 168

right-argument-name
(class), 29, 30

content: A list of characters, 32
(diagram), 202–205

right-axis-bracket
(class), 29, 30, 32, 52, 55, 59, 62
(diagram), 58

right-bracket
(diagram), 215–216

right-end-of-statement
(class), 29, 30, 32, 52, 59, 61–62

right-index-bracket
(class), 29, 30, 32, 52, 56, 59, 62
(diagram), 58

right-operand-name
(class), 29

content: A list of characters, 32
(diagram), 202–203, 205–206

right-parenthesis
(class), 29, 30, 32, 62
(diagram), 56, 58

roll
(operation), 74, 76, 80, 133, 134, 148,

195
(subsection), 197

rotate
(operation), 77, 153

row, 27, 177, 183, 200, 202, 208, 210,
213, 221, 227, 229–233, 241,
249

S

save active workspace
(diagram), 259

save active workspace with name
(diagram), 260

scalar, 25, 26–27, 65–68, 70, 113–114,
116, 119, 121, 127, 133, 138,
143–144, 148–149, 151, 153,
155, 157, 159, 161–163, 165,
181, 197, 232, 235, 243–244,
249

1 May 1997 at 23:52

286 APL Extended — DIS 8485(1997)

INDEX

scalar-extension. See dyadic-scalar-
extension, See also monadic-
scalar-extension

scalar-extension-operator, 79
scalar-function, 79–80, 87, 128
scan

(operation), 76, 119, 120
(subsection), 8

semicolon
(class), 29, 30, 32

session
(object), 7, 35, 36–37, 39, 41, 217–

221, 230, 247
attributes:

active-workspace, 35
attention-flag, 35
current-prompt, 35
event-message, 35
event-time, 35
event-type, 35
keyboard-state, 35
quote-quad-prompt, 35
this-owner, 35
this-session, 35

operations:
attempt-to-erase, 255
copy, 256
current-class, 35
current-content, 35
current-context, 35
current-function-line, 203
current-referent, 35
current-stack, 35
delocalise, 203
global-context, 255
global-referent, 255
localise, 203
symbol-named-by, 35

related terms
current-canonical-representation, 203
current-last-line-number, 203
current-left-argument-name, 203
current-left-operand-name, 203
current-local-names, 203
current-result-name, 203
current-right-argument-name, 203
current-right-operand-name, 203

current-stop-vector, 203
current-trace-vector, 203
edit-actions, 248
enter, 248
signal-attention, 248
signal-interrupt, 248
system-parameter, 36

session-a, 36, 37, 222–226, 228–229,
232, 234

session-a-active, 36, 37, 222–223, 228–
229

session-a-acv, 36, 37, 222–223, 232
session-a-event, 36, 222–224, 234
session-b, 36, 37, 222–226, 228–229,

232, 234
session-b-active, 36, 37, 222–223, 228–

229
session-b-acv, 36, 37, 222–223, 232
session-b-event, 36, 222–224, 234
session-identification, 34, 35–37, 39,

228, 230
session-identification-type, 39

(implementation parameter), 34, 228
set

(evaluation sequence phrase), 41
set stop

(operation), 77, 188
set trace

(operation), 77, 189
shape, 192

(operation), 61, 68, 75, 108
shape-list, 25, 26, 27, 38, 65, 68, 70,

107–109, 113–114, 116–117,
119, 122, 126–127, 133, 135,
138, 144, 149, 151, 153, 157,
159, 161–163, 165, 241, 244

(diagram), 125, 172–173
shared-name, 36, 37, 218, 222, 229
shared-value, 36, 37, 220–226, 231, 256
shared-variable, 233

(class), 29, 53, 71–72, 182–184, 203,
209, 217–218, 222–223, 227,
230–233, 255–258

content: A shared-variable, 32
(object), 7, 30, 36, 37, 39, 177, 217–

224, 226, 229
attributes:

APL Extended — DIS 8485(1997) 287

1 May 1997 at 23:52

INDEX

session-a, 36
session-a-active, 36
session-a-acv, 36
session-a-event, 36
session-b, 36
session-b-active, 36
session-b-acv, 36
session-b-event, 36
shared-name, 36
shared-value, 36
state, 36

shared-variable-access-control-inquiry
(operation), 219

shared-variable-assignment
(operation), 219

shared-variable-indexed-assignment
(operation), 219

shared-variable-list, 37, 217–218, 221–
223, 228–229, 234

shared-variable-name
(class), 29, 30, 53–56, 62, 71–72

content: A list of characters, 32
shared-variable-protocol

(optional facility), 12, 39, 217–218,
221

shared-variable-reference
(operation), 219

shared-variable-reset
(operation), 223, 257, 259
(subsection), 223

shared variable access control inquiry
(operation), 78, 226

shared variable access control set
(operation), 78, 232

shared variable assignment
(operation), 78, 225

shared variable degree of coupling
(operation), 78, 229

shared variable event
(operation), 78, 234

shared variable indexed assignment
(operation), 78, 226

shared variable offer
(operation), 78, 219, 230

shared variable query
(operation), 78, 228

shared variable reference

(operation), 78, 224
shared variable retraction

(operation), 78, 231
shared variable state inquiry

(operation), 78, 233
SIC

(system command), 44, 199, 252
side-effect, 42, 53, 74
side effect, 165, 181, 188–189, 193, 210,

225–226, 230–232, 253
sign, 81

(diagram), 238–240
signal

(evaluation sequence phrase), 40–41
signal-attention, 247, 248
signal-event, 223–226, 232

(operation), 224
(subsection), 224

signal-interrupt, 44, 248
signum, 81
simple, 25

(diagram), 172
simple-array

(diagram), 112
simple-identifier

(class), 29, 30, 51, 53, 201–202, 208,
210, 212–213, 221, 255

content: A list of characters, 32
(diagram), 45, 178, 182–183, 185–

186, 188–189, 204–206, 215,
221, 227, 231–233, 256–257

simple-scalar, 25
(diagram), 111, 125–127

simple-scalars
(diagram), 173

sine
(implementation algorithm), 21,22, 95

six, 18
not cross-indexed. See page 18

small-circle
(class), 29, 30, 32, 62
(diagram), 55, 59

space
(diagram), 45, 47, 178

specific-offer, 218
stack, 33, 35, 141, 190, 201, 207, 212,

251–252, 259

1 May 1997 at 23:52

288 APL Extended — DIS 8485(1997)

INDEX

state, 36, 37, 223–226, 233
state-indicator, 34, 35, 141, 179, 190,

193, 199–201, 208, 212, 251–
252, 255, 259–260

statement
(diagram), 52, 54

statement-separator
(diagram), 44–45, 47–48, 51

statement-separator-facility
(optional facility), 12, 44, 51

stop-vector, 28, 185, 188, 199, 203, 210,
212, 214

subject-function
(diagram), 212, 214–215

sufficient-type, 25, 26–27, 70, 113–114,
144, 149, 159, 161, 166

surrogate-name, 221, 230
suspended, 201, 260
symbol

(object), 7, 33, 34–35, 183–184, 193,
202, 218, 220, 222–223, 229,
258–259, 261

attributes:
name, 33
referent-list, 33

operations:
degree-of-coupling, 222

symbol-named-by, 35, 203, 208, 229,
255

symbol-table, 34, 35, 218, 223
syntactic-unit

(metaclass), 30, 53, 60, 74
syntax-error

(class), 29, 32
Definitions, 33
Operators, 116, 119, 121, 126–127
Syntax and Evaluation, 44, 52–53,

60, 64–72
system

(object), 7, 10, 37, 218
attributes:

active-users, 37
implementation-parameters, 37
library, 37
shared-variable-list, 37

operations:
library-workspace-named, 255

related terms
implementation-algorithm, 20

system-command-line
(diagram), 250

system-function
(class), 182, 184

system-function-name
(class), 29, 30, 53, 55, 62, 65, 68, 74,

200
content: A list of characters, 32

system-function-name-token
(diagram), 57

system-name
(metaclass), 30

system-parameter, 35, 36, 136–137,
158, 193

system-variable
(class), 182, 184

system-variable-name
(class), 29, 30, 53, 55–56, 59, 62, 71–

72, 74
content: A list of characters, 32

system-variable-symbol, 193

T

table
(operation), 75, 110

table 1, 12, 15
table 2, 30
table 3, 60
table 4, 64
table 5, 116–117
table 6, 121
table 6, 121
take, 121

(operation), 77, 161
tangent

(implementation algorithm), 21,22, 95
this-owner, 34, 35, 255, 258
this-session, 35, 222–226, 228–230,

232–234
thread

(evaluation sequence phrase), 41–42
three, 18

not cross-indexed. See page 18
time-stamp

APL Extended — DIS 8485(1997) 289

1 May 1997 at 23:52

INDEX

(implementation algorithm), 22, 178
times

(implementation algorithm), 17–19,
21, 22, 25, 89, 100

(operation), 75, 89
time stamp

(operation), 77, 178
to-the-power

(implementation algorithm), 18,22, 91
token, 190

(diagram), 125
(object), 7, 29, 30, 33, 35–37, 40–42,

44, 51–54, 59–61, 64–74, 120,
126, 128, 141, 166, 182–183,
185–186, 188–189, 193–199,
201–203, 207–209, 211–212,
217, 223, 225–226, 247–248,
250–252, 257, 259

attributes:
class, 29
content, 30

related terms
token-diagram, 41

token-diagram, 41, 52, 54
tolerant-floor, 23, 82
tolerantly-equal, 23, 100, 146–147
tolerantly-less-than, 23
trace-and-stop-control

(optional facility), 12, 185–186, 188–
189

trace-display
(implementation algorithm), 22, 52

trace-vector, 28, 186, 189, 199, 203,
210, 212, 214

transfer form
(operation), 77, 192

two, 18
not cross-indexed. See page 18

type, 25, 26, 27, 68, 70, 100, 107–108,
113–114, 116–117, 119, 135,
138, 151, 153, 157, 159, 161,
163, 200, 241

(object), 25
typical-element, 25, 26, 151, 161
typical-element-for-mixed

(implementation algorithm), 22

U

underbar
(diagram), 45–46, 50

unique
(operation), 76, 142
(subsection), 194

unit-circle, 22, 81
unit-square, 19, 23, 82
unwind

(class), 29, 32–33, 44, 199, 208–209,
252

user-identification, 34, 35
user-identification-type, 39

(implementation parameter), 34
user facilities. See edit-actions, See

also enter, See also signal-
attention, See also signal-
interrupt

using
(evaluation sequence phrase), 41

V

valence-error
(class)

Defined Functions, 208
Operators, 124
Syntax and Evaluation, 65, 68

valid-axis, 26, 116, 119, 121, 138, 149,
151, 153

value
(metaclass), 30, 33, 60, 65–66, 68–71,

165, 209, 248–249, 252
value-error

(class), 29, 32
Defined Functions, 209
Definitions, 30, 33
Input and Output, 252
Mixed Functions, 141
Operators, 125
Shared Variables, 226
Syntax and Evaluation, 64–72

value-returning, 200, 209
value-set, 24
values

(diagram), 125
variable

1 May 1997 at 23:52

290 APL Extended — DIS 8485(1997)

INDEX

(class), 29, 53, 71–72, 166, 182–184,
209, 218, 230, 257–259, 261

content: An array, 32
variable-name

(class), 29, 30, 53, 55–56, 59, 62, 71–
72, 165

content: A list of characters, 32
vector, 26, 27–28, 35–37, 54, 107, 109,

114, 116, 119, 121, 127–128,
138, 144, 146, 148–149, 153,
157, 159, 178–179, 182, 210,
221, 228, 232, 248–249, 253

vector-item, 27, 116, 119, 122, 127, 138,
144, 149, 153, 155, 157, 244

vector indexing, 70

W

waiting, 183, 201
wait until

(evaluation sequence phrase), 41
when

(evaluation sequence phrase), 42
without

(operation), 77, 167
workspace

(object), 7, 34, 35, 37, 220–221, 255,
258

attributes:
existential-property, 34
owner, 34
state-indicator, 34
symbol-table, 34
workspace-name, 34

related terms
already-exists, 255
does-not-exist, 255
editable, 201
globally-erasable, 201
locally-erasable, 201
pendent, 201
suspended, 201
waiting, 201

workspace-identifier
(diagram), 255–257

workspace-name, 34, 37–38, 255, 258–
261

workspace-name-length-limit, 38
workspace-presence, 7, 34. See absent,

See also present

Z

zero, 18
not cross-indexed. See page 18

zero-digit
(diagram), 238–240

APL Extended — DIS 8485(1997) 291

1 May 1997 at 23:52

	Programming Language APL, Extended International Standards Organisation DIS 8485 (1997)
	Contents
	List of Figures
	List of Tables
	Introduction
	1 Scope and Field of Application
	1.1 Purpose
	1.2 Scope

	2 References
	3 Form of the Standard
	3.1 Form of Definitions
	3.2 Named Arrays in Examples
	3.3 Notes
	3.4 Cross-References
	3.5 General Definitions

	4 Compliance
	4.1 Conforming Implementations
	4.1.1 Required Behaviour for Conforming Implementations
	4.1.2 Required Documentation for Conforming Implementations
	4.1.2.1 Documentation of Optional-Facilities
	4.1.2.2 Documentation of Implementation-Defined-Facilities
	4.1.2.3 Consistent Extensions

	4.2 Conforming Programs
	4.2.1 Required Behaviour for Conforming Programs
	4.2.2 Required Documentation for Conforming Programs

	5 Definitions
	5.1 Characters
	5.2 Numbers
	5.2.1 Elementary Operations
	5.2.2 Number Constants
	5.2.3 Subsets of the Set of Numbers
	5.2.4 Implementation Algorithms
	5.2.5 Defined Operations

	5.3 Objects
	5.3.1 Lists
	5.3.2 Arrays
	5.3.3 Defined-Functions
	5.3.4 Tokens
	5.3.4.1 Metaclasses
	5.3.4.2 Index-List

	5.3.5 Symbols
	5.3.6 Contexts
	5.3.7 Workspaces
	5.3.8 Sessions
	5.3.9 Shared-Variables
	5.3.10 Systems

	5.4 Evaluation Sequences
	5.4.1 Evaluation Sequence Phrases
	5.4.2 Diagrams

	5.5 Other Terms

	6 Syntax and Evaluation
	6.1 Introduction
	6.1.1 Evaluate-Line
	6.1.2 Character-Diagrams
	6.1.3 Evaluate-Statement
	6.1.4 Bind-Token-Class
	6.1.5 Literal-Conversion
	6.1.6 Statement-Analysis Token-Diagrams

	6.2 Reduce-Statement
	6.3 The Phrase Evaluators
	6.3.1 Diagrams
	6.3.2 Remove-Parentheses
	6.3.3 Evaluate-Niladic-Function
	6.3.4 Evaluate-Monadic-Function
	6.3.5 Evaluate-Monadic-Operator
	6.3.6 Evaluate-Dyadic-Function
	6.3.7 Evaluate-Dyadic-Operator
	6.3.8 Evaluate-Indexed-Reference
	6.3.9 Evaluate-Assignment
	6.3.10 Evaluate-Indexed-Assignment
	6.3.11 Evaluate-Variable
	6.3.12 Build-Index-List
	6.3.13 Process-End-of-Statement

	6.4 The Form Table

	7 Scalar Functions
	7.1 Monadic Scalar Functions
	7.1.1 Conjugate
	7.1.2 Negative
	7.1.3 Direction
	7.1.4 Reciprocal
	7.1.5 Floor
	7.1.6 Ceiling
	7.1.7 Exponential
	7.1.8 Natural Logarithm
	7.1.9 Magnitude
	7.1.10 Factorial
	7.1.11 Pi times
	7.1.12 Not

	7.2 Dyadic Scalar Functions
	7.2.1 Plus
	7.2.2 Minus
	7.2.3 Times
	7.2.4 Divide
	7.2.5 Maximum
	7.2.6 Minimum
	7.2.7 Power
	7.2.8 Logarithm
	7.2.9 Residue
	7.2.10 Binomial
	7.2.11 Circular Functions
	7.2.12 And/LCM
	7.2.13 Or/GCD
	7.2.14 Nand
	7.2.15 Nor
	7.2.16 Equal
	7.2.17 Less than
	7.2.18 Less than or equal to
	7.2.19 Not equal
	7.2.20 Greater than or equal to
	7.2.21 Greater than

	8 Structural Primitive Functions
	8.1 Introduction
	8.2 Monadic Structural Primitive Functions
	8.2.1 Ravel
	8.2.2 Shape
	8.2.3 Index Generator
	8.2.4 Table
	8.2.5 Depth
	8.2.6 Enlist

	8.3 Dyadic Structural Primitive Functions
	8.3.1 Reshape
	8.3.2 Join

	9 Operators
	9.1 Introduction
	9.2 Monadic Operators
	9.2.1 Reduction
	9.2.2 Scan
	9.2.3 N-wise Reduction
	9.2.4 Duplicate
	9.2.5 Commute
	9.2.6 Each

	9.3 Dyadic Operators
	9.3.1 Outer Product
	9.3.2 Inner Product
	9.3.3 Rank operator definitions
	9.3.4 Rank operator deriving monadic function
	9.3.5 Rank operator deriving dyadic function

	10 Mixed Functions
	10.1 Monadic Mixed Functions
	10.1.1 Roll
	10.1.2 Grade Up
	10.1.3 Grade Down
	10.1.4 Reverse
	10.1.5 Monadic Transpose
	10.1.6 Matrix Inverse
	10.1.7 Execute
	10.1.8 Unique
	10.1.9 First

	10.2 Dyadic Mixed Functions
	10.2.1 Join Along an Axis
	10.2.2 Index of
	10.2.3 Member of
	10.2.4 Deal
	10.2.5 Replicate
	10.2.6 Expand
	10.2.7 Rotate
	10.2.8 Base Value
	10.2.9 Representation
	10.2.10 Dyadic Transpose
	10.2.11 Take
	10.2.12 Drop
	10.2.13 Matrix Divide
	10.2.15 Indexed Assignment
	10.2.14 Indexed Reference
	10.2.16 Without
	10.2.17 Left
	10.2.18 Right
	10.2.19 Character Grade Definitions
	10.2.20 Character Grade Down
	10.2.21 Character Grade Up
	10.2.22 Pick
	10.2.23 Identical
	10.2.24 Disclose
	10.2.25 Disclose with Axis
	10.2.26 Enclose
	10.2.27 Enclose with Axis

	11 System Functions
	11.1 Introduction
	11.2 Definitions
	11.3 Diagram
	11.4 Niladic System Functions
	11.4.1 Time Stamp
	11.4.2 Atomic Vector
	11.4.3 Line Counter
	11.4.4 Event Message
	11.4.5 Event Type

	11.5 Monadic System Functions
	11.5.1 Delay
	11.5.2 Name Class
	11.5.3 Expunge
	11.5.4 Name List
	11.5.5 Query Stop
	11.5.6 Query Trace
	11.5.7 Monadic Event Simulation

	11.6 Dyadic System Functions
	11.6.1 Name List
	11.6.2 Set Stop
	11.6.3 Set Trace
	11.6.4 Execute Alternate
	11.6.5 Dyadic Event Simulation
	11.6.6 Transfer Form

	12 System Variables
	12.1 Definitions
	12.2 Evaluation Sequences
	12.2.1 Comparison Tolerance
	12.2.2 Random Link
	12.2.3 Print Precision
	12.2.4 Index Origin
	12.2.5 Latent Expression

	13 Defined Functions
	13.1 Introduction
	13.2 Definitions
	13.3 Diagrams
	13.4 Operations
	13.4.1 Call-Defined-Function
	13.4.2 Defined-Function-Control
	13.4.3 Function Fix
	13.4.4 Character Representation

	13.5 Function Editing
	13.5.1 Evaluate-Function-Definition-Request
	13.5.2 Evaluate-Editing-Request
	13.5.3 Diagrams

	14 Shared Variables
	14.1 Informal Introduction
	14.2 Definitions
	14.3 Diagrams
	14.4 Operations
	14.4.1 Primary-Name
	14.4.2 Surrogate-Name
	14.4.3 Degree-of-Coupling
	14.4.4 Access-Control-Vector
	14.4.5 Offer
	14.4.6 Retract
	14.4.7 Shared-Variable-Reset
	14.4.8 Report-State
	14.4.9 Signal-Event
	14.4.10 Clear-Event

	14.5 Shared Variable Forms
	14.5.1 Shared Variable Reference
	14.5.2 Shared Variable Assignment
	14.5.3 Shared Variable Indexed Assignment

	14.6 Shared Variable System Functions
	14.6.1 Shared Variable Access Control Inquiry
	14.6.2 Shared Variable Query
	14.6.3 Shared Variable Degree of Coupling
	14.6.4 Shared Variable Offer
	14.6.5 Shared Variable Retraction
	14.6.6 Shared Variable Access Control Set
	14.6.7 Shared Variable State Inquiry
	14.6.8 Shared Variable Event

	15 Formatting and Numeric Conversion
	15.1 Introduction
	15.2 Numeric Conversion
	15.2.1 Numeric-Input-Conversion
	15.2.2 Numeric-Output-Conversion

	15.3 Diagrams
	15.4 Operations
	15.4.1 Monadic Format
	15.4.2 Dyadic Format

	16 Input and Output
	16.1 Introduction
	16.2 Definitions
	16.2.1 User Facilities
	16.2.2 Implementation Algorithms
	16.2.3 Prompts

	16.3 Diagrams
	16.4 Operations
	16.4.1 Immediate-Execution
	16.4.2 Quad Input
	16.4.3 Quote Quad Input
	16.4.4 Quad Output
	16.4.5 Quote Quad Output

	17 System Commands
	17.1 Introduction
	17.2 Definitions
	17.3 Diagrams
	17.4 Operations
	17.4.1 Evaluate-System-Command

	17.5 Diagrams and Evaluation Sequences

	Annex A Component Files (normative)
	A.1 Definitions of arguments and results
	A.2 Definition of functions
	A.3 Errors

	Bibliography (informative)
	Index

