
From Trees into Boxes

David Steinbrook

725-L Blair Court

Sunnyvale, CA 94087

Eugene McDonnell
1509 Portola Avenue
Palo Alto, CA 94306

Abstract

This paper is a progress report on work undertaken to

include tree data structures by means of the boxed data type

available in J. Methods for displaying these boxed arrays as

trees are shown. This work is part of a larger effort to

provide a comprehensive set of facilities in J for working
with tree structures. The facilities described were at first
modelled in J and subsequently translated into C, in order to

provide a J interpreter which has trees as mtive facilities.

Thus this work also exemplifies the way in which one can

tailor the J interpreter to special needs.

Introduction

Tree structures have been used for centuries to represent
such things as families and hierarchies. They entered
science with the work of Kirchoff and Von Staudt in tlhe

1840s, and became the object of mathematical study
themselves with the work of Cayley in the latter half of the
century, who used them in the analysis of algebraical
formulas. Iverson [Iv62] discusses trees as specializations
of graphs; that is, they are graphs cmtaining no circuits and
having at most one branch entering each node. Their use in
computer algorithms gives them great current importance.
Knuth ~68] calJs trees “the most important nonlinear
structures arising in computer algorithms.”

There have been numerous attempts to provide trees in the
programming language APL in the past. The
comprehensive survey article by Ruehr gives pointers to
many of these [Ru82].

The work presented here exploits the well-known
relationship between lists of lists and trees @r71,Ry7 11,
Ed73, Mu73]. Rather than introduce a new data type, it
uses the existing boxed array of J to obtain its tree

Permlsston to copy without fee all or part of this materml IS

granted provided that the copies are not made or dlstrlbuteci for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its data appaar, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

~ 1993 ACM 0.89791.61 2.3/93 /0008 /0267.. $1 .50

representations. It ditTers from the similarly motivated
work of Nauta ~a87] in several respects, most
fundamentally in that a tree becomes a single boxed object
rather than a list of boxed lists wherein successive boxed
items in the list are used to hold the nodes at successive
levels.

This work had its origin in a desire to include trees in APL
systems. Although Iverson’s early book [Iv62] dwells at
great length on trees as data structures, APL
implementations have not provided them as a data type.
One reason for the omission was that tree structures in all
the referenced works areflat trees: the analogy in nature is
the highly artit3cial espalier, or tree forced against a wall.
Iverson envisions trees as round at each node; the dispersion
to other nodes may occur in any directiow which is to say,
with any rank and shape [Iv92]. Such rounded trees maybe
viewed as the general case, which leaves the familiar flat
trees as a subset.

In any tree, round or flat, the basic atom is called a node,
which has a value, and zero or more children. A node that
has no children is called a leaf. We can easily model flat
trees and operations upon them, then extend the model to
round trees as a proper representation for their generation
and display emerges.

For more than a decade, this work on trees proceeded on the
assumption that the way to model flat trees was to isolate
them from the rectangular arrays in APL and treat them as
a separate data* with separate facilities to manipulate
them. With the advent of J, for which C source code with
very important high level properties is available as freeware,
it became possible to go the next step, from APL models to
actual interpreter code, an~ in fact an interpreter was built
in which the tree data type had been added.

However, subsequent discussions with Iverson and Hni
~v92] about this interpreter led to the decision to set this
work (which introduced the tree as a new data type) aside
and replace it with an interpreter in which trees were
obtained as a subset of J’s existing boxed data type. This
was in part in recognition of the large overlap in

APL Quote Quad 267 Steinbrook & McDonnel/

hnctionality between the new tree primitives and existing

rectangular primitives it was also in recognition of the fact

that rounded trees are in fact extended rectangular

structures, and traditional structural verbs (such as shape

and reshape) would eventually have to extend to them.

A J interpreter has now been built in which trees and the

primitive verbs, adverbs, and conjunctions which

manipulate them are made available without adding a new

data type to the language.

Flat Tree Representation

We can show a flat tree pictorially:
Level 1

/p\
/\

Level 2
/r\ /~\

o bem Level 3

Thistreeconsists of thevalues ‘p’, ‘r’, ‘l’, ‘0’,

‘b’, ‘e’, and ‘m’, and a structure holding them in a

certain arrangement. When we describe the structure, we
find each value at a certain level, as indicated. Level 1 is
the root level. We can move along the branches of the tree
in a variety of ways. We shall use the forward walk or

preorder convention [Kn68], in which we begin at the root

and go along the left branch until we reach a lest recording

the level of each node we meet as we are moving down.

When we reach a leaf we go back to the preceding node and

take the next branck if there is one; if there is none, we go

back to the next higher node, and so on. For the tree

shown, we proceed as follows:

Start at value p Append 1 1
Go down to vaJue r Append 2 12

Go down to value o Append 3 123

Go up to value r

Go down to value b Append 3 1233

Go up to value r

Go up to value p

Go down to value 1 Append 2 12332

Go down to value e Append 3 123323

Go up to value 1

Go down to value m Append 3 1233233

Go up to value 1

Go up to value p

End

The list we end with is crdled a depth list. Iverson referred
to it asa precedence vecror [Iv62]. It gives the depth of
each node we meet as we go down the tree along the
leftmost branch we haven’t yet taken. It can be shown that

the depth list characterizes the structure of the tree

uniquely. Each item in the depth list gives the depth of the
corresponding node in the order of the walk.

A connection table is a directed graph representation of the

same structure, and is easily derived from the depth list.

The verb CD produces a connection table from a depth list.

CDd=. 1233233
0100100
0011000
0000000
0000000
0000011
0000000
0000000

A third representation of tree structure used extensively by

Iverson provides a basis for tree indexing. The

representation is the left list, familiar from scientific papers
as the numeric labels (most often using origin 1) attached to
outlines. The verb LD produces a left list (in zero origin)

from a depth list.

]C=. LD d

Jo o 000 001 01 010 011

The open of the fomum.cl entries in a left list reveals the
origin of the term:

> “:&. > c
o
00
000
001
U1
010
011

The same tree structure can be shown with the values in
each node replaced by the order in which each f~st appears
in a forward walk:

/O\
/\

/l\ /4\
2 356

A simple explanation of the construction which is the basis
of this paper can be given in terms of a depth list d of

integers and a value list v of boxed items. The depth list is

already defined.

d
1233233

For the value list we’ll box the letters of the word

From Trees into Boxes 268 APL93

probl en using the verb bs, which boxes the atoms of its
argument:

bs =. <“O
Iv=. bs ‘problem’

4t I 1, I I

[I 1 I I I I 1

Imagine a dyadic verb entree which takes as left

argument a depth list d and as right argument a value list v,
producing a boxed array T corresponding to the tree shown
above:

IT =. d entree v

II I 1 1

p‘m❑
L 1

T is an atom with contents a list of three boxes: the value at
the root, and its two child nodes. The two child nodes are
subtrees eaeh of which has two child nodes. These are leaf
nodes (have no children).

Tree Display

There are several dii%erentways to display a tree. The two
ways provided here are the out line form and the chart

form. The verb outline, given a noun such as T, displays
it in the form of a table of contents, in which the amount of
indentation from the lefi margin corresponds to the level of
the node (as in section, sub-seetion, sub-sub-sectiom and so
forth):

outline T

P
r

:
1

e
m

The verb out line may be controlled in detail through a
lett argument which affeets the amount of indentation, and
the presence and type of left list lakls affixed to the display.

The verb chart, applied to T, displays it in the form of an
organization chart in which the root node is shown at the
top, and successively lower-level nodes in successively
lower regions of the display:

chart T

P
r 1

0 bem

The verb chart also has a dyadic case which allows stages

in the generation of final output to be captured in the result.

Form of Arrays

The monad form ~u89], applied to any boxed array,

returns an array of the same depth structure in which the
level of depth of each item appears instead of the value of
the item. We call this the form of the array, where form is
the depth analog of shap.

form T

2

—
El3

no
44 DIl3

no
44

Applying the verb flat ten ~u89] to any boxed array
removes the depth structure and presents the items at the
first level of depth. When applied to a tree, the verb
flat ten gives a list of boxes containing the values in the
order of items in the depth list:

flatten T
) 1

problem
I I I I I I I I

The verb flat ten, applied to the form of a tree, yields the
boxed level numbers as a list, Opening this list (with>)

and decrementing the result (with<:) yields the depth list:

<: >flatten form T
1233233

Just as shape has a dyadic case called reshape, so the dyadic
easeof~orm is called reform. The verb reform ~u89],

with left argument a form and right argument a list of boxed
values, yields an array with form corresponding to the left
argument, and values taken from the right argument.

APL Quote Quad 269 Steinbrook & McDonnell

(form T) refo~m <“0 i.7

I I

II I I 11

The Implementation

Source code forthe Jinterpreter isavailable free. This
makes it an atiaet.ive vehicle for experiments of the kind we
envisioned. The J source code is written with the aid of a
set of C preprwessor definitions and macro instructions
which augment the expressive power of C, enforce
uniformity, and increase readability ~u90]. It also makes
it possible for a non-systems programmer to undertake
serious system programming tasks, which is what we have
done.

There is a facility in J analogous to the I-beam of APLV60,
but with a difference. The foreign conjunction (! :)
provides an open-ended set of facilities. intended primarily
for communicating with the host system as well as with the
keyboard and with the screen. The arguments are typically
nonnegative integers, and facilities associated with a
particular set of tasks have the same left argument. Thus,
the left argument for session operations is O, for file
operations is 1, for workspaces is 2, for names is 4, and so
forth. The right arguments are similarly assoeiat~ where
possible, with similar operations. For example, the verb to
enda session is O! :55; toeraseafileis 1! :55; to erase

an objeet from a saved workspace is 2 ! :s 5; and to erase an
object from the current workspace is 4 ! :s 5.

This foreign conjunction may also be us@ as in our ease, to
provide special facilities unique to our needs. It is
straightforward to add to a table in the interpreter an entry
which defines new left and right arguments for this
conjunction. We have taken the lefl argument 12 to define
a family of tree verbs, so that 12 ! : n, for some integer n,

signifies one of the tree verbs.

We have defined a great many special tree primitives, in
order to facilitate experimentation. These are provided to
the user, not only as casesof the 12 ! : n verb, but also with
a suite of given names, that is, names ending with a colom
one for each case of 12 ! : n. Such names ean be assigned
only onw, thereafter an attempt to reassign the name will be
rejected (unless the name has been erased sinw being
assigned).

As is usual in this kind of design, the process begins with
the making of a J model for the verb we desire. After we
are convinced that the model performs as we wish the
primitive to do, we translate the J model into the high level
C available through the J interpreter.

To add tree verbs to the J interpreter is straightforward.

example, the first entry in our C file reads:

case XC (12,0) : R CDERIV(CIBEAM,

Form, Reform, RMPXL, RMAXL, RMAXL) ;

For

This says that we are adding a new ! : case, using the C
primitive case within a switch statement. XC eneodes

the left and right arguments 12 and O. R is shorthand for

the C RETUFW primitive. CDERIV derives a verb from a

Conjunetiow the conjunction being CI BEAM (that is, ! :).

The monad and dyad cases of the derived verb are Form

and Ref o ru respectively; the rank of the momd is
maximum (RMAXL), as are the left and right ranks of the

dyad. A large amount of system programmer apparatus is
secreted in XC, CDERIV, and CI BEAM, that we don’t have
to worry about.

The J model defines form as a special case of the verb
f 01, having fixed left argument O. Its text is:

($y.)$ o fol y.

The verb $ stands for the monad shape and the dyad
reshape. The verb f 01 has a simple definition which we
need not discuss here.

The C version adheres closely to the J version. The
convention used is that in a monad the name w refers to the
argument. A verb definition typically has a few lines of
preliminary code, having to do with allocating storage for
the C function, providing temporary name definition, value
and type tes@ and ends with some cleanup code to
deallocate the temporary storage. In the easeof the form

verb, the line of C code corresponding to the J text is as
follows:

z=reshape (shape (w) , fol (zerofw)) ;

Aside from converting symbols to mmes, and adapting to
C’s prefix notatiom this is identieal to the J code. The
macros provided for the J interpreter make writing in C very
close to writing in J.

Facilities for Tree Manipulation

The following list gives the name of each facility we have
provid~ and a short description of its purpose. We intend
to provide a finther paper to deseribe these in more detail.

From Trees into Boxes 270 APL93

Amend:

Behead:

Cat:

Catalog:

CD:

Cha~t:

Conceal:

Curtail:

DC:

DF:

DL :

Disperse:

Drop:

FD :

Flatten:

Form:

From:

Gather:

GCD :

Graft:

Head:

Ic:

IndOf:

Invert:

Item:

LCM :

LCat:

LD :

Latin:

LeafScan:

Level:

Locate:

Match:

Member:

NodeFrom:

NodeTF:

NodeTo:

Normal:

Nub :

NubS :

Outline:

OverTake:

PathFrom:

Pervade:

Prune:

Reform:

Repeat:

Reshape:

Reverse:

Replace subtreeat given h)cation with another

Dropthef~stitem

Catenate argument treesassubtreesat theroot

Generate left list indices for argument path

Collectiontablefrom depthlist

Display as organization chart (levels tc~pdown)

Drop levels from root (+) or leaves (-)

Drop the last item

Depth list horn Connection table

Depth list from Form

Depth list fi-om Left list

Expression from token tree (see Gather:)

Drop indicated items

Form from depth list

Remove boxing structure (depth ravel)
Return boxing structure (depth shape)
Select nodes, leaves, paths, and other extracts
Token tree from expression (see Disperse:)

Intersection of argument depth lists (see LCM:)

Introduce subtree at node
Return the first item
Item count (number of subtrees at the root)
Index of, dyadic iota for tree arguments
Transpose: tree to forest or forest to tree
Adverb to apply a verb to items (subtrees)
union of argument depth lists (see GCI):)

Conjunction catemtes trees at given level
Left list from depth list
Catenate tree arrays below new (empty) root
Conjunction; verb consolidates from Ieiaves
Select by level
Adverb returns node indices for selection verb
Two trees match in form and content
tfnode or item is contained in argument
Select subtree from given node to leaves
Select subtree to and from given node
Select subtree to and including given node
Normalize depth list
Return unique items (subtrees at the mot)
Return Boolean list to select unique items
Display tree as outline (levels left to ri.gM)
Tree with empty nodes based on depth supplied
Select subtree with given path
Adverb to apply any verb to boxed argument(s)
Remove a subtree from a tree
Impose new boxing stmcture (depth reshape)
Repeat items (snbtrees at the root)
Recycle items (subtrees at the root)
Reverse items (subtrees at the root)

Root Scan: Adverb applies verb along paths from the mot
Rotate: Rotate items (subtrees at the root)
Tail: Return last item
Take: Return indicated items (head or tail) or subtree
Tree: Test depth list for tree connectivity

J Listings

The verbs presented in this paper are here listed, and in
cefiain cases, annotated.

Form Verbs

The form verbs are form. flatten, and reform. All

were originally written in the SAX system (Sharp APL for
UNIX) using direet definition. In J. the agenda conjunction
(@.), with its embedded case statement, is a good
mechanism for these concise definitions. The test verb in
Ihe right argument of agenda takes the place of the middle
expression in the direct definition. A Oor 1 result of this
test selects the first or the second verb in the gerund lefi
argument. The general expression for this binary switc~
vl’v2 1?. test, appears in the subverbs of f o rm and
r e f o rq in f 1 a t t en itself, and in various other verbs to
follow.

Form
form= .$@] $ O&fl@l
fl=. [‘f2@. (boxed@])
boxed= .32&= @(3!:O)
f2=. fl”o’ (>:@[
ftz= , 0: = #@$

Flatten
flatten=.<’ (;@

Reform
reform= o< ’’O@ [r:
rrf=. i.@(#@])e.

fl&. >])@. (ft2E!l)

flatten&. >@,)) @boxed

&>$@[$, @(([rrfl)<; .11)
+/\@ (O:, ,@(count’’O@ [))

rl=. rlgl’r2@. (boxed@[)
rlgl=. >@ ({.@])
boxed= .32&=@ (3! :0)
r2=. reform’ r2g2@. r2t
r2g2=. <@(>@[rl 1)
r2t=. O:=(#@($@ [))

count=. 1: ‘ (+/@count&>) @boxed

Depth Conversion Verbs

The depth conversion verbs treat the depth list as reference
representation for tree structure. They convert a depth list
to the three alternate forms: left list, connection table, and
fore, their inverses are also supplied. We adopt a 2-letter
naming convention: the first letter is a descriptor for the
result, and the second a descriptor for the argument. The
letter D, which appears in all names (either as argument or
as result), stands for depth list c stands for connection
table; L stands for left list; and F stands for form.

Connection Table from Depth List

The verb CD produces a connection table from a depth list.

cD=. </\&. l.@(</-@(i. @$) * </-)

APL Quote Quad 271 Steinbrook & McDonnell

Depth List from Connection Table

The inverse verb, DC, transforms a connection table to a

depth list. It is based on the pairwise difference fork }. -}:

and appears as three verbs for clarity of presentation:

p=.].-}:
DCf=.O:, }.@>: @(i. ’’l&l@ l:)
DC=. >:@(+/\@ (l:<. O:, p@DCf))

Depth List from Left List

The verb DL converts a left list to a depth list:

DL=. #&>

Left List from Depth List

The inverse verb, LD, takes as argument a depth list and
returns a left list (in zero origin). The depth list is a list of
numbers, and the left list is a list of boxes (becausethe
items contain lists of varying lengths). For example, for a
depth list 1 2 3 3 2 3 3, the result is

I I I 1

000[000001[01 010 011

We assume the argument list has at least one element, that
the leading item is 1, that all items are positive, and that an
item is no more than 1 greater than its predecessor. A
depth validation verb (Tree:) that tests for precisely these

constraints is a part of the proposed set of tree facilities.

Let us construct an explicit definition for the verb, which we
call ELD. The initial resul~ true for all valid arguments, is

a boxed one-element list O

Z=. <,()

We fall through if the result is shorter than the argument
(i.e. more result is needed) otherwise go to the end (the
result is finished):

LO)$. =.>((#z) =#y.)($. ;LZ

Obtain the current and previous elements of the argument

“e=. (1 O+#Z) {y.—

For the initial value of the next element of the resdk use the
enrrent element of the argument to take from the open of
the previous result. For example, if the previous result
element is O 1 2 and the new argument element is 1,yield
O; ifthe argument is 2, yield O 1; if3, yield O 1 2; and if
4,yield O 1 2 0.

r= .({: e){.>{: z

Add one to the last element of this if the current value of the
argument is less than or equal to the previous value. For
example, if the previous and current values are 3 1, yield
l;if3 2,yield0 2;if3 3,yield0 1 3;andif 3 4,

yield O 1 2 0.

~=c((>:/e)+{:r)_l} ~

Box this and catenate it to the result

Z=. z,<c

Go back to compute the next element of the result

$.=. LO

Yield the result

LZ)Z

The entire verb ELD is listed below for convenience. It
follows a definition originally proposed by R. H. Lathwell in
1979.

Z=. <ro
LO)$. =.>((#z) =#y.){$. ;LZ

e=. (_l O+#z) {y.

r=. ({: e){.>{: z

c=. ((>: /e)+{ :r)_l} r

Z=. z,<c

$.=. LO

LZ)Z

The explicit verb ELD is very close in spirit to what one

would write in APL. There is a label at the top of a loop
with a conditional branch (taken in the case of termination,
and fallen through in the case of continuation), and an
unconditional branch at the bottom of the loop. Thus in J
one can write programs like conventional APL programs. In
J, however, there is anotlwr way to write programs, akin to
the method called~inctw,.ti? {rogrmnrning, and called in J
tacit dejnition. In this meth~ one writes a program (verb)

entirely without explicit reference to the arguments, and
without the use of locaJ variables, using fimctionals (verbs,
adverbs and conjunctions) only. This method is worth
learning to exploit and we now describe a version of the
verb to convert a depth list to a left list, written in tacit
form. Because a tacit verb requires no parsing, LD is more

than three times faster than the explicit verb ELD.

We think of LD as comprising three stages: argument

preparation% for which we provide the verb pa; the

processing stage, for which we use a verb ps; and result

post-processing. for which we use a verb pr, These are used

one after the other, and we can connect the verbs with the
composition conjunction, denoted by @ . Thus we can write

LD=. pr @ ps @ pa

Within PS, we proceed by steps. At each step, we use take

based on the absolute value of the depth item. We add one
to the last element produced by ta ke if the current depth
item is less than or equal to the previous one. If we think of
the result being obtained by repeated applications of a single

From Trees into Boxes 272 APL93

dyadic verb k, we can describe the process with this pattern: ‘ “‘ “ “ - ‘

dn-lk ,.. kdlkdokdr

where d r is a catalyst representing the initial state of the

(boxed) result, but not entering into the final result; dl is

the value of the i-th item of the argument; and k is the verb

which does the processing, The items of d are the items of

the argument in reverse order, so we reverse (I .) the

argument. The result of do k dr becomes the right

argument to the next use of k, and so on. This pattern

suggests that, since the verb k is hserted behveen each

noun item, we could use the insert adverb (/) with k to

accomplish the processing. We rewrite our processing

pattern:

lastnem ctetermmea. ror example.

2 {. 021

02

3 {. 021

021

4 {. 021

0210

Its fti element has 1 added to it if the current depth list

item is less than or equal to the length of the last result

itern, after being opened.

2 (<:#) o 2 1

1

3 (<:#) o 2 1

k/ (Id) ,dr

We can’t really write this, however, because J permits amly

homogeneous arrays, and d and dr are of different types.

To get around this, we box the items of d so that we can

directly append dr to the now-boxed items. The boxed array

also means that we can’t use k directly, but must use the

verb k in composition with open k&. > (where &. is dua 1,

and > is open) as the verb to be used with the insert adverb

PS =. k&. > /

We can now define the verb pa.

pa =. ,&(<<’’)@(<’’o@ l.)

To review, the argument is reversed (I .), its items (” O) are

boxed (<). and a doubly boxed empty list (<<’ ‘) is

appended (,). Why doubly boxed? A first boxing is needed

to account for the use of dual to allow the depth list to be

joined to the initial result. A second boxing is needed

because the items of the result must themselves be boxed.

The vahte of the doubly boxed item must have tally less than

the leading item of the depth lisq since this is 1, the tally

must be O. A suitable catalyst, then, is <<’ 1.

Applying pa to a depth list argument gives us the prepared

argument, ready for processing:

pa d

I I I I I I I I 1

m
The central processing step ps uses as left argument an

element of the depth list, and as right argument the result

list accumulated so far. Open the last item of the right

argument (>@ { : @1). Use the verb take with this value as

the lefi argument. This take produces the fledgling result

item, the augend, of the proper lengt~ and with all but its

J.

4 (<:#) o 2 1

0

The addend can be formed by performing a negative take

with the left argument on this Boolean value:

_2 {. 1

01

_3 {. 1

001

_4 {. o

0000

The augend and addend can be added, yielding the new

result item. The entire process can be seen as follows:

2({. +-@[{. #@]>:[)o 2 1

03

3({. +-@[{. #@]>:[)o 2 1

022

4({. +-@[{. #@l>:[)o .2 1

0210

The verb g used dyadically produces the desired result:

g=. {. +-@[{. (<:#)

The dyadic hook (<: #) produces the result as shown in the

column Iabelled Test below. The result of ta ke ((.) with a

negative left argument (-@ [) is shown in the Addend

column. Combining the augend and the addend with add

(+) produces the Sum column:

Le@ArgAugend Test Addend Sum
1 0 1 1 1

2 02 1 01 03
3 021 1 001 022

4 0210 0 0000 0210

A verb h uses g and has as its purpose opening (>) the last

item ({ :) of the right argument(]):

APL Quote Quad 273 Steinbrook & McDonnel!

h=. [g>@{:@]

1 h<O 2 1
. ,
1.

2 h<O 2 1

03

3 h<O 2 1

022

4 h<O 2 1

0210

Now k eanbe writte% using h:

k=.],<(?h

The new verb boxes (<) the result of h and appends it to the

right argument (]). We can use k to obtain a preliminary to

the final result:

[ps @ pa) d

o 00 000 001 01 010 011

The result shown above has an extra level of boxing which

must be removed. The leading element is the catalyst, which

must also be removed. These conditions determine the post-

processing verb pr, which needs to open this array (>),

then behead h (} .).

pr =.].@>

The verb LD ean now be written:

LD=. pr@ps @pa

LD d

10 00 ooo~ool~ol 010 011

The constituent verbs of LD are listed here for referenee:

LD=. pr@ps @pa

pr=. }.@>

PS =, k&. > /

k=.],<(?h

h =. [g >@{:@]
g=. {. +-@[{. (<:#)

pa=., &(<< ’’)@ (<’’O@).)

Form from Depth List

The verb FD generates a form from a depth list. It ean be

derived very simply from entree (described below). Add

one to the iterns in a depth list using the increment verb

(>:), yielding

2344344

and box (<) the atoms (“O), yielding

When this boxed list beeomes the right argument to

entree, with the origiml depth list as the left argument,

the result is the form of the tree array with the given depth

list. This can all be achieved by defining FD as the hook

FD=. (entree <“O) (?>:

FD 1233233

I
1, I I 1 I

121

III

Ire-l 13
I 1411 MIII ml I

1)@uul

Depth List from Form

The verb DF produces a depth list from a form.

DF=. <: @>@flatten@form

Entree

The verb entree takes as left argument a depth list and as

right argument a conforming list of boxes. It returns a tree

with stmehrre corresponding to the left argument and values

ecmesponding the right argument. For example, let the

right argument be

]y=.’I’ ;’A’;’j-’ iii;1J3J;’;’ j-t;liit

1 I I I I I I \

and the left argument the depth list

X=.1233233

Then

x entree y

The definition of ent ree ~u93] is

entree=. et @ (< ’’O@[, .])

which is a composition (t?) in which a verb et is applied to

From Trees into Boxes 274 APL93

a verb which boxes (<) the items (” O) of the lefi argument

([) ad appen~ (,.) tie res~t to tie right Mgument (1).
For example, if the lefi argument is the depth list x, the

result of applying <”0 to x is

EEEEEEl
When this boxed list is appended to the boxed right

argument shown above, the result is

H11

2A

B
31 ii

2B

3i

3 ii

which is the argument that et sees. The verb et

et=. eto’etl @. ett

is an agenda in which the gerund contains two cases (et O

and et 1). The test verb et t determines which case is to be

exeeuted, and is defined as

ett=. *@#

The verb ett applies the signum (*) atop (E!) the tally (#),

and yields 1 if there are 1 or more items in the argmnenz

and O if there are no items. When there are no items in the

argument the first verb in the gerund is executed. When

there are I or more items in the argument, the second verb

in the gerund is executed.

The first verb, called et O, applied to any argument yields

the empty list.

et O=. i. @O:

The second verb, called et 1, is used recursively within the

verb et.

etl=. mask <@({:(?{. , ett!}.);.l 1

In the definition of et 1, we find a fork in which the left

verb is mas k (described below) which yields a logical list,

and the right verb is the identity verb (1), which returns its

argument unaltered. The central verb is an instance of the

cut -1 adverb (; . 1), applied to the verb

{:(?{. , et@].

This verb is also a fork in which the lefi tine selects the tail

({:) of tie hmd ({.) of tie ~gument, and appends MS to

the recursive use of et applied to the behead (} .) of the

argument. For example, if the argument is the two column

table shown above, the tail of its head is

~I

and the behead of the argument is

~

2A

3i

B

3 ii

2B

3i

3 ii

The verb et applied to this yields the two element list

mm
which is appended to the result of the left verb to produce a

result which itself is boxed, yielding the final resuh shown

above.

In the definition of the verb mas k,

mask= .(={ .)@: ({. ”1)

the head ({ .) rank-1 (“ 1) verb selects, as atoms, the

leading item of each row of its table argument, yielding

To this is applied the hook (= { .), or equals (=) hwd ({ .),

so that the head

El1

is compared for equality with the whole, yielding the logical

APL Quote Quad 275 Stehbrook & McDonnell

list

1000000

which the left argument to the verb derived from the cut – 1

adverb. On the next pass through the algorithm, the

argument is

B

2A

3i

3 f;

2B]

B

31

3 ii

The mask verb operates on the first column,

m

which is a forest (with two subtrees) and produces the

logical list

100100

When this logical list is used with the verb derived from cut

it applies to each of the subtrees, and so o% recursively,

until all nodes are processed.

The set of verbs used in defining entree is

entree =. et@(<’’O@[, . 1)
et=. et O’etl@. ett

et O=. i. @O:

etl=. mask <@({:@{. , et@} .); .l 1

ett=. *@#

mask= .(={ .)@: ({. ”1)

References

@3r71] Bro~ James A., A Generalization of APL, Ph.D.

thesis, Department of Systems and Itiormation Science,

Syracuse University, 1971

@3d73] Edwards, E. M., Generalized arrays (lists) in APL,

Proceedings APL Congress 73, Copenhagen 1973, pp 99-

105

&u89] Hui, R. K. W., SAX Models for Form, Refo~ and

Flatten. Private communication.

~u90] Hui, R. K. W., K. E. Iverson, E. E. McDonnell and

Arthur T. Whitney, APL\?. APL90 Contlerence Proceedings,

ACM, Copenhagen 1990

~u93] Hui, R. K. W., J Model of Entree, private

communication

[Iv62] Iverson, K. E.. A Programming Language, Wiley,

1962, Section 1.23 Ordered Trees. pp 45-62, and Section

3.4, Representation of Trees, pp 121-128

[h’92] Iverson, K. E., Private communication, 1992

~68] Knu~ Donald E., Fundamental Algorithms,

Section 2.3, Trees, Addison Wesley, 1968, pp 305-406

~u73] Murray, Ronald C., On tree structured extensions to

the APL language, Proceedings APL Congress 73,

Copenhagen 1973, pp 333-338

~a871 Nauta, G. C., Trees as nested arrays and the use of

under-disclose, APL87 Conference Proceedings, Dallas

1987, pp 157-162

~u82] Ruehr, Karl Fritz, A Survey of Extensions to APL,

APL82 Conference Proceedings, Heidelberg 1982, pp 277-

314

~y71] Rya.nj Jim, Generalized Lists and Other Extensions,

APL Quote-Quad 2, No. 1, 1971, pp 8-10

Colophon

This paper was prepared in Microsoft Word for Windows as

a client application in communication with J (v6,2) as a

Windows server through dynamic data exchange (DDE).

From Trees into Boxes 276 APL93

