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Abstract

Neural networks, trained by backpropagation, are designed
and described in the language J, an APL derivative with
powerful function encapsulation features. Both the
languages J [4,6,7] and APL [5] help to identify and isolate
the parallelism that is inherent in network training
algorithms. Non-criticai details of data input and derived
output processes are de-emphasized by relegating those
functions to callable stand-alone modules. Such input and
output modules can be isolated and customized individually
for managing communication with arbitrary, external
storage systems. The central objective of this research is
the design and precise description of a neural network
training kernel. Such kernel designs are valuable for
producing efficient reusable computer codes and facilitating
the transfer of neural network technology from developers
to users.

Key words: neural network, backpropagation, simulation,
MIMI) architecture, function arrays, nested arrays, gerund.

Introduction

A neural network model consists of a processing system
with a densely interconnected network of interacting units.
The programming language J, derived from APL, includes
some especially attractive capabilities for the design and
implementation of neural networks. Among the J features
are tacit programming, function arrays, nested arrays, new
operators, and a mechanism for defining composite
functions that facilitate changing system behavior by
modifying component functions without respecifying the
composite function in which the function definition appears

[1,2,9].
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To a large extent, the expressive power of J- and APL-like
languages for the implementation of neural networks comes
from the ability of the languages to process arrays directly.
This feature is becoming increasingly important as vector
processors and parallel computing become more widely
available. Because of the parallelism in neural network
models, it is relatively easy to fine tune the necessary
defining parameters for nearly optimal performance. The
parallelism also lends itself naturally to distributed
processing. J and APL implemented simulators of the
neural nets allow the refinement and pruning of a neural
network kernel and help in locating the inherent parallelism
in the network model’s structure and operation.

Because of its present popularity, we chose backpropagation
training to explore future directions for alternative parallel
implementations of neural networks. Networks were
trained for diagnosing two modes of experimental nuclear
reactor operation, namely, its steady and transient states.
Improvement in the performance of these systems is
expected to result from new methods of (1) creating
networks, (2) modifying their structure, and (3) evaluating
networks of alternative architecture.

Beyond the need for designing and refining a neural network
kernel, there are several important reasons for identifying
parallelism in the neural network models. One reason is to
increase their speed. A second reason is to increase
robustness with respect to changes in their environment.
For example, the loss of a process or a processor in a neural
networks environment should not stop processing.

Neural Network Parallelism

Neural net models are specified by network topology, node
characteristics, and training or learning rules. These rules
instantiate an initial set of weights and indicate how
weights should be adapted to improve performance during
their use. Descriptions of neural network structures and
their representation in J is the focus of this research.

~ 1993 ACM 0.8g791-612-3/93 /0008 /0230 . ..$505O

Parallelism in Neural Networks 230 APL93



Both J and APL descriptions of neural networks are helpful
for finding and exploiting parallelism. This enables the
implementation of SIMD (Single Instruction Multiple
Data) and MIMD (Multiple Instruction Multiple Data)
architectures.

Inherently, J has the necessary capabilities to describe
parallel simulators [1,2]. Some interesting and powerful
capabilities that J provides are tacit definition, gerunds,
forks, and hooks. Consequently, J makes it possible to
create function arrays as gerunds. This allows the
association of functions with individual layers or
subnetworks of the entire neural network. It also makes it
easy to describe the arguments of the functions.

Inmoducing function arrays is one effective way of
implementing parallel computation (MIMD architecture).
At first it is necessary to arrange the subnetworks within
the main network. Then there must be a specification of
the classes of connections permitted between subnetworks,
numbers, destinations, and initial strengths of connections
desired in the subnetwork before each run.

As a general rule, the connectivity remains fixed once it is
established, but the comection strengths vary in accordance
with rules for the synaptic modification chosen as the
network’s learning or adaptation mechanism.

One interesting idea is the development of an algorithm lhat
enables evolution of the neural network structure and/or its
topology. For this purpose, genetic algorithms appear to
be a promising approach for the solution of learning or
adaptation problems and deserves careful investigation.

f_wm(f-response function, win-weight matrix),

Each subnetwork can have quite different operating
principles. The subsystems may interact by re-entry to
form populations of subnetworks. For example, mutually
interacting oscillators [11 ] working together can perform
more complex functions than either could perform

separately. The speciflcit.y of each subnetwork depends on a
list of connections and their strengths. Also, it is
suggested that presynaptic and postsynaptic changes can
occur on different time scales. The changes also can be the
result of various mechanisms (for example, heterosynaptic
effects, in which activity at one synapse affects the
strengths of nearby synapses). Networks controlled be
these rules display interesting dynamic effects. Activities
of all subnetworks in the main nehvork are calculated and
then cyclically updated simultaneously.

A simulator of neural networks must incorporate a number
of features. Those considered most relevant to the topic are
as follows:

(1) A neural network can be constructed from an arbitrary
number of subnetworks. Each subnehvork may contain one

or more layers of nodes of different kinds. Individually,
each layer may have its own rules for connectivity and
synaptic modification.

(2) A network kernel must operate in an environment or be
interfaced to manage communication with external systems.
We explore the question: Does J provide capabilities for
implementing such a kernel? In general, the answer is yes.
However, some limitations still require a detailed
examination. The J language has been found to have

significant potential for developing and evolving such a
kernel.

NB . nd - vector contains node’s distribution at layers
NB . wm - output nested array contains total weight matrix
iwO =.’ ~= :1111 [ P=. O [ en=. #nd ‘
iwl=. ’ml) w1=. 1111 [ k=.1 ‘
iw2 =.’ ti) dim =. (l+p{nd), k{nd ‘
iw3 =.l k =. >:k ‘
iW4 =.1 W1 =. wl, < (dim $ 0 )’
iw5 =.’ m3) $. -. >(k=cn) { m2; >:m3 ‘
iw6 =.’ P ‘. >:p ‘
iw7 =.’ wm. : Wm, <Wl 1

iw8 =.’ m4) $. =. >(p=cn) { ml; >:m4 ‘
g_iw=. (iwO; iwl; iw2; iw3; iw4; iw5; iw6; iw7; iw8) : “

Figure 1. Generation of initial weight matrix.
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Data Structures for Neural Net Simulation With a sequence of executable statements, a neural network

with the J Language is structured as a nested array. More precisely, the structure
is described by a boxed, nested array. In this nested

The data structures used to express the operation of neural
network models are compatible with the capabilities of J.
This permits J to serve as a very general network
simulation tool. In these simulations, the user interface
provides (at the level of subnetworks, nodes, and
connections) explicit control over the structure and size of
the simulated networks. Control statements define and
name entities for each type of subnetwork. The features of
version 6.1 of J facilitate the design of the desired
network.kemel.environment interface.

Network Connection Matrix, cnm

structure, (1) the extemal(top) level array is the
main(whole) neural network, (2) internal arrays (boxed and
nested inside the main one) are subnetworks, and (3) the
lower level has the nodes level and comections. The nodes
at each level are allocated dynamically and linked by J verbs
“Append”, “Box”, “Gerund”. Using these, we can construct
nested arrays, functions arrays, and boxed arrays. Each
nested array contains parameters that define the properties of
corresponding objects.

~:”m
external inputs

~’”m
layerl

~’”m
layer2

weights
of inputs
from
another
network

—

internal
weights
of given
network

—

.

*’”=
layerN

Figure 2. Complete matrix of network connections
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The J implementation of the methods: (1) for the supporting paradigms such as backpropagation or
initialization or generation of the neural network, (2) for the associative memory. Also, it will then be easier to
implementation of the particular response function, and (3) integrate subnetworks into a single main network that
for the net’s learning are all similar, They are integrated provides different functions for the nodes, and to
with each other by appropriate choice of a network design accommodate depression and refractory periods as well as
method. When the networks kernel design is complete, it lateral connectivity.
will be easy to construct different neural structures for

layer 1

1->2 ‘“i; q-El “ [.l

Matrix
O{wm

------ >

v
--

.!, . . . . . . . .

.,, . . . . .

.4! . . . . . . . .
--

layer (N-1) A

El

?

(N-2) {wm Matrix ? .1

??????> (N-1) ->N ?

v
--

Figure 3. Complete connection structure for a feed forward network

Network Structures in the Lanauaae J each cycle. In an actual multiprocessor hardware
““

One simple example of a structure useful for representing
neural network’s connection matrices is shown in Figure 2
below. Let the main network consist of N layers and the
vector nd for specifying the distribution of the nodes over
the network’s layers. The verb g_iw shown in Figure 1
describes the initialization of the weight matrix.
Associations between the proper response functions and
their respective layers are provided by a gerund. For
example f_wm is defined in Figure 1 at the beginning.

Parallelism Identification in the
J- Language Implementations

Implementation of neural networks in J can be structured
ideally for parallel execution. For each time step, the
processing at each node of the network is entirely
independent of that at all other nodes. The only variables
belonging to other nodes that are accessed during the
evaluation of the state of node(i) at time t are S(i,t) and
connection C(iJ) linking nodes i to j. S(j,t)’s are used for
simulating parallel execution. S(t) and S(t+l) arrays are
kept separately for each node type. This permits
simultaneous updating of all activation values at the end of

implementation, the same arrangemen~ would permit S(t) to
be read by other processors while S(t+l) is being calculated
and written.

As a J program grows, difficulties in the construction and
understanding of the system can become difficult. One way
to overcome this difficulty is to introduce subspaces.
Experience gained to date [3] shows that it is possible to
design an Object-Oriented extended J interpreter which
performs well and is adequately supported by tracing and
browsing tools.

Beyond that, non-overlapping subspaces might be hosted on
multiple processors. The J language allows the expression
of parallel algorithms for machines with MIMD
architectures.

J - Language Implementation of the
Backpropagation Training Algorithm

As a starting point of this investigation, the basic

backpropagation [8,101 was used. For this case, Figure 3
shows the structure of the networks connections above.
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Figures 4 and 5 define two verbs g_iwm and ag_wrn as variants which generate feed-forward
connections.

I

NB . GENERATION OF NESTED INITIAL WEIGHT MATRIX

NB . USING $. (Suite)

NB . g_iwm ‘ ‘

NE. nhl - number of hidden layers

NB . n- vector contains numbers of nodes of input, hidden,

NB output layers

NB. wm - nested array contains total weight matrix

iwO =.’ Win=:”” [ p=.O [ cwl=.2+nhl [ cwm=.l+nhl’

iwl =.’ ml) W1 =. ““ [ k=.>:p’

iw2 =.’ m2) dim =. (l+p{n),k{n ‘

iw3 =.’ k =. >:k ‘

iw4 =.’ W1 =. w1,<( (dim $ %1+(*/dim)?(*/dim)) *

(dim $ %1+(*/dim)?(*/dim))*(%2+?10) )’

iw5 =.’ m3) $. =. >(k=cwl) { m2;>:m3 ‘

iw6 =.’ p =. >:p ‘

iw7 =.’ Win=: Wmr<wl ‘
iw8 =.? m4) $. =. >(p=cwm) { ml;>:m4 ‘

g_iwm =. (iwO; iwl:iw2; iw3:iw4:iw5:iw6; iw7;iw8) : “

Figure 4. First variant for generating

initial network connections I

SecondvariantofJ languageprograrn thatgenerates anestecL initial-weightxnatrix withthe
verbag_wm.

NB . ALTERNATE GENERATION OF NESTED INITIAL WEIGHT MATRIX

NB . USING A: (Power)

NE. ag_wm ‘ ‘

NB . ********* IWL **************

miw2 =. t m2) dim =: (l+p{n),k{n ‘

miw3 =.’ k =: >:k ‘

miw4 =. ‘ W1 =: w1,<( (dim $ %1+(*/dim)?(*/dim)

(dim $ %1+(*/dim)?(*/dim)

iwl =. (miw2;miw3;miw4) : “

NB . ********* IWM ***************

miwl =. ‘ ml) W1 =: ““ [ k=:>:p ‘

reins =. ‘ iwl” : (Cwl-k) !’” ,
miw6 =.’ p =: >:P ‘

miw7 =. ‘ wm. : Wmt <Wl 1

iwm =. (miwl;mins;miw6;miw7) : “

NB . ********* AG ~ ++************

*

*(%2+?1O)) ‘

miwO =. 1 -=:1111 [ p~:O [ ewl=:2+nhl [ cwm=:l+nhl ‘

mtOl =.1 iwm”:cwm 1111 1

ag_wm=. (miwO;mtOl) : “

Figure 5. Second variant for generation of

initial network connections
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The result of the action of these verbs is the neural network output layer does not have any connections in this non-
weight matrix in the form of nested array. It consists of recurrent version). Each element contains a number of
(number_of_layers - 1) elements similar to the ones shown arrays corresponding to an interlayer connection matrix.
in Figures 6 and 7 (the -1 diminishes the range because the The upper rows of the matrices represent thresholds.

O{wm
------ >

Figure 6. Boxed nested array containing connections between

input layer and hidden li~yers, and output layer

O{>o{wm nMatrix
????> 1->2

I Figure 7. Boxed array containing connection weights

between input layer ancl first hidden layer

To perform mathematical operations wehave toopenl this process it in reverse order. Shown below in Figure 8 is the
matrix, i.e. >O{>O(wm. Then, after itis boxed, we can calculation ofoutput ofnodes foralllayers ofthenetwork:

NB . CALCULATION OF OUTPUTS C)F NET NODES AT ALL LAYERS

NB . sn all in

NB . Y.–- right argument = i,n (in - boxed vector)

snOO =.’ s_all =: y.[ PSI=:!lI1 [ p=:O [ csl=:2+nhl [ csa=:l+nhl’

snOl =.’ ml) S1 =: ““ [ k=:O [ CS1=*:<:CS1 ‘

sn02 =. ‘ m2) S1 =: s1,<( (l,>p{s_all)+/ .*(>k{>p{wm) )’

sn03 =.! k =: >:k’

sn04 =.’ m3) $. =. >(k=csl) { m2;>:m3’

sn05 =.’ psi=: psl,<sl ‘

sn06 =.’ m=: p [ c=: 0 ,
sn07 =.’ tsl=: >m{>c(psl ‘

sn08 =.’ m4) $.=.>(c=p) { (>:m4);m5 t

sn09 =.’ m =: <:m [ c =:>:c ‘

sn10 =.! tsl=:tsl+>m{>c{psl ‘

snll =.’ $.=.m4 ‘

sn12 =.’ m5) s_all =: s_all,<(%l+”-tsl) ‘

sn13 =. ‘ p =: >:p ‘

sn14 =.’ m6) $. =. >(p=csa) { ml;>:m6 ‘

signal =. (snOO; snOl; sn02;sn03;sn04; sn05;sn06; sn07;sn08;sn09; snlO;

snll; sn12;sn13;sn14) : ‘f

Figure 8. Calculation of nodes outputs at all layers
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Verb “signal” (see Figure 5) produces a boxed array s_all of and more complex network with a full coupling marnx.
(number_of_hidden_layers +2) vectors of nodes output at This matrix specifies a unique and modifiable coupling
each layer. For example, the number of nodes at net’s from each compartment of the neural model to each other
layers =: 221 then s_aiI for some random input values is:

OUTPUT FROM VERB: SIGNAL

0.7 0.4 0.56 0.54 0.745

compartment as in associative memory networks. Such a
structure is implemented without any serious
complications.

A future extension of this structure will add different
function arrays to be associated with corresponding layers.
Such structure resembles object-oriented programming to
some extent. Also, the concept of subspaces is very
attractive from this object-onented viewpoint. At present
the verbs “)” and “{“ operate with nested arrays, but in
future work the possibility of using rank ‘ “ ‘ will be

fhis method is extended easily. One can design both explore.

recurrent backpropagat.ion, time~lagged recurrent n;tworks

NB. * CALCULATION OF DELTA WEIGHT MATRIX, BACK-BACKPROPAGATION *

NB . mod_class_dw ‘ ‘

NB . out - class_dw

moOO =. ‘ p =.>:nhl ‘

moOl =. ‘ ds= . ( (>ic}desire) ->p}s_all) * (>p}s_all) * (1->p}s_all) ‘

mo02 =. ’ml) p =.<:p ‘

mo03 =. i class_dw=: (<(< (>_l{>p{class_dw )+(alfa* (l, >p{s_all) */ds) )

_l} (>p{class_dw) ) p} class_dw ‘

mo04 =. ’m2) $.=. >(p=O) { ml; >:m2 ‘

mho5 =.’ m=, l+nhl [ k= ._l [ ch=. nhl ‘

mh06 =. ’m3) m=. <:m ‘

mho7 =.’ ds=. (>m{s_all) *(l->m(s_all)*(ds +/ .*( I : (} .>k{>m{wm) ) ) ‘

mh08 =.’ p=. m [ k=. <:k ‘

mho9 =. ‘m4) p=. <:p T

mhlo =.’ class_dw=: (< (< (>k{>p(class_dw) +(alfa* (l, >p{s_all) */ds) )

k} (>p{class_dw) ) p} class_dw ‘

*11 =. ’m5) $.=. >(p=O) ( m4; >:m5 ‘

mh12 =.’ ch=. <:ch ‘

mh13 =. ’m6) $.=. >(ch=O) { m3; >:m6 ‘

me14 =. I flag=:O ‘

mod_class_dw =. (moOO; moOl; mo02; mo03; mo04; mh05; mh06; rnh07; mh08; mhO9;

mhlO; mhll; mh12; mh13; me14) : ‘ ‘

Figure 9. Calculation of the modification of network weight

matrix for each class of patterns, class_dw.

In Figure 9, sentence IIIh10 assigns a value to some
element of the full nested amay. However, itshould notbe

array.a =. new_value (index of element)} array_a.

necessary to reassign the total array in order to assign new One Possible solution to this problem is to organize the
values to several elements as was rectuired with Version 4.1 process sothere isnouse of the assignment operator. For

of the J language). It is desirable to develop new alternative this, our program will take the follow-hg forrn:-
methods not requiring the reassignment all elements of the

array. It should be different from:

RESULT + Fne.....+Fk- . . . . . + F2 & FI + input_DATA

I (result =. Ffl . . . Fk . . . F2 FI input_data) where F is a function.

I
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But in that case our program must be executed in parallel.
A version of fedforward batch backpropagation for a

pattern recognition problem was implemented and tested.
This focused on the application of neural networks to the
monitoring and for decision making in nuclear power
plant operation.

A two-category problem is used to test network leaning.
Two categories are sufficient for classifying the operating
condition data that is monitored during nuclear reactor
experiments. Patterns identified in the observed operating
parameters characterize the operating conditions. The
patterns need to be resolved into two classes. The.:se
classes must be defined so that they discriminate reliably
between those data patterns representative of the reactor’s

steady and transient states. Temperature and neutron
power spectral densities are introduced as input vectors.
The frequency range is O -1 Hz, and the layer size in the
the structure of the neural network is described by the
vecto~ 32101.

Conclusions

Artificial neural network models are inherently highdy
parallel in their structure and operation. A direct approach
to distributing their computational load is to provide a
separate processor for each network node. The operations
carried out at the different nodes are highly independent and
do not require sirict synchronization.

Features already provided in the J language such as
gerunds, forks, and hooks support the implementation of
parallel simulators of neural networks. The J language
serves as a flexible tool for generating neural networks
with a variety of architectures and for modeling them
using many different simulation protocols. such
implementations are expected to provide powerful building
blocks for design and refinement of neural networks to
achieve improved speed and robusmess.

Proposed improvements of J using the idea of subspaces
[3] are expected to increase the efficiency of this language
and of its implementation on machines with MIMI)
architecture.

Future Research Directions

Future directions planned for this research will address the
development of the parallel simulators of neural networks.
Equivalent simulations will be performed by J and APL
implementations. This will provide comparisons and
insights into how to benefit maximally horn parallelism
of the hardware of available platforms. Also, research into
the applications of neural networks is to be expanded

Besides applying neural networks to problems of
monitoring and decision making at the nuclear power
plants, their pattern recognition and prediction capabilities

will be used for addressing economic problems. Both
types of control applications will require the design of
more robust estimations of the current states and the

prediction of succeeding ones.
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