From Trees into Boxes

David Steinbrook
725-L Blair Court
Sunnyvale, CA 94087

Eugene McDonngll
1509 Portola Avenue
Palo Alto, CA 94306

Abstract

This paper is a progress report on work undertaken to
include tree data structures by means of the boxed data type
available in J. Methods for displaying these boxed arrays as
trees are shown. This work is part of a larger effort to
provide a comprehensive set of facilities in J for working
with tree structures. The facilities described were at first
modelled in J and subsequently translated into C, in order to
provide a J interpreter which has trecs as native facilities.
Thus this work also exemplifies the way in which one can
tailor the J interpreter to special needs.

introduction

Tree structures have been used for centuries to represent
such things as families and hierarchies. They entered
science with the work of Kirchoff and Von Staudt in the
1840s, and became the object of mathematical study
themselves with the work of Cayley in the latter half of the
century, who used them in the analysis of algebraical
formulas. Iverson [Iv62] discusses trees as specializations
of graphs; that is, they are graphs containing no circuits and
having at most one branch entering each node. Their use in
computer algorithms gives them great current importance.
Knuth [Kn68] calls trees "the most important nonlinear
structures arising in computer algorithms."

There have been numerous attempts to provide trees in the
programming language APL in the past. The
comprehensive survey article by Ruehr gives pointers to
many of these [Ru82].

The work presented here exploits the well-known
relationship between lists of lists and trees [Br71,Ry71,
Ed73, Mu73]. Rather than introduce a new data type, it
uses the existing boxed array of J to obtain its tree

Permission to copy without fee all or part of this matenal is
granted provided that the copies are not made or distnibuted for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1993 ACM 0-89791-612-3/93/0008/0267...$1.50

APL Quote Quad

267

representations. It differs from the similarly motivated
work of Nauta [Na87] in several respects, most
fundamentally in that a tree becomes a single boxed object
rather than a list of boxed lists wherein successive boxed
items in the list are used to hold the nodes at successive
levels.

This work had its origin in a desire to include trees in APL
systems. Although Iverson's early book [Iv62] dwells at
great length on trees as data structures, APL
implementations have not provided them as a data type.
One reason for the omission was that tree structures in all
the referenced works are flat trees: the analogy in nature is
the highly artificial espalier, or tree forced against a wall.
Iverson envisions trees as round at each node; the dispersion
to other nodes may occur in any direction, which is to say,
with any rank and shape [[v92]. Such rounded trees may be
viewed as the general case, which leaves the familiar flat
trees as a subset.

In any tree, round or flat, the basic atom is called a node,
which has a value, and zero or more children. A node that
has no children is called a leaf. We can casily model flat
trees and operations upon them, then extend the model to
round trees as a proper representation for their generation
and display emerges.

For more than a decade, this work on trees proceeded on the
assumption that the way to model flat trees was to isolate
them from the rectangular arrays in APL and treat them as
a separate data type with separate facilities to manipulate
them. With the advent of J, for which C source code with
very important high level properties is available as freeware,
it became possible to go the next step, from APL models to
actual interpreter code, and, in fact, an interpreter was built
in which the tree data type had been added.

However, subsequent discussions with Iverson and Hui
[Iv92] about this interpreter led to the decision to set this
work (which introduced the tree as a new data type) aside
and replace it with an interpreter in which trees were
obtained as a subset of J's existing boxed data type. This
was in part in recognition of the large overlap in

Steinbrook & McDonnell

functionality between the new tree primitives and existing
rectangular primitives; it was also in recognition of the fact
that rounded trees are in fact extended rectangular
structures, and traditional structural verbs (such as shape
and reshape) would eventually have to extend to them.

A J interpreter has now been built in which trees and the
primitive verbs, adverbs, and conjunctions which
manipulate them are made available without adding a new
data type to the language.

Flat Tree Representation

We can show a flat tree pictorially:
o} Level 1
7/ \
/ \
r 1
/N /A

e} b e m

Level 2

Level 3

This tree consists of the values *p', 'r', 'l*, ‘o',
'b', 'e', and 'm!, and a structure holding them in a
certain arrangement. When we describe the structure, we
find each value at a certain level, as indicated. Level 1 is
the root level. We can move along the branches of the tree
in a variety of ways. We shall use the forward walk or
preorder convention [Kn68}, in which we begin at the root
and go along the left branch until we reach a leaf, recording
the level of each node we meet as we are moving down.
When we reach a leaf we go back to the preceding node and
take the next branch, if there is one; if there is none, we go
back to the next higher node, and so on. For the tree
shown, we proceed as follows:

Start at value p Append 1 1

Go down to value r Append 2 12

Go down to value o Append 3 123

Go up to value r

Go down to value b Append 3 1233
Goup tovalue r

Go up to value p

Go down to value 1 Append 2 12332
Go down to value e Append 3 123323
Go up to value 1

Go down to value m Append 3 1233233
Go up to value 1

Go up to value p

End

The list we end with is called a depth list. Tverson referred
to it as a precedence vector [Iv62]. It gives the depth of
each node we meet as we go down the tree along the
leftmost branch we haven't yet taken. It can be shown that

From Trees into Boxes

268

the depth list characterizes the structure of the tree
uniquely. Each item in the depth list gives the depth of the
corresponding node in the order of the walk.

A connection table is a directed graph representation of the
same structure, and is easily derived from the depth list.
The verb CD produces a connection table from a depth list.

CD d=.1 2 332 33

01001060
0011000
00000O0O0
0000O0OCGGO
0000011
0000000
0000O0CO0GO

A third representation of tree structure used extensively by
Iverson provides a basis for tree indexing. The
representation is the /eft list, familiar from scientific papers
as the numeric labels (most often using origin 1) attached to
outlines. The verb LD produces a left list (in zero origin)
from a depth list.

Je=. LD d

010 010 0 0|0 0 1/0 102 0{011

The open of the formatted entries in a left list reveals the
origin of the term:

> ":1&.> ¢
0
1

0
1

DO OD OO OO
HERREOOO

The same tree structure can be shown with the values in
each node replaced by the order in which each first appears
in a forward walk:

A simple explanation of the construction which is the basis
of this paper can be given in terms of a depth list d of
integers and a value list v of boxed items. The depth list is
already defined.

d
1233233

For the value list we'll box the letters of the word

APL93

problem, using the verb bs, which boxes the atoms of its
argument:

bs =. <"0

lv=. bs 'problem'’

7
i

[
bl |
!pro ez_rJ

Imagine a dyadic verb ent ree which takes as left
argument a depth list d and as right argument a value list v,
producing a boxed array T corresponding to the tree shown
above:

1T =. d entree v

H

I

T is an atom with contents a list of three boxes: the value at
the root, and its two child nodes. The two child nodes are
subtrees each of which has two child nodes. These are leaf
nodes (have no children).

Tree Display

There are several different ways to display a tree. The two
ways provided here are the outline form and the chart
form. The verb outline, given a noun such as T, displays
it in the form of a table of contents, in which the amount of
indentation from the left margin corresponds to the level of
the node (as in section, sub-section, sub-sub-section, and so
forth):

outline T

p
r
©
b
1
e
m

The verb out 1ine may be controlled in detail through a
left argument which affects the amount of indentation, and
the presence and type of left list labels affixed to the display.

The verd chart, applied to T, displays it in the form of an
organization chart in which the root node is shown at the
top, and successively lower-level nodes in successively
lower regions of the display:

APL Quote Quad

269

chart T

r 1
o b e m

The verb chart also has a dyadic case which allows stages
in the generation of final output to be captured in the result.

Form of Arrays

The monad form [Hu89], applied to any boxed array,
returns an array of the same depth structure in which the
level of depth of each item appears instead of the value of
the item. We call this the form of the array, where form is
the depth analog of shape.

form T

3 3

Applying the verb flatten [Hu89] to any boxed array
removes the depth structure and presents the items at the
first level of depth. When applied to a tree, the verb
flatten gives a list of boxes containing the values in the
order of items in the depth list:

flatten T

pirio|bllieim

The verb £latten, applied to the form of a tree, yiclds the
boxed level numbers as a list. Opening this list (with >)
and decrementing the result (with <:) yields the depth list:

<: >flatten form T
123232233

Just as shape has a dyadic case called reshape, so the dyadic
case of form is called reform. The verb re form {Hu89],
with left argument a form and right argument a list of boxed
values, vields an array with form corresponding to the left
argument, and values taken from the right argument.

Steinbrook & McDonnell

(form T) reform <m0 1.7

N

.
HIE

it

[=]

S

The Implementation

Source code for the J interpreter is available free. This
makes it an attractive vehicle for experiments of the kind we
envisioned. The J source code is written with the aid of a
set of C preprocessor definitions and macro instructions
which augment the expressive power of C, enforce
uniformity, and increase readability [Hu90]. It also makes
it possible for a non-systems programmer to undertake
serious system programming tasks, which is what we have
done.

There is a facility in J analogous to the I-beam of APL\360,
but with a difference. The foreign conjunction (! :)
provides an open-ended set of facilities, intended primarily
for communicating with the host system as well as with the
keyboard and with the screen. The arguments are typically
nonnegative integers, and facilities associated with a
particular set of tasks have the same left argument. Thus,
the left argument for session operations is 0, for file
operations is 1, for workspaces is 2, for names is 4, and so
forth. The right arguments are similarly associated, where
possible, with similar operations. For example, the verb to
end a session is 01 :55; to erase a fileis 1! : 55; to erase
an object from a saved workspace is 2! : 55; and to erase an
object from the current workspace is 4! : 55.

This foreign conjunction may also be used, as in our case, to
provide special facilities unique to our needs. It is
straightforward to add to a table in the interpreter an entry
which defines new left and right arguments for this
conjunction. We have taken the left argument 12 to define
a family of tree verbs, so that 12! : n, for some integer n,
signifies one of the tree verbs.

We have defined a great many special tree primitives, in
order to facilitate experimentation. These are provided to
the user, not only as cases of the 12! : n verb, but also with
a suite of given names, that is, names ending with a colon,
one for cach case of 12! :n. Such names can be assigned
only once; thereafter an attempt to reassign the name will be
rejected (unless the name has been erased since being
assigned).

From Trees into Boxes

270

As is usual in this kind of design. the process begins with
the making of a J model for the verb we desire. After we
are convinced that the model performs as we wish the
primitive to do, we translate the J model into the high level
C available through the I interpreter.

To add tree verbs to the J interpreter is straightforward. For
example, the first entry in our C file reads:

case XC(12,0) : R CDERIV(CIBEAM,
Form, Reform, RMAXI, RMAXL, RMAXL);

This says that we are adding a new ! : case, using the C
primitive case within a switch statement. XC encodes
the left and right arguments 12 and 0. R is shorthand for
the C RETURN primitive. CDERIV derives a verb from a
conjunction; the conjunction being CIBEAM (that is, ! :).
The monad and dyad cases of the derived verb are Form
and Reform, respectively; the rank of the monad is
maximum (RMAXL), as are the left and right ranks of the
dyad. A large amount of system programmer apparatus is
secreted in XC, CDERIV, and CTBEAM, that we don't have
to worry about.

The J model defines form as a special case of the verb
fol, having fixed left argument 0. Its text is:

{($y.)$ 0 fol y.

The verb $ stands for the monad shape and the dyad
reshape. The verb £o1 has a simple definition which we
need not discuss here.

The C version adheres closely to the J version. The
convention used is that in 2 monad the name w refers to the
argument. A verb definition typically has a few lines of
preliminary code, having to do with allocating storage for
the C function, providing temporary name definition, value
and type tests, and ends with some cleanup code to
deallocate the temporary storage. In the case of the form
verb, the line of C code corresponding to the J text is as
follows:

z=reshape (shape (w), fol (zero,w));

Aside from converting symbols to names, and adapting to
C's prefix notation, this is identical to the J code. The
macros provided for the J interpreter make writing in C very
close to writing in J.

Facilities for Tree Manipulation

The following list gives the name of each facility we have
provided, and a short description of its purpose. We intend
to provide a further paper to describe these in more detail.

APLS3

Amend: Replace subtree at given location with another J Ljsti ngs

Behead: Drop the first item Lo . .
The verbs presented in this paper are here listed, and in

Cat: Catenate argument trees as subtrees at the root)

Catalog: Generate left list indices for argument path certain cases, annotated.

CD: Collection table from depth list

Chart: Display as organization chart (levels top down) Form Verbs

Conceal: Drop levels from root (+) or leaves (-) The form verbs are form. flatten, and reform. All
Curtail: Drop the last item) were originally written in the SAX system (Sharp APL for
DC: Depth list from Connection table UNIX) using direct definition. In J. the agenda conjunction
DF: gegttg FSt gom Egg!;l (@.), with its embedded case statement, is a good

DL: epth list from ist mechanism for these concise definitions. The test verb in
Disperse: Expre§si9n frorg token tree (see Gather:) the right argument of agenda takes the place of the middle
Drep: Drop indicated items expression in the direct definition. A 0 or 1 result of this
FD: Form from depth list test selects the first or the second verb in the gerund left
Flatten: Remove boxing structure (depth ravel) argument. The general expression for this binary switch,
Form: Return boxing structure (depth shape) vl v2 @. test, appears in the subverbs of formand
From: Select nodes, leaves, paths, and other extracts reform in flatten itself, and in various other verbs to
Gather: Token tree from expression (see Disperse:) gollow.

GCD: Intersection of argument depth lists (see LCM:)

Graft: Introduce subtree at node Form

Head: Return the first item form=.5@1 $ 0&fl@]

Ic: Item count (number of subtrees at the root) fl=.[f2@. (boxedR])

IndOf: Index of, dyadic iota for tree arguments boxed=.32&=€(3!:0)

Invert: Transpose: tree to forest or forest to tree f2=.f1"0" (>:@[£l&.>]1)@Q. (ft2Q])
Item: Adverb to apply a verb to items (subtrees) fr2=.0: = #es

LCM: Union of argument depth lists (see GCD:) Flatten

LCat: Conjunction catenates trees at given level flatten=.<" (;@(flattens&.>Q,)) @.boxed
LD: Left list from depth list

Lamin: Catenate tree arrl;ysbelow new (empty) root Refg;?orm=_<..0@[r1&>$@[$’@(([zrf])<;.1]1)
LeafSc-:an: Conjunction; verb consolidates from leaves rrf=.i.@ (#@])e.+/\@(0:,, @ (count"0@[))
Level: Select by level rl=.rlgl r2@. (boxed@[)

Locate: Adverb returns node indices for selection verb rlgl=.>Q({.R})

Match: Two trees match in form and content boxed=.32&=@(3!:0)

Member: If node or item is contained in argument r2=.reform r2g2@Q.r2t

NodeFrom: Select subtree from given node to leaves r2g2=.<@(>€[rl 1)

NodeTF: Select subtree to and from given node rze=.0:=(#@(S€[))

NodeTo: Select subtree to and including given node count=.1:" (+/@counts>)@.boxed

Normal: Normalize depth list Depth Conversion Verbs

Nub: Return unique items (subtrees at the root) . .

NUbS : Return Boolean list to select unique items The depth conversion verbs treat the depth list as reference

representation for tree structure. They convert a depth list
to the three alternate forms: left list, connection table, and
form; their inverses are also supplied. We adopt a 2-letter
naming convention: the first letter is a descriptor for the
result, and the second a descriptor for the argument. The
letter D, which appears in all names (either as argument or
as result), stands for depth list; C stands for connection
table; L stands for left list; and F stands for form.

Outline: Display tree as outline (levels left to right)
OverTake: Tree with empty nodes based on depth supplied
PathFrom: Select subtree with given path

Pervade: Adverb to apply any verb to boxed argument(s)
Prune: Remove a subtree from a tree

Reform: Impose new boxing structure (depth reshape)
Repeat: Repeat items (subtrees at the root)

Reshape: Recycle items (subtrees at the root)

Reverse: Reverse items (subtrees at the root) . .
RootScan: Adverb applies verb along paths from the root Connection Table from Depth List

Rotate: Rotate items (subtrees at the root) The verb CD produces a connection table from a depth list.
Tail: Return last item)

Take: Return indicated items (head or tail) or subtree CD=.</\&. | . Q(</~B(1.@5) * </~)

Tree: Test depth list for tree connectivity

APL Quote Quad 271 Steinbrook & McDonnell

Depth List from Connection Table

The inverse verb, DC, transforms a connection table to a
depth list. It is based on the pairwise difference fork }.-}:
and appears as three verbs for clarity of presentation:
p=.}.-}:
DCf=.0:,}.@>:@(i."1&1@})
DC=,>:@(+/\@(1:<.0:,p@DCE))

Depth List from Left List

The verb DL converts a left list to a depth list:
DL=. #&>

Left List from Depth List

The inverse verb, 1D, takes as argument a depth list and
returns a left list (in zero origin). The depth list is a list of
numbers, and the left list is a list of boxes (because the
items contain lists of varying lengths). For example, for a
depthlist1 2 3 3 2 3 3, theresultis

010 0[O0 0 010 0 1|0 14j0 1 0j0 1 1

We assume the argument list has at least one element, that
the leading item is 1, that all items are positive, and that an
item is no more than 1 greater than its predecessor. A
depth validation verb (Tree:) that tests for precisely these
constraints is a part of the proposed set of tree facilities.

Let us construct an explicit definition for the verb, which we
call ELD. The initial result, true for all valid arguments, is
a boxed one-clement list O

z=.<,0

We fall through if the result is shorter than the argument
(i.e. more result is needed) otherwise go to the end (the
result is finished):

LO)S.=.>((#z)=#y.) ($.;1LZ
Obtain the current and previous elements of the argument
Te=.(_1 O+#z) {y.

For the initial value of the next element of the result, use the
current clement of the argument to take from the open of
the previous result. For example, if the previous result
clementis 0 1 2 and the new argument element is 1, yield
0; if the argument is 2, yield 0 1;if 3,yvield 0 1 2; and if
4,yield0 1 2 0.

r=.({: e)y{.>{: z

Add one to the last element of this if the current value of the
argument is less than or equal to the previous value. For
example, if the previous and current values are 3 1, yield
1;if3 2,yield0 2;if3 3,yield 0 1 3;andif 3 4,

From Trees into Boxes

272

yield 0 1 2 0.
o=, ((>:/e)+{:x) 1} «r
Box this and catenate it to the result
=.z,<c
Go back to compute the next element of the result
$.=.L0
Yield the result
LZ)z

The entire verb ELD is listed below for convenience. It
follows a definition originally proposed by R. H. Lathwell in
1979.

z=,<,0
LOYS.=.>((#z)=#y.) {$.;LZ
e=,(_1 O0+#z){y.
r=.({: e){.>{: z
c=.((>:/e)+{:x) 1}

z=,Z,<C
$.=.L0
LZ)z

The explicit verb ELD is very close in spirit to what one
would write in APL. There is a label at the top of a loop
with a conditional branch (taken in the case of termination,
and fallen through in the case of continuation), and an
unconditional branch at the bottom of the loop. Thus in J
one can write programs like conventional APL programs. In
J, however, there is another way to write programs, akin to
the method called functiv,...! zrogramming, and called in J
tacit definition. In this method, one writes a program (verb)
entirely without explicit reference to the arguments, and
without the use of local variables, using functionals (verbs,
adverbs and conjunctions) only. This method is worth
learning to exploit, and we now describe a version of the
verb to convert a depth list to a left list, written in tacit
form. Because a tacit verb requires no parsing, LD is more
than three times faster than the explicit verb ELD.

We think of LD as comprising three stages: argument
preparation, for which we provide the verb pa; the
processing stage, for which we use a verb ps; and result
post-processing, for which we use a verb pr. These are used
one after the other, and we can connect the verbs with the
composition conjunction, denoted by @ . Thus we can write

LD=.pr @ ps @ pa

Within ps, we proceed by steps. At each step, we use take
based on the absolute value of the depth item. We add one
to the last element produced by take if the current depth
item is less than or equal to the previous one. If we think of
the result being obtained by repeated applications of a single

APLI3

dyadic verb k, we can describe the process with this pattern:
dn-1 k ... kdil k dg k dr

where dr is a catalyst representing the initial state of the
{(boxed) result, but not entering into the final result; d; is
the value of the i-th item of the argument; and k is the verb
which does the processing. The items of d are the items of
the argument in reverse order, so we reverse (| .) the
argument. The result of dg k dr becomes the right
argument to the next use of k , and so on. This pattern
suggests that, since the verb k is inserted between each
noun item, we could use the insert adverb (/) with k to
accomplish the processing. We rewrite our processing
pattern:

k /

We can’t really write this, however, because J permits only
homogeneous arrays, and d and dr are of different types.
To get around this, we box the items of d so that we can
directly append dr to the now-boxed items. The boxed array
also means that we can't use k directly, but must use the
verb k in composition with open k& . > (where &. is dual,
and > is open) as the verb to be used with the insert adverb

(t.d) , dr

ps =. k&.> /

We can now define the verb pa.

pa =. ,&(<<"")@(<"0Q}|.)

To review, the argument is reversed (| .), its items (" 0) are
boxed (<), and a doubly boxed empty list (<<’ ') is
appended (,). Why doubly boxed? A first boxing is needed
to account for the use of dual to allow the depth list to be
Jjoined to the initial result. A second boxing is needed
because the items of the result must themselves be boxed.
The value of the doubly boxed item must have tally less than
the leading item of the depth list; since this is 1, the tally
must be 0. A suitable catalyst, then, is << .

Applying pa to a depth list argument gives us the prepared
argument, ready for processing:

pa d

3323321[}

The central processing step ps uses as left argument an
clement of the depth list, and as right argument the result
list accumulated so far. Open the last item of the right
argument (>@{ : @]). Use the verb take with this value as
the left argument. This take produces the fledgling result
item, the augend, of the proper length, and with all but its

APL Quote Quad

273

last item determined. For example.

2 {. 021
0 2

3 {.021
021

4 {. 021
0210

Its final element has 1 added to it if the current depth list
item is less than or equal to the length of the last resuit
item, after being opened.

2 (<:#) 021
1

3 (<:#) 021
1

4 (<:#) 021
0

The addend can be formed by performing a negative take
with the left argument on this Boolean value:

2 (.1
01
3 (.1
001
4 (.0
0000

The augend and addend can be added, yielding the new
result item. The entire process can be seen as follows:

2({.+-Q[{.#@]>:[)0 2 1
0 3

3({.+-@[{.8Q)>:[)0 2 1
022
4({.+-@[{.#@]>:[H0 2 1
0210

The verb g used dyadically produces the desired result:
g=. {. +-@[{. (<:#)

The dyadic hook (< : #) produces the result as shown in the
column labelled 7est below. The result of take ({ .) with a
negative left argument (~Q[) is shown in the Addend
column. Combining the augend and the addend with add
(+) produces the Sum column:

Left Arg Augend Test Addend Sum

i 0 1 1 1

2 02 1 01 03

3 021 1 001 022
4 0210 0 0000 0210

A verb h uses g and has as its purpose opening (>) the last
item ({ :) of the right argument (]):

Steinbrook & McDonnel|

>R{:Q]

ey
|
/\.
O
o

2 h<021
3 h <021
4 h <021
0210
Now k can be wriften, using h:
k=.1, <€h

The new verb boxes (<) the result of h and appends it to the
right argument (]). We can use k to obtatn a preliminary to
the final result:

(ps @ pa) d

UO‘OO‘OOO 010011

001101

The result shown above has an extra level of boxing which
must be removed. The leading element is the catalyst, which
must also be removed. These conditions determine the post-
processing verb pr, which needs to open this array (>),
then behead it (}.).

pr =. }.@>
The verb LD can now be written:

LD =.
LD d

[T
loTo OF) 00lo01
[]

The constituent verbs of LD are listed here for reference:

pr @ ps @ pa

OiJO:LO’Oii

LD =. pr @ ps @ pa

pr =. }.@>

ps =. k&.> /

k=, 1, <@h

h =. [g >@{:€]
g=.{. +~-@[{. (<:#)

pa=.,& (<< ")R(<"0Q].)
Form from Depth List

The verb FD generates a form from a depth list. It canbe
derived very simply from entree (described below). Add
one to the items in a depth list using the increment verb
(>1), yielding

2 344344
and box (<) the atoms (" 0) , yielding

From Trees into Boxes

274

uiu} N
413 4

L4

}23

|

When this boxed list becomes the right argument to
entree, with the original depth list as the left argument,
the result is the form of the tree array with the given depth
list. This can all be achieved by defining FD as the hook

FD=. (entree <"0)@>:
FD 1 2 3 32 3 3

21
13 M 3]
R

-

Depth List from Form

The verb DF produces a depth list from a form.
DF=.<:@>@flatten@form

Entree

The verb entree takes as left argument a depth list and as
right argument a conforming list of boxes. It returns a tree
with structure corresponding to the left argument and values
corresponding the right argument. For example, let the
right argument be

]y:.!Il;!A';Ii';liil;'Bl;lil;liil

ItAV1|4i1|By1]id

and the left argument the depth list
=.1233233
Then

X entree y

[

ii

The definition of entree [Hu93] is
(<"o0ef, .l
which is a composition (@) in which a verb et is applied to

entree=.et @

APLI3

a verb which boxes (<) the items (" 0) of the left argument
([) and appends (, .) the result to the right argument (1).
For example, if the left argument is the depth list x, the
result of applying <" 0 to x is

When this boxed list is appended to the boxed right
argument shown above, the result is

which is the argument that et sees. The verb et

et=.et0'etl Q. ett

is an agenda in which the gerund contains two cases (et0
and et1). The test verb et t determines which case is to be
executed, and is defined as

ett=,*Q4#

The verb ett applies the signum (*) atop (@) the tally (#),
and yields 1 if there are 1 or more items in the argument,
and O if there are no items. When there are no items in the
argument, the first verb in the gerund is executed. When
there are 1 or more items in the argument, the second verb
in the gerund is executed.

The first verb, called et 0, applied to any argument yiclds
the empty list.

et0=.1.80:

The second verb, called et 1, is used recursively within the
verb et

etl=.mask <@({:@{. , et@}.);.1]

In the definition of et 1, we find a fork in which the left
verb is mask (described below) which yields a logical list,
and the right verb is the identity verb (1). which retumns its
argument unaltered. The central verb is an instance of the
cut~1 adverb (; . 1), applied to the verb

APL Quote Quad 275

{:6f{. ,

This verb is also a fork in which the left tine selects the tail
(1 :) of the head ({ .) of the argument, and appends this to
the recursive use of et applied to the behead (} .) of the
argument. For example, if the argument is the two column
table shown above, the tail of its head is

B

et@}.

and the behead of the argument is

2|A

311

The verb et applied to this yields the two element list

B
g

which is appended to the result of the left verb to produce a
result which itself is boxed, yielding the final result shown
above.

[~]

In the definition of the verb mask,
mask=. (={.)@: ({."1)

the head ({ .) rank-1 (" 1) verb selects, as atoms, the
leading item of each row of its table argument, yielding

To this is applied the hook (={ .), or equals (=) head ({ .),
so that the head

is compared for equality with the whole, yielding the logical

Steinbrook & McDonnell

list
1000000

which the left argument to the verb derived from the cut-1
adverb. On the next pass through the algorithm, the
argument is

21A

3113

The mask verb operates on the first column,

2131312133
i

which is a forest (with two subtrees) and produces the
logical list

100100

When this logical list is used with the verb derived from cut,
it applies to each of the subtrees, and so on, recursively,
until ail nodes are processed.

The set of verbs used in defining entree is:

entree =. et@(<"0Q[,. 1)
et=.et0 etlB.ett

et0=,1.Q0:

etl=.mask <@({:@{. , et@}.);.1]
ett=.*@4#

mask=. (={.)Q@: ({."1)

References

[Br71} Brown, James A., A Generalization of APL, Ph. D.
thesis, Department of Systems and Information Science,
Syracuse University, 1971

[Ed73] Edwards, E. M., Generalized arrays (lists) in APL,

Proceedings APL Congress 73, Copenhagen 1973, pp 99-
105

[Hu891 Hui, R. K. W., SAX Models for Form, Reform, and
Flatten. Private communication.

[HuS0] Hui, R. K. W, K. E. Iverson, E. E. McDonnell and

From Trees into Boxes

276

Arthur T. Whitney, APL\?, APL90 Conference Proceedings,
ACM, Copenhagen 1990

[Hu93] Hui, R. K. W., J Model of Entree, private
communication

[Iv62] Iverson, K. E., A Programming Language, Wiley,
1962, Section 1.23 Ordered Trees, pp 45-62, and Section
3.4, Representation of Trees, pp 121-128

{Iv92] Iverson, K. E., Private communication, 1992

[Kn68] Knuth, Donald E., Fundamental Algorithms,
Section 2.3, Trees, Addison Wesley, 1968, pp 305406

[Mu73] Murray, Ronald C., On tree structured extensions to
the APL language, Proceedings APL Congress 73,
Copenhagen 1973, pp 333-338

[Na87] Nauta, G. C., Trees as nested arrays and the use of
under-disclose, APL87 Conference Proceedings, Dallas
1987, pp 157-162

[Ru82] Ruehr, Karl Fritz, A Survey of Extensions to APL,
APL82 Conference Proceedings, Heidelberg 1982, pp 277-
314

[Ry71] Ryan, Jim, Generalized Lists and Other Extensions,
APL Quote-Quad 2, No. 1, 1971, pp 8-10

Colophon

This paper was prepared in Microsoft Word for Windows as
a client application in communication with J (v6.2) as a
Windows server through dynamic data exchange (DDE).

APL93

