IDENTIFICATION OF PARALLELISM IN NEURAL
NETWORKS BY SIMULATION WITH LANGUAGE J

Alexel N. Skurihin
Mathematics Department, Institute of Physics and Power Engineering

249020 Obninsk, RUSSIA.

Emaill: kvm@feimo.obninsk.su

Alvin J. Surkan
Department of Computer Sclence and Engineering, University of Nebraska

Lincoln, Nebraska 68588-0115 USA

Abstract

Neural networks, trained by backpropagation, are designed
and described in the language J, an APL derivative with
powerful function encapsulation features. Both the
languages J [4.6,7] and APL [5] help to identify and isolate
the parallelism that is inherent in network training
algorithms. Non-critical details of data input and derived
output processes are de-emphasized by relegating those
functions to callable stand-alone modules. Such input and
output modules can be isolated and customized individually
for managing communication with arbitrary, external
storage systems. The central objective of this research is
the design and precise description of a neural network
training kernel. Such kernel designs are valuable for
producing efficient reusable computer codes and facilitating
the transfer of neural network technology from developers
to users.
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Introduction

A neural network model consists of a processing system
with a densely interconnected network of interacting units.
The programming language J, derived from APL, includes
some especially attractive capabilities for the design and
implementation of neural networks. Among the J features
are tacit programming, function arrays, nested arrays, new
operators, and a mechanism for defining composite
functions that facilitate changing system behavior by
modifying component functions without respecifying the
composite function in which the function definition appears
[1,2,9].
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To a large extent, the expressive power of J- and APL-like
languages for the implementation of neural networks comes
from the ability of the languages to process arrays directly.
This feature is becoming increasingly important as vector
processors and parallel computing become more widely
available. Because of the parallelism in neural network
models, it is relatively easy to fine tune the necessary
defining parameters for nearly optimal performance. The
parallelism also lends itself naturally to distributed
processing. J and APL implemented simulators of the
neural nets allow the refinement and pruning of a neural
network kernel and help in locating the inherent parallelism
in the network model's structure and operation.

Because of its present popularity, we chose backpropagation
training to explore future directions for alternative parallel
implementations of neural networks. Networks were
trained for diagnosing two modes of experimental nuclear
reactor operation, namely, its steady and transient states.
Improvement in the performance of these systems is
expected to result from new methods of: (1) creating
networks, (2) modifying their structure, and (3) evaluating
networks of alternative architecture.

Beyond the need for designing and refining a neural network
kemel, there are several important reasons for identifying
parallelism in the neural network models. One reason is to
increase their speed. A second reason is to increase
robustness with respect to changes in their environment.
For example, the loss of a process or a processor in a neural
network's environment should not stop processing.

Neural Network Parallelism

Neural net models are specified by network topology, node
characteristics, and training or learning rules. These rules
instantiate an initial set of weights and indicate how
weights should be adapted to improve performance during
their use. Descriptions of neural network structures and
their representation in J is the focus of this research.
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Both J and APL descriptions of neural networks are helpful
for finding and exploiting parallelism. This enables the
implementation of SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data)
architectures.

Inherently, J has the necessary capabilities to describe
parallel simulators [1,2]. Some interesting and powerful
capabilities that J provides are tacit definition, gerunds,
forks, and hooks. Consequently, J makes it possible to
create function arrays as gerunds. This allows the
association of functions with individual layers or
subnetworks of the entire neural network. It also makes it
easy to describe the arguments of the functions.

Introducing function arrays is one effective way of
implementing parallel computation (MIMD architecture).
At first it is necessary to arrange the subnetworks within
the main network. Then there must be a specification of
the classes of connections permitted between subnetworks,
numbers, destinations, and initial strengths of connections
desired in the subnetwork before each run.

As a general rule, the connectivity remains fixed once it is
established, but the connection strengths vary in accordance
with rules for the synaptic modification chosen as the
network's learning or adaptation mechanism.

One interesting idea is the development of an algorithm that
enables evolution of the neural network structure and/or its
topology. For this purpose, genetic algorithms appear to
be a promising approach for the solution of learning or
adaptation problems and deserves careful investigation.

f_wm(f-response function, wm-weight matrix).

Each subnetwork can have quite different operating
principles. The subsystems may interact by re-entry to
form populations of subnetworks. For example, mutually
interacting oscillators [11] working together can perform
more complex functions than either could perform
separately. The specificity of each subnetwork depends on a
list of connections and their strengths. Also, it is
suggested that presynaptic and postsynaptic changes can
occur on different time scales. The changes also can be the
result of various mechanisms (for example, heterosynaptic
effects, in which activity at one synapse affects the
strengths of nearby synapses). Networks controlled be
these rules display interesting dynamic effects. Activities
of all subnetworks in the main network are calculated and
then cyclically updated simultaneously.

A simulator of neural networks must incorporate a number
of features. Those considered most relevant to the topic are
as follows:

(1) A neural network can be constructed from an arbitrary
number of subnetworks. Each subnetwork may contain one
or more layers of nodes of different kinds. Individually,
each layer may have its own rules for connectivity and
synaptic modification.

(2) A network kernel must operate in an environment or be
interfaced to manage communication with external systems.
We explore the question: Does J provide capabilities for
implementing such a kernel? In general, the answer is yes.
However, some limitations still require a detailed
examination. The J language has been found to have
significant potential for developing and evolving such a
kemnel.

NB. nd - vector contains node's distribution at layers
NB. wm — output nested array contains total weight matrix
iw0 =." wi=:''"'"'" [ p=.0 [ cn=.#nd '

iwl =.'" ml) wl =, "'*'* [ k=.,1"

iw2 =.' m2) dim =. (l+p{nd),k{nd '

iw3d =.° k =, >:k !

iwd =" wl =. wl,< (dim $ 0 )°?

iw5 =.'" m3) $. =. >{k=cn) { m2;>:m3 '

iwe =."' p =. >:p "'

iw7 =." wm=: wm,<wl °'

iw8 =.' m4) $. =, >(p=cn) { ml;>:m4 '

g _iw=. (iw0;iwl;iw2;iw3;iwd;iw5;iw6;1iw7;1iw8) v

Figure 1. Generation of initial weight matrix.
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Data Structures for Neural Net Simulation
with the J Language

The data structures used to express the operation of neural
network models are compatible with the capabilities of J.
This permits J to serve as a very general network
simulation tool. In these simulations, the user interface
provides (at the level of subnetworks, nodes, and
connections) explicit control over the structure and size of
the simulated networks. Control statements define and
name entities for each type of subnetwork. The features of
version 6.1 of J facilitate the design of the desired
network_kemel_environment interface.

Network Connection Matrix, cnm

With a sequence of executable statements, a neural network
is structured as a nested array. More precisely, the structure
is described by a boxed, nested array. In this nested
structure, (1) the external(top) level array is the
main(whole) neural network, (2) internal arrays (boxed and
nested inside the main one) are subnetworks, and (3) the
lower level has the nodes level and connections. The nodes
at each level are allocated dynamically and linked by J verbs
"Append”, "Box", "Gerund". Using these, we can construct
nested arrays, functions arrays, and boxed arrays. Each
nested array contains parameters that define the properties of
corresponding objects.

weights
0->1 0->2 0->3 0->4 1 ->N of inputs
from
another
external inputs network
1<-1 1->2 1->3 1->4 1 -> N
layer;
internal
1<-2 2<-2 2->3 2->4 2 ~> N weights
of given
network
layer,
1<-N 2<-N 3<=N N <- N
layery
Figure 2. Complete matrix of network connections
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The J implementation of the methods: (1) for the
initialization or generation of the neural network, (2) for the
implementation of the particular response function, and (3)
for the net's learning are all similar. They are integrated
with each other by appropriate choice of a network design
method. When the network's kernel design is complete, it
will be easy to construct different neural structures for

supporting paradigms such as backpropagation or
associative memory. Also, it will then be easier to
integrate subnetworks into a single main network that
provides different functions for the nodes, and to
accommodate depression and refractory periods as well as
lateral connectivity.

layer 1 n
Matrix Matrix Matrix Matrix ?
0{wm 1 ->2 1 -> 3 1 -> 4 1 ->N ?
------ > ?2 wl
?
\4
layer (N-1) -~
?
(N-2) {wm Matrix ? wl
22> (N=1) ->N ?
v
Figure 3. Complete connection structure for a feedforward network

RIGHTS

Network Structures in the Language J

One simple example of a structure useful for representing
neural network's connection matrices is shown in Figure 2
below. Let the main network consist of N layers and the
vector nd for specifying the distribution of the nodes over
the network's layers. The verb g_iw shown in Figure 1
describes the initialization of the weight matrix.
Associations between the proper response functions and
their respective layers are provided by a gerund. For
example f_wm is defined in Figure 1 at the beginning.

Parallelism Identification in the
J - Language Implementations

Implementation of neural networks in J can be structured
ideally for parallel execution. For each time step, the
processing at each node of the network is entirely
independent of that at all other nodes. The only variables
belonging to other nodes that are accessed during the
evaluation of the state of node(i) at time t are S(i,t) and
connection C(i,j) linking nodes i to j. S(j,t)'s are used for
simulating parallel execution. S(t) and S(t+1) arrays are
kept separately for each node type. This permits
simultaneous updating of all activation values at the end of
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each cycle. In an actual multiprocessor hardware
implementation, the same arrangement would permit S(t) to
be read by other processors while S(t+1) is being calculated
and written.

As a J program grows, difficulties in the construction and
understanding of the system can become difficult. One way
to overcome this difficulty is to introduce subspaces.
Experience gained to date [3] shows that it is possible to
design an Object-Oriented extended J interpreter which
performs well and is adequately supported by tracing and
browsing tools.

Beyond that, non-overlapping subspaces might be hosted on
multiple processors. The J language allows the expression
of parallel algorithms for machines with MIMD
architectures.

J - Language Implementation of the
Backpropagation Training Algorithm

As a starting point of this investigation, the basic
backpropagation [8,10] was used. For this case, Figure 3
shows the structure of the network's connections above.
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Figures 4 and 5 define two verbs g_iwm and ag_wm as variants which generate feed-forward

connections.
NB. GENERATION OF NESTED INITIAL WEIGHT MATRIX
NB. USING $. (Suite)
NB. g _iwm ''
NB. nhl - number of hidden layers
NB. n - vector contains numbers of nodes of input, hidden,
NB output layers
NB. wm - nested array contains total weight matrix
iw0 =." win=:'"'"' [ p=.0 [ cwl=.2+nhl [ cwm=.1l4+nhl’
iwl =.' ml) wl =. "''' [ k=.>:p'
iw2 =.' m2) dim =. (l+p{n),ki{n '
iwd =.! k =, >:k '
iwgd =" wl =. wl,<( (dim $§ $1+(*/dim) 2 (*/dim) ) *
(dim $ %1+ (*/dim)?2(*/dim))*(%2+?10) )y !
iwd =.' m3) $. =. >(k=cwl) { m2;>:m3 '
iw6 =" p =. >p'
iw?7 =." wr=: wm,<wl '
iw8 =.' mé4) $. =. >(p=cwm) { ml;>:m4 '
g_iwm = (iw0;iwl;iw2;iw3;iwd;iw5;iw6;1iw7;1iw8) vy
Figure 4. First variant for generating
initial network connections

Second variant of J language program that generates a nested, initial-weight matrix with the
verb ag_wm.

NB. ALTERNATE GENERATION OF NESTED INITIAL WEIGHT MATRIX
NB. USING ~: (Power)

NB. ag_wm '

NB_ * k& Kk Kk Kk k Kk IWL % % dk ke Kk v Y e vk ke sk ok ke

miw2 =.' m2) dim =: (1+p{n),k{n '

miw3 =.,' 4 =3 >:k !

miwd =."' wl =: wl,<( (dim $ %1+ (*/dim)?(*/dim))*

(dim $ %1+ (*/dim)?2 (*/dim))*($2+210))"

iwl = (miw2;miw3;miwd) : ''

NB. % e % Y % Y &k K IWM kA kKkKkkRXkARKKkk k%

miwl =,!' ml) wl =: *''' [ k=:>:p '

mins =.' iwl”: {(cwl-k) '''? '

miw6 =."' p =: >:p '

miw?7 =.' wm=: wm,<wl'

iwm = (miwl;mins;miwé;miw7) : "'

NB. AkkhkkAkkkk AG wM dhAhkkhkkhkhkhkrkkhkkkkik

miwQ =." wo=: "V ] p::O [ ewl=:2+nhl [ cwm=:14nhl '

mt0l =." iwm~:cwm '''? Y

ag_wm= (miwO;mt01l) : '?

Figure 5. Second variant for generation of

initial network connections
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The result of the action of these verbs is the neural network
weight matrix in the form of nested array. It consists of
(number_of_layers - 1) elements similar to the ones shown
in Figures 6 and 7 (the -1 diminishes the range because the

output layer does not have any connections in this non-
recurrent version). Each element contains a number of
arrays corresponding to an interlayer connection matrix.
The upper rows of the matrices represent thresholds.

Matrix
1 ->3

Matrix
1 ->2

Matrix
1 -> 4

Matrix
1 -> N

Figure 6.

Boxed nested array containing connections between

input layer and hidden layers, and output layer

0{>0{wm Matrix
22272> 1 =->2
Figure 7. Boxed array containing connection weights

between input layer and first hidden layer

To perform mathematical operations we have to open this
matrix, i.e. >0{>0{wm. Then, after it is boxed, we can

process it in reverse order. Shown below in Figure 8 is the
calculation of output of nodes for all layers of the network:

NB CALCULATION OF OUTPUTS OF NET NODES AT ALL LAYERS
NB sn_all in
NB. y. - right argument = in (in ~ boxed vector)
sn00 =" s all =: y.[ psl=:'"'"'"" [ p=:0 [ csl=:2+nhl [ csa=:1+nhl’
sn0l =." ml) sl =: *''" [ k=:0 [ csl=:<:csl '
sn02 =.' m2) sl =: s1,<( (1,>p{s_all)+/ .*(>k{>p{wm) )'
sn03 =."' k =: >:k'
sn04 =.' m3) $. =. >(k=csl) { m2;>:m3"'
sn05 =." psl=: psl,<sl '
sn06 ="' m=: p[c=:0"7
snQ7 =" tsl=: >m{>c{psl '
sn08 =.' m4) S$.=.>(c=p){ (>:m4);m5
sn09 =." m=: <:m [ ¢ =:>:¢c '
snlQ0 =."? tsl=:tsl+>m{>c{psl '
snll =.,°' $.=.m4 °
snlz =,' m5) s_all =: s_all,<(%1l+"-tsl) '
snl3 =_" p =: >:p '
snl4 =,' m6) $. =. >(p=csa) { ml;>:mé6 '
signal = (sn00;sn01;sn02;sn03;sn04;sn05;sn06;sn07;sn08;sn09;3sn10;
snll;snl2;snl3;snl4) v
Figure 8. Calculation of nodes outputs at all lavers
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Verb "signal” (see Figure 5) produces a boxed array s_all of
(number_of_hidden_layers + 2) vectors of nodes output at
each layer. For example, the number of nodes at net's
layers =: 2 2 1 then s_all for some random input values is:

and more complex network with a full coupling matrix.
This matrix specifies a unique and modifiable coupling
from each compartment of the neural model to each other
compartment as in associative memory networks. Such a
structure is implemented without any serious

OUTPUT FROM VERB: SIGNAL

complications.

A future extension of this structure will add different

function arrays to be associated with corresponding layers.

0.7 0.4

Such structure resembles object-oriented programming to
some extent. Also, the concept of subspaces is very

0.745
attractive from this object-oriented viewpoint. At present

0.56 0.54

the verbs "}" and "{" operate with nested arrays, but in

This method is extended easily. One can design both

future work the possibility of using rank ' " ' will be
explore.

recurrent backpropagation, time-lagged recurrent networks

NB. * CALCULATION OF DELTA WEIGHT MATRIX, BACK-BACKPROPAGATION *

NB. mod_class_dw '!

NB. out =~ class_dw

mo00 =." p =.>:nhl '

mo0l =.' ds=. ((>icldesire) ->p}s_all) *(>p}s_all) *{1->p}s_all) '

mo02 =.'ml) p =.<:p '

moQ3 =." class_dw=:(<(<(>_1{>p{class“dw)+(alfa*(1,>p{s_all)*/ds))
_1} (>p{class_dw)) pl class_dw '

mol04 =."'"m2) $.=.>(p=0) { ml;>m2 '

mh05 =."' m=.1l+nhl [ k=._1 [ ch=.nhl '

mh06 =.'m3) m=.<:m '

mh07 =.* ds=. (>m{s_all) *(1l->m{s_all) *(ds +/ .*(|:(}.>k{>m{wm))) *

mh08 =.* p=.m [ k=.<:k !

mh09 =.'md4) p=.<:p '

mhl0 =.' class_dw=: (<(<(>k{>p{class_dw)+(alfa*(1,>p{s_all) */ds))

k} (>pl{class_dw)) p} class_dw '

mhll =.'m5) $.=.>(p=0) { m4;>:mS5 '

mhl2 =.' ch=.<:ch '

mhl3 =.'m6) $.=.>(ch=0) { m3;>:m6 '

meld =_? flag=:0 '

mod_class_dw =. (mo00;mo01;mo02;mo03;mo04;mh05;mh06;mh07;mh08;mh09%;

mhl0;mhll;mhl2;mhl3;meld) ve
Figure 9. Calculation of the modification of network weight
matrix for each class of patterns, class_dw.

In Figure 9, sentence mh10 assigns a value to some
element of the full nested array. However, it should not be
necessary to reassign the total array in order to assign new
values to several elements as was required with Version 4.1
of the J language). It is desirable to develop new alternative
methods not requiring the reassignment all elements of the

array. It should be different from:

array_a =. new_value (index of element)} array_a .

One possible solution to this problem is to organize the
process so there is no use of the assignment operator. For
this, our program will take the following form:

----------

RESULT ¢ F,

¢« F, ¢ F; ¢ input DATA

(result =. F, ... Fy

. F, F, input_data)

where F is a function.
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But in that case our program must be executed in parallel.
A version of feedforward batch backpropagation for a
pattern recognition problem was implemented and tested.
This focused on the application of neural networks to the
monitoring and for decision making in nuclear power
plant operation.

A two-category problem is used to test network learning.
Two categories are sufficient for classifying the operating
condition data that is monitored during nuclear reactor
experiments. Patterns identified in the observed operating
parameters characterize the operating conditions. The
patterns need to be resolved into two classes. These
classes must be defined so that they discriminate reliably
between those data patterns representative of the reactor’s
steady and transient states. Temperature and neutron
power spectral densities are introduced as input vectors.
The frequency range is 0 - 1 Hz, and the layer size in the
the structure of the neural network is described by the
vector: 32 10 1,

Conclusions

Artificial neural network models are inherently highly
parallel in their structure and operation. A direct approach
to distributing their computational load is to provide a
separate processor for each network node. The operations
carried out at the different nodes are highly independent and
do not require strict synchronization.

Features already provided in the J language such as
gerunds, forks, and hooks support the implementation of
parallel simulators of neural networks. The J language
serves as a flexible tool for generating neural networks
with a variety of architectures and for modeling them
using many different simulation protocols. Such
implementations are expected to provide powerful building
blocks for design and refinement of neural networks to
achieve improved speed and robustness.

Proposed improvements of J using the idea of subspaces
[3] are expected to increase the efficiency of this language
and of its implementation on machines with MIMD
architecture.

Future Research Directions

Future directions planned for this research will address the
development of the parallel simulators of neural networks.
Equivalent simulations will be performed by J and APL
implementations. This will provide comparisons and
insights into how to benefit maximally from parallelism
of the hardware of available platforms. Also, research into
the applications of neural networks is to be expanded.

Besides applying neural networks to problems of

monitoring and decision making at the nuclear power
plants, their pattern recognition and prediction capabilities

APL Quote Quad
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will be used for addressing economic problems. Both
types of control applications will require the design of
more robust estimations of the current states and the
prediction of succeeding ones.
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