
Conference Record of the Fifth AXUNJal ACM symposium on Principles of Programming Languages

COMPILATION AND DELAYED EVALUATION

IN APL

by

Leo J. Guibas and Douglas K. Wyatt

Xerox Palo Alto Eesearck Center
3333 Coyote Hill Road
Palo Alto, Cal. 94304

0. Introduction

Most existing APL implementations are interpretive in
nature, that is, each time an APL statement is encountered
it is executed by a body of code that is perfectly general,
i.e. capable of evaluating any APL expression, and is in no

way tailored to the statement on hand. This costly
generality is said to be justified because APL variables are
typeless and thus can vary arbitrarily in type, shape, and

size during the execution of a program. What this

argument overlooks is that the operational semantics of an
APL statement are not modified by the varying storage
requirements of its variables.

The first proposal fox’ a non fully interpretive
implementation was the thesis of P. Abrams [II, in which
a high level interpreter can defer performing certain
operations by compiling code which a low level interpreter
must later be called upon to execute. The benefit thus
gained is that intelligence gathered from a wider context
can be brought to bear on the evaluation of a
subexpression. Thus on evaluating (.4+B)[11, only the

addition .4[11+B[11 will be performed. More recently, A.

Perlis and several of his students at Yale [9,10] have
presented a scheme by which a full-fledged APL compiler
can be written. The compiled code generated can then be
very efficiently executed on a specialized hardware
processor. A similar scheme is used in the newly released
HP/3000 APL [12].

This paper builds on and extends the above ideasin several
directions. We start by studying in some depth the two key
notions all this work has in common, namely compilation
and delayed evaluation in the context of APL. By delayed
evaluation we mean the strategy of deferring the
computation of intermediate results until the moment they
are needed. Thus large intermediate expressions are not

built in storage; instead their elements are “streamed’”in
time. Delayed evaluation for APL was probably first
proposed by Barton (see [8]).

Many APL operators do not correspond to any real data
operations. Instead their effect is to rename the elements
of the array they act upon. A wide class of such operators,
which we will call the grid selectors, can be handled by

essentially pushing them down the expression tree and
incorporating their effect into the leaf accessors.
Semantically this is equivalent to the drag-rdotig
transformations described by Abrams. Performing this
optimization will be shown to be an integral part of
delayed evaluation.

In order to focus our attention on the above issues, we
make a number of simplifying assumptions. We confine
our attention to code compilation for single APL
expressions, such as might occur in an “APL Calculator”,
where user defined functions are not allowed. Of course we
will be critically concerned with the re-usability of the
compiled code for future evaluations. We also ignore the

distinctions among the various APL primitive types and
assume that all our arrays are of one uniform numeric
type. We have studied the situation without these
simplifying assumptions, but plan to report on this
elsewhere.

The following is a list of the main contributions of this
paper.

o We present an algorithm for incorporating the

selector operators into the accessors for the leaves
of the expression tree. The algorithm runs in time
proportional to the size of the tree, as opposed to its

path length (which is the case for the algorithms of
[10] and [12]).

Although arbitrary reshapes cannot be handled by the
above algorithm, an especially important case can: that of
a conforming reshape. The reshape APB is called conforming
if PB is a suffix of A.

o By using conforming reshapes we can eliminate
inner and outer products from the expression tree
and replace them with scalar operators and
reductions along the last dimension. We do this by
introducing appropriate selectors on the product
arguments, then eventually absorbing these
selectors into the leaf accessors. The same
mechanism handles scalar extension, the convention

of making scalar operands of scalar operators
conform to arbitrary arrays.

o Once products, scalar extensions, and selectors have
been eliminated, what is left is an expression tree
consisting entirely of scalar operators and
reductions along the last dimension. As a
consequence, during execution, the dimension
currently being worked on obeys a strict stack-like
discipline. This implies that we can generate

extremely efficient code that is independent of the
ranks of the arguments.

Several APL operators use the elements of their operands
several times. A pure delayed evaluation strategy would
require multiple reevaluations.

o We introduce a general buffering mechanism, called

slicing, which allows portions of a subexpression
that will be repeatedly needed to be saved, to avoid
future recomputation. Slicing is well integrated
with the evaluation on demand mechanism. For
example, when operators that break the streaming

are encountered, slicing is used to determine the
minimum size buffer required between the order in
which a subexpression can deliver its result, and the

order in which the full expression needs it.

1

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1978 ACM 0-12345-678-9…$5.00

o The compiled code is very efficient. A minimal
number of loop variables is maintained and

accessors are shared among as many expression
atoms as possible. Finally, the code generated is
well suited for execution by an ordinary

minicomputer, such as a PDP-11, or a Data General
Nova. We have implemented this compiler on the
Alto computer at Xerox PARC.

The plan of the paper is this: We start with a general
discussion of compilation and delayed evaluation. Then we
motivate the structures and algorithms we need to

introduce by showing how to handle a wider and wider
class of the primitive APL operators. We discuss various
ways of tailoring an evaluator for a particular expression.
Some of this tailoring is possible based only on the
expression itself, while other optimizations require

knowledge of the (sizes of) the atom bindings in the
expression. The reader should always be alert to the kind

of knowledge being used, for this affects the validity of
the compiled code across reexecutions of a statement.

1. The Intentional Representation of Expressions

APL, Iike many other very high level languages, is
characterized by its ability to manipulate “large” objects.
Thus APL deals with multi-dimensional arrays, SETL [11]
deaIs with sets, LISP deals with lists, etc. The word “large”
refers to a comparison between the size of the primitive
objects of the language and the complexity of its primitive
operations on them, contrasted with the size and

complexity of the objects manipulated inside the processor
of a present-day computer. Thus an array typically
occupies several storage locations and the evaluation of an
array sum A+B in APL requires the execution of a number
of machine instructions proportional to the size of the
arrays A or B.

Note that the semantics of APL, although they completely
determine the meaning of an expression in the language,
do not fully specify how that expression is to be computed.
For example, the semantics of the language leave us free,
in evaluating A+B, to add the corresponding elements of A
and 1? in whichever order we please. Thus we can regard
APL expressions more as a specification of the result we
desire to compute, rather than as a detailed azgorithoz for

evaluation on a serial computer. For the majority of APL
operators the cleavage between what the semantics of the

language require and what the evaluator is free to choose
falls along the following lines. The semantics specify what

data operations are to be performed, i.e. how each element
of the result array depends on some of the elements of the
operand arrays. The order in which the result elements are

to be evaluated, however, that is the control of the
computation, is usually left unspecified.

We can often use this freedom in sequencing to advantage,
by matching the order in which the result may be required
(e.g. for display, according to standard APL conventions)
with the orders in which the operands

conveniently be traversed. In the traditi~n~~

most
APL

evaluators an operation is executed only after its operands
have been fully evaluated. This has the advantage
(assuming the usual convention of storing arrays in row
major format) that at any moment there is a very efficient
way of traversing the arguments of an operation (i.e. the
row major order). However, this is not the only possibility.

Suppose, for example, that we wish to display the result of

I$A+B, where A and B are evaluated matrices. Then, if we
traverse A and B in column major order, we can display the
result without ever having to generate the intermediate
array A+B. At the expense of slightly more cumbersome
traversal, we have avoided generating a possibly large

intermediate array. Furthermore we can optimize our
freedom in sequencing over the entire expression we wish
to evaluate. There is a simple way of sequencing through
A++/Bo. xC so that elements of the result can begin to be

displayed before any of the implied subexpressions have been

fully evaluated. Thus we come to the other extreme, that of
evaluation on demand, or delayed evaluation. Such

evaluation strategies have been discussed previously in the

context of very high level languages. See, for example, [3,4].

In the above description of equivalent evaluation
techniques we have not dealt with the issue of side effects.
The equivalence is valid only as long as al! operations
return proper values. This unfortunately is not always so
in APL, because of undefined forms such as 1+0, or ‘1*.5.

The traditional evaluation strategy would report an error
in computing 2+6 6 6+2 1 0, because of the division by O.

However, delayed evaluation would return 3 6, since the
division by O was never required, so it never occurred. This
raises numerous issues which we will not discuss in this

paper.

2. The Stylized Access Modes

One way to accomplish evaluation on demand is to regard
each APL expression as an object capable of responding to
certain questions. Some of the questions we may want to

ask are

1) how many dimensions do you have?
2) what is your I-th dimension?
3) what is your [l; J; . . . ;K1-th element?

This brings us to an object oriented view of expressions
analogous to that Of SIMULA [2] or SMALLTALK [5] classes,

ALPHARD [13] forms, or CLU [7] clusters. Naturally we can
arrange that the ability to respond to the above messages

is nicely obtained through recursion. Assuming that fully
evaluated arrays (such as the atoms of an expression) can
respond in the obvious way, our task is simply to associate
with each APL operator procedures for responding to the

above questions, given that the operator can ask these same

questions of its operands. For example, in 2+(A+B) the
subexpression (A+B) can respond to the request for an
element by having “+” issue requests for the appropriate
elements to A and 1?, and then use its “local expertise” to

perform the addition.

In the above scheme we have essentially regarded each APL
expression as a random access storage device. It is clear
that keeping each subexpression in a state of readiness to

provide an arbitrary element will involve very substantial
overhead. Furthermore, this ability to access elements in
random order is not frequently needed in the evaluation of
APL expressions. Much more common is the situation in

which we need all elements of an expression, one at a time,
in the order in which they would occur if the expression

had been evaluated and the corresponding array stored in
row major form (rauel order). We will name this important
way of accessing an expression rauel mode. In this mode we

wish to regard an expression as a coroutine, which upon
successive calls will deliver successive elements of the
array it represents. By restricting ourselves to highly
stylized access modes, such as ravel access, we have a much
better prospect of an efficient implementation.

In order to understand what access modes are useful, we
have to understand in detail how the various APL
operators use the elements of their operands to produce the

elements of the result. For example, for the compression
operator / it will certainly be advantageous to have its
argument be able to respond to the message “skip” as well
as to the message “next”. The argument may in fact
generate the element being skipped and just throw it away,
or it may be able to propagate the “skip” message further
down the expression to attain a real saving in the
computation. As another example, we may wish to break
the message “next” of ravel mode into two distinct
messeges: “advance” and “fetch”. The reason for this is that
several evaluated atoms (e.g. in A+BxC) may be able to
share the same accessor (further explained later) and thus
we can get by with a single “advance” message for all three

atoms.

2

The perspective offered by the above discussion is that of

associating with each node in the expression tree an access
mode. The access modes are determined from the top down.

An operator is told that the subtree it heads needs to be
accessed in a certain way. Then by knowing how the

elements of its result. depend on the operand elements, it

decides in which modes its arguments must be accessed.
Thus access modes correspond to inherited attributes, in the
sense of Knuth [6].

3. The Compilation of Streams

In this section we limit ourselves to APL expressions
containing only scalar operators. AS the reader may
suspect, handling such expressions is relatively trivial.
However, confinement to a domain where the task is well
understood will allow us to focus our attention on setting
the context for the following developments.

We will further limit the present discussion by disallowing
as nowconforrnable scalar expressions where all atoms do
not have identical shapes. We will deal with the very

important special caae of scalar atoms (which conform to
any array according to the APL rules) in section 8.
Consider how to evaluate A+BxC. A clean way of obtaining

the delayed evaluation effect is by implementing each
scalar operator such as + or x as a reentrant coroutine. A

different instance of the coroutine is used for each
occurrence of the operator in the expression. Naturally all

subexpressions (including the atoms) are accessed in ravel
mode. Unfortunately, interpreting via reentrant coroutines
is attractive only as long as the cost of a coroutine call and
return is small compared to the processing performed

between successive invocations of the coroutine. Assuming
costs for machine operations such aa are common today,
then in A+BxC for example, each element of the result
generated requires one <ddition, one multiplication, and
fourteen coroutine control transfer instructions. There are

other . hidden costs as well. Each instance of the atom
accessing coroutine, if implemented in the obvious way,
will be maintaining its own local copy of a counter and an
offset into the atom array, when clearly these variables
can be shared (and thus updated only once).

We have here the classical argument for compilation.
Before we can discuss compilation in detail, however, we
need to say a few more words about the machine model we
have in mind. We assume a stack machine with all APL
scalar operators as primitives. In addition, the execution
environment contains certain data structures specifying
how arrays are to be traversed, called accessors. The notion
of an accessor was first introduced by Perlis in [10] (where
it is called a ladder). A detailed discussion of these

structures will be given in the next section. In the context
of the current section an accessor can be thought of simply
as the index of the array element we are currently
accessing. Thus in the evaluation of A+Bx C all three atoms
can clearly share the same accessor. Our instruction

repertoire will include the instructions advance(l), which
advances accessor 1 to the next array position, and
fetch(l,a), which pushes on the stack the element
referenced by accessor 1 in atom a. It will become clear in
the next section that the above two operations can be
implemented with a few machine instructions on most
computers.

Compilation is now straightforward. Assume that we have
formed the expression tree during the lexical analysis of
the expression. In a first pass, the dimensions pass, the
conformability of the atoms is checked (and storage for
the result can be allocated if we are executing an
assignment, e.g. Z+-A+BXC). Next, in the push pass, an
aceessor is created to be shared by all atoms, and
initialized to point to the first element. In the code
generation pass a traversal of the expression tree in
endorder suffices to generate a codestream performing the
scalar computations. For the example Z+A+BXC the code
would be:

fetch(l,B)
fetch(l,c)
multiply
fetch(~,A)
add

store(l, Z)
advance.

In the above 1 denotes the shared accessor of all atoms; the
last instruction advances this accessor in preparation for
the next iteration. Note that this code is correct

irrespective of the dimensionality and size of the atoms
(albeit not of their type). This information has been
confined within 1. Note also that we have obtained the
effect of Abrams’ beating optimization with no extra work.
Finally the above code needs to be encapsulated by an

appropriate 100P, and we are ready to execute.

4. Operators that Break the Streaming

In the previous section we saw how simple it is to stream
the evaluation of an expression composed solely of scalar
operators. We now take a brief look at the other end of the
spectrum, namely operators that cause any reasonable
streaming mechanism to break down. Such operators

include @ (rotation), A , Q’ , and arbitrary subscripting [1.
The evaluation of these operators requires either a random
access mode, or partial evaluation in temporary storage.
There other cases where evaluation is necessary. For
example the argument of (monadic) I and the left
argument of / (compression) must be fully evaluated
before even the conformability can be checked. Finally,
subevaluations may be useful even when they are not
necessary. Such storage time trade offs will be taken up in
section 8. Thus the compiler generates a number of code
streams corresponding to broken subexpressions. At run
time these codestreams are invoked to replace a broken
subexpression by (possibly portions of) an evaluated atom.

5. The Universal Selector

In this section we discuss compilation of expressions
involving a subset of the selection operators of APL, as

well as scalar operators. The selection operators we will
handle are + , + , @ , $ (reversal), and [El ;E2; . . . ;ENI

(subscripting, where the E1 are arithmetic progreasions,
i.e., expressions equivalent to A+Bx 1C for some integer
scalars A, B, and C). We will name the above selection

operators the grid selectors, for reasons that will become

clear shortly. The grid selectors operate on an array
argument (the right argument, except for subscripting), by
extracting and/or renaming a portion of it. This is done
according to a second argument, the control argument (one

may consider monadic b and O to have default control
arguments). The control argument must always be fully
evaluated in order to check conformability with operations
higher up in the tree, Thus it will be convenient to think
of the control argument as being part of the selector, and
not an object to which delayed evaluation is applicable.

We can think of the elements of an array A as occupying
lattice points in a space of PPA dimensions, within a
bounding box of size PA. Note that each of the grid
selectors, when applied to A, results in an object that
occtipies a sublattice of the original lattice. In other words,
moving across any coordinate of the result array can be
viewed as moving along some set of coordinates of A, using
equal size steps. Let us invent a generalized selector, called
the uniuersal selector, that can represent any such selection
operation. Then multiple selectors applied to the same array
can be composed into a single instance of the universal

selector. Thus, if we start with an APL mzpre~sion
involving only scalar operators and grid selectors, we can
think of a (null) universal selector starting at each atom
and traversing the path to the root of the expression tree.

3

In this process the universal selector absorbs into itself
any grid selectors it encounters. We will speak of the stage
when this processing is done as the push pass. When this

process is complete, our expression will have only scalar
operators left. An instance of the universal selector will be
associated with each leaf, indicating the composition of all
selectors that must be applied to that evaluated array.

Although the composition of selectors can be most
naturally thought of as happening from the bottom up, we
will in fact carry out this process top down. The reasons
for this are twofold. Firstly the cost of the push pass now
becomes proportional to the size of the expression tree, as

opposed to the path length of the tree. Secondly we will be
able to leave with each node an instance of the universal
selector which represents the composition of all selectors
above that node. As we will see in section 8, this will

provide us with essential information needed in

storage/time trade off decisions at that node. The end
result is quite similar to the normal form for select
expressions first described by Abrams. However, the
implementation of the transformations is much less

cumbersome than Abrams’ solution.

The data structure that represents a universal selector is
called a stepper. A stepper U will be associated with every
node of the expression tree. U will represent the state of
the universal selector before the selector represented by
the node (if any) has been absorbed. A node N
incorporates itself into the stepper if it is a selector node,
and passes this stepper on to its offspring. The newly
formed stepper U is characterized by n, the rank of N’s
offspring, and four arrays q, s, d, and 1, defined over the

interval [l,n]. These arrays encode the way in which
elements of the current node partake in the formation of
the final result:

q[i] is an integer in [ljr] and denotes which
coordinate of the result array the i-th
coordinate of the current node corresponds
to; the set of all q[i] with q[i] = j is the set
of coordinates of the current node which
have been collapsed into the j-th coordinate
of the result (recall that a transpose or
subscripting may reduce the number of
dimensions)

s[i] denotes the index, along the i-th coordinate,
of the element of the current node which
contributes to tile first element of the result

(e.g. the [O;O; ...; 01 element of the result
in O-origin)

d[i] indicates by how much to move along the
i-th coordinate of the current node in order
to arrive at the next element of the result
along coordinate g[i]; (it can be negative)

l[i] indicates the size of the result along the

q[i]-th coordinate; note that l[i] = l[j] if q[i]

= W

Initially, for a null accessor at the root Rwe have n = ppR,

q[i] = i, s[i] = 0, d[i] = 1, and L[i] = Pi?[i I, for all i. Let us
now see how to incorporate various grid selectors using the
stepper structure. When stepper U is about to absorb
selector S, which in turn is applied to a node N, we will let
p denote ppN, and the array r denote PN. Primed
quantities indicate the new valuea.

1. Monadic Transpose. A monadic transpose @ can be
absorbed in U by the following simple program:

2. Dyadic ‘i%anspose. Let c[i], i in [l,p], denote the

control argument. The following program shows
how to absorb this transpose into U:

n’ + p;
FOR i IN [l,n’] DO

BEGIN
q’[i] e q[c[i]];
s’[i] + s[c[i]];
d’[i] + d[c[i]];
L’[i] + l[c[i]];
END;

3. Take. As above, let c[i] denote the control
argument. We have:

n’ + n;

FOR i IN [l,n’] DO
BEGIN
q’[i] + g[i];
s’[i] + IF c[i] <

THEN s[i] +
ELSE s[i];

$i]*(r[i]+c[i])

4. Reversal. Reversal along the k-th coordinate can
be implemented as follows:

n’ + n;

FOR i IN [l,n’] DO
BEGIN -
q’[i] 4- q[i];
s’[i] + IF i . k THEN r[i]-s[i]+l ELSE s[i];

d’[i] + IF i = k THEN -d[i] ELSE d[i];
Z’[i] + l[i];
END;

The above examples should be sufficient to illustrate how
the stepper U can absorb the various grid selectors into
itself.

Once all the steppers have stopped propagating by reaching
the leaves of the tree, the grid selectors can be completely
removed from the expression. We know from section 3 how
to compile code for a tree of scalar operators, so the
remaining issue is how to use the steppers to compile code
for accessing the evaluated atoms of the expression. Note

that each element of an atom is used at most once in
computing some element of the final result. For each atom
A there is an associated stepper U. We will use U to
compute a new data structure, called an accessor, which
will allow us to step through the elements of A in the
proper order. A itself is assumed to be stored in ravel
order. The accessor T obtained from U consists of n, the
current position into the (stored representation of the)
array A; a, the starting value of ~; and two arrays y[i] and
il[i], defined for i in [1, max q[j]]. Intuitively, y[i] denotes
the distance by which we have to increment T to obtain
the next element of A needed for computing the next

element of the result along the i-th dimension. The related
quantity ~[i] denotes the distance by which ~ has to be

incremented to attain the same goal as above, but now
assuming that we have completely cycled through all
dimensions higher than i in the result.

More formally, let the shape PA be [hl,kz,...,kn] and define

h[i] = ki+lki+2”””kn (h[n] = 1).Then for 1< i < max q[j] we

have

n’ e n;

FOR i IN [I,n’] DO

BEGIN
a’[il + u[n+l-il:

y[i] = ~ d[j]h[j], and

q[j]=i

j[i] + Jn+l-ij-

d’[i] + d[n+l-i];
Z’[i] + l[n+l-i];
END;

4

~[i] = W - ~ y[jlh[jl, and
i< j<n

a= ~ S[jlh[j].
l~<n

In order to understand the meaning of accessors, we now
describe how they are used in the code compilation,
Observe that, once the grid selectors have been removed
from the expression tree, the shapes resulting from

apPIY~ng each UIliVerd selector to its atom must be
ldentlcal. (This follows from the requirement on the

conformability of scalar operator arguments - again
disallowing scalar extension.) Let this common shape,

which is also the shape of the expression result, be

[cl,c2,...,cm]. This shape is used to form a data structure
globalto the expression, called the coordinate ladder. The

coordinate ladder is described by twc arrays, count[i] and

Lirnii[i], for i in [O,m-1]. During execution, the array
count[i] indicates the coordinates of the result element
currently being produced. The array lirnit[i] is initialized

by timit[i] * Ci, i in [II,m-1], and is constant throughout

execution. Also included is a global variable coord,

indicating the coordinate currently being worked on. Using
the coordinate ladder, an accessor T then implements the
following operations:

init(Z’): T.v + T.a (using the PASCAI. notation for

field extraction)

fetch(T,A): push on the stack the contents of [(base
address of A) + ‘~,m]; it may seem

redundant to specify both T and /l - we
are anticipating the sharing of accessors

discussed below

aduance(’1’): T.w + T.v + T. S[coord]

skip(T): T.TI + T.n + T.y[coord]; this operation

arises in the implementation of

compression and will not be treated

further in the current section

We are now ready to describe the compiled code for our
expression. Let 2’1, T2, Ts denote the list of accessors

generated during the elimination of grid selectors. The
compiled code has the form:

coord + -1;
<Initializations>;

init(T1);

.....
init(T$);

Loop: WHILE coord ~ last_coord DO
BEGIN
coord + coord+l;

courzt[coordl + O;
END:

<code for scalar operations,
as described in section 3>;

... ,.

.

Advance: advance;

.. . . .

advance;

count[coord] + courzt[coord] + 1;
IF courzt[coord] < limit[coord]

THEN GO TO LOOP
ELSE IF coord = O

THEN DONE
ELSE

BEGIN
coord + coord-l;
GO TO Advance;

END;

We will call the code following all the Advance
instructions the Universal Looper.

There are two important optimization we perform on the
above code. They are called Accessor Sharing and Coordinate
Compression; we deal with them in turn. By Accessor

Sharing we refer to the fact that the same accessor can
often be shared by several atoms in the expression. We can
accomplish this sharing as follows. An atom A which is a
descendant of some selector S in the tree will be called
visible from S, if there is no other selector on the path
from S to ,4. Add a dummy grid selector to the top of the
expression tree. An accessor is generated not by each leaf,
but rather by each selector that has a non-empty set of atoms

visible below it. When a stepper reaches this selector, it can
be used to generate an accessor that will be shared by the
set of atoms in question.

The next optimization, Coordinate Compression, is

important because it frequently happens that the applied
grid selectors affect only a few of the coordinates of the
atoms involved. Thus the ravel order in which these atoms
are stored in memory corresponds to a large extent with
the order in which they need to be accessed so as to
produce the result. Specifically, if for some coordinate c it
is true that all accessors generated have ti[c] = O (and y[c]
is not needed, i.e. there is no compression “/” along that
coordinate), then coordinate c can be merged into
coordinate c+l.

For practical APL expressions the above optimizations are
very important. Consider A+BxC, for example. All three
leaves A, b’, and C are visible from the dummy selector at
the root, thus they can all share the same accessor T.
Coordinate compression will then collapse the ppA loops
implicit in T and the coordinate ladder into just one huge
loop that goes around x/pA times. This code is certainly
the best we can hope to generate for the above expression.
And in general, these optimizations allow us to get by with
the smallest number of accessors and loops possible.

Note that the push pass must happen every time the shapes
of the expression atoms change. However, the compiled
code previously generated will still be valid. The same code
can be reused with the newly generated accessors, as
described above.

6. Reduction

Reduction has two novel aspects. Firstly it must generate
its own looping code, which is not part of the universal
looper. Secondly it has a number of nasty special cases,
which will be briefly mentioned at the end of the section.
What happens when a stepper goes through a reduction
node in the expression tree? Assume the reduction is along
the h-th dimension of offspring node N. The newly formed
stepper will have another dimension added to it. The
semantics of APL require that this new dimension be
traversed in the reverse direction. An additional variable
m, the depth of the coordinate ladder at the current point

in the tree, must also be maintained. (In the previous
section m was constant; it was always the rank of the final
result). A stepper, in going through a reduction, in effect
also ensures that the reduced coordinate h has become the
last coordinate of the reduction’s argument. Here is the
reduction absorption code.

n’ + n+l; m’ 4- m+l

FOR i IN [l,k) DO
BEGIN
q’[i] + q[i]; s’[i] e s[t];

d’[i] e d[i]; Z’[i] + l[i];

END;
COMMENT add a new coordinate - recall

that the semantics of APL require that
it be traversed in the reverse direction;

q’[k] + m’; s’[k] + PN[kl - 1;
d’[k] + -1; l’[k] + pN[kl;

5

FOR i IN [k.+ I,n’] DO
BEGIN
q’[i] e q[i-l]; S’[i] + Sri-l];
d’[i] + d[i-l]; l’[i] + l[i-l];
END;

A reduction node must compile a loop that applies the

appropriate binary operation between all elements along
the reduced coordinate. The length of the reduced

coordinate is saved in the expression frame. At run-time
the compiled code pushes that length on the coordinate
ladder and initiates a loop starting with the appropriate
identity element and repeatedly fetches, advances, and

operates on the next element of the argument

subexpression. When the coordinate is exhausted the
coordinate ladder is popped (i.e. coorrl is decremented), and
the result returned. The details of these operations are
straightforward and will not be described. Note that the
coordinate ladder gets used as a stack. The compiled code

always manipulates the global rung pointer coord, and thus
is never aware of the dimension number of the coordinate

being worked on. As a consequence, the compiled code
remains valid for reexecution of the same expression, as
long as the types of the expression atoms do not change.

The ranks and dimension vectors can change without
invalidating the code.

Figure 6.1 illustrates the various transformations
described in this and the previous section. The reader is
advised to study this example in detail. As a final note,

boundary conditions for reduction give rise to many
complications. Consider the expressions =/’ I (+-+ I) ,
=/’A’ (+ ‘A’), =/’AA’ (*1), =/’AAA’ (++O). Due to
lsck of space we do not discuss techniques for handling
these complications,

r?il
TOP

P:23
——

’23t c1q:lz

s: 00

d:ll

1,23

NOTE: ORIGIN=•

m
p:45— — u—————~,~o

d:ll

Iootq

j El

1:23
q:zll

p:57w —— *: 022
d:lll

‘$ [11 1, 322

❑
q:zll

p:57’4
——— ——— —~: 052

CI, l-11

./[21

1 ;;=

1,322
q: 2131

c.: 57811 — S:057Z
d: l-1-11

;;; ;~
.

p:537s4 ———————— s:

‘:55’’i;?i’ti@

Fig. 6.1.

Propagation of steppers

7. A Specialized Reshape, with Application to Inner
and Outer Product, and Scalar Extension

In this section we illustrate the power of the universal
selector mechanism introduced in section 5. We show how
this mechanism can handle a special case of dyadic
reshape, which we will call conforming reshape. Using this
as our tool we can then transform expressions containing
inner or outer products into equivalent expressions

containing only scalar operators, grid selectors, reductions,
and conforming reshapes. These are expressions we already
know how to compile. The same can be done with the

scalar extension problem we have postponed until this
section, that is the problem of scalar operators with one
scalar and one non-scalar argument.

A dyadic reshape .4pB will be called conforming if pB is a
“suffix” of A. (Equivalently, (PB) = (-PPB) +/l). Note that

if B is scalar, this is always the case. Such a reshape
preserves the structure of ~ it only adds “dummy” copies

along the new dimensions. A conforming reshape can be
incorporated into a stepper by marking the coordinates
introduced by the reshape as dummy (setting their d’s to
o).

It turns out that by introducing appropriate conforming
reshapes and transposes on the arguments, we can
transform an outer product into a scalar operator, and an

inner product into a scalar operator followed by a
reduction. How this is done is in fact most succinctly
expressed in APL itself.

Let @ and @ be any dyadic scalar operators; “++” stands for

“equivalent to”.

Outer Producti Ao. @B

‘4. .@ ++

(((PPB)Ol(PPB)+ PPA)Q((PB), PA) PA)@((PA), PB)PB

Inner Producti AIB. @zB (note: -14p’4 = I+pl?)

WA + (l+pB), p~

EA + (PpA)-1

VA + ,pJ/A

2A + (XA$-I+VA), -l+I?A

TA + jjA&IJ/ApA

WB + (-I+pA), pB
KB + ppA
VB + ~pWB
ZB + ((KB+vB)/vB), vB[KB]
TB + ZBQ,l/BpB

A@.@B +-+ @/TAwTB

We have broken the inner product transformation up into
a series of subexpressions for the sake of clarity. The
reader can verify that each argument of the product is
operated on by a conforming reshape and (possibly) a
transpose, Note that if we were thinking of evaluating an
APL expression in the straightforward way, the above
transformations would be extremely expensive, as we are in
effect creating may copies of the arguments of each (inner
or outer) product. Since the above transformations show
that these operators are redundant, one suspects that they
were introduced into the language in order to provide
efficient implementations of certain common operations.
With our delayed evaluation strategy the multiple copies
will of course never be generated and they introduce
absolutely no overhead at run-time.

6

Scalar extension can be handled in an entirely analogous
way. In the conformability pass scalar operators with one

scalar and one non-scalar argument can make a note of this
fact. Later, during the push pass, these operators can just
in effect introduce a conforming reshape on to the scalar

argument that will make it conform to the non-scalar one.
(Using the same principle of “dummy expansions” we can
easily implement more general kinds of conformability
than APL allows).

8. Slicing

In this section we introduce a general technique for

buffering portions of an array as its elements are
computed, which we will call slicing. This technique is an
integral part of our compilation with delayed evaluation

strategy. Slicing gets used to store subexpressions whose
value will be required many times, thus saving
recomputation. It also gets used to moderate the effects of
operators that break the streaming. The results of such
operators are often not needed in their entirety, but only

certain “slices”. An appropriate buffering scheme
;etween the full expression and the subexpression headed
by the breaking operator can then save space.

A k-slice of array (or subexpression) A is defined as

,4Cil ;i2; . . . ink;;...;;], where il, i2,in.k are valid

indices for array A, with n = PPA. In other words, a k-slice

is a k-dimensional array obtained from A by arbitrarily
fixing a value for all but the last k coordinates, then

letting these k coordinates vary through all their allowed
values. We will call inner coordinates higher. Note that for
each k, as we traverse A in ravel order, we will generate a
complete set of k-slices of A. Our buffering scheme will
work by always computing and saving a slice of appropriate
size for a given subexpression.

There are numerous situations in evaluating APL
expressions in which a subexpression of modest size should
be saved in order to avoid wasted recomputation. Consider
as examples A+ I1OOOO, where A is a very complex scalar, or
Ao. xB, where again A is complex and B is large. Note that

we already have the tools to discover when these situations
arise. In both of the above casea a conforming reshape was
introduced during the processing of the expression. This
conforming reshape leads to steppers with d’s equal to O
along certain coordinates (to be called the dummy
coordinates), thus signaling the re-use of certain
elements.

Such a conforming reshape indicates the need to save a
slice of its selected result. By “selected” we mean that only
that portion of the true slice need be generated which will
eventually partake in the production of the final result.
The slice size can be determined once the conforming
reshape has been absorbed into the stepper. Let s be the
coordinate just lower than the outermost dummy
coordinate. (Take s = -1, if the outermost dummy
coordinate is coordinate O). Storage will be allocated for
all non-dummy coordinates of the stepper which are higher
that s. Coordinate s itself will be called the slicing
coordinate.

The slice naturally acts as a buffer between the full
expression and the subexpression below the conforming
reshape. The code for the subexpression is placed in a
separate codestream. The main and subexpression
codestreams communicate data via the slice. Control is
accomplished via a consuming accessor (in the main code)
and a producing accessor (in the subexpression code). The
consuming accessor is built from the stepper in the usual
way, except that advancing along dimension s resets to the
origin (and advancing along any dimension lower that s is
a no-op). The stepper which the subexpression receives has
all dummy coordinates removed. This modified stepper is
then propagated down the subexpression in the usual way.

Finally the producing accessor is built from a trivial
stepper for the subexpression’s selected result, except again

that advancing along dimension s resets to the origin.

How does control pass back and forth between the two
codestreams? Let us first note that each codestream will be
responsible for its own accessors. Yet we want all
codestreams to share the global coordinate ladder, for
obvious efficiency reasons. It turns out that the following
simple policy solves the coordination problem. Every time
a slice (producing or consuming) accessor is advanced,
control passes to the partner codestream, if coord (the
coordinate being advanced) is lower or equal to the slicing
dimension. This elegant rule also subsumes initialization
difficulties. At the beginning we set coord = -1and start by

advancing the main codestream along that dimension.

Of course slicing may recursively happen within the
subexpression, and so on. In general there will be several
separate codestreams, one for each piece of the entire
expression that was introduced by slicing. (This may be
smaller than the number of conforming reshapes in the
expression, but this is a further optimization we do not
discuss here.) The above coordination rule works in the
general case as well. For instance, each scalar which is
needed many times will be computed exactly once, no
matter where it appears in the entire expression. ‘l’his
happens because the stepper for a scalar always consists
entirely of dummy dimensions, and thus the scalar becomes

available through a slice with slicing coordinate equal to
-1. Therefore the scalar will be computed exactly once,
namely when coord = -1 and the various accessors are
advanced at the beginning of time.

The same idea can be used to save space when encountering
operators that break the streaming. Such operators stop

the propagation of a stepper S coming down from the root.
However, rather than evaluating the entire subexpression,
we can often proceed by only having the subexpression a
slice at a time. Thus, for example, @3@WM’RIX can easily be
evaluated a row at a time, etc. The smallest required slice
is a k-slice, with k the smallest integer such that all but
the last k coordinates of the subexpression correspond to
ravel order traversal.

This addition of “memory” to our delayed evaluation

strategy is not entirely without cost at run-time. If the
run-time bindings of the atoms are such that the slice is
neecled only once, then we are clearly doing unnecessary
memory references. This, however, is a somewhat rare
event, and furthermore tends to come into effect only when
expressions are small, in which case we can afford the
slowdown. The benefits of generality and overall efficiency
for the compiled code seem well worth the price.

Figure 8.1 shows the run-time environment for the
execution of the expression 1’+(SI+,52)xA, with S1, S2

scalars. The subexpression S1 +S2 has been sliced using a
one-element buffer.

7

coordinate Iadde!
[71 Liskov, Snyder, Atkinson, and Schaffert,

“Abstraction Mechanisms in CLU”, Proceedings of

ACM Conference on Language Design for

Reliable Software, March 1977, pp. 166-178

rung

o

count Iimtt

33
0 2

0 1

0 2

1

[81

[91

[10]

W. M. McKeeman, “An Approach to Computer
Language Design”, Ph.D. Dissertation, Stanford

University, 1966

Expression Sindings 2

T+ (s1+S2)xA pT =212 SI scalars
PA =31$5 52

Terry Miller, “Compiling a Dynamic Language”,

Ph.D. Thesis, Yale University, 1977
slice at 51+52

n . a. accessor

Alan J. Perlis, “Steps Toward an APL Compiler -
Updated”, Research Report #24, Computer
Science Department, Yale University, March
1975

slice

code stream

main

codestream

local data

?

n’
slice’

0

‘&

uS1+
S2

[11] Jacob T. Schwartz, “On Programming: An
Interim Report on the SETL Project; Part I:
Generalities”, Computer Science Department,
Courant Institute of New York University,
February 1973local data

u

PA G Eric J. van Dyke, “A Dynamic Incremental
Compiler for an Interpretive Language”

Hewlett-Packard Journal, July 1977, pp. 17-23

[12]

[13] Wulfl London, and Shaw, “Abstraction and

Vertfzcation in Alphard: Introduction and
Methodology”, Carnegie-Mellon University and

USC Information Sciences Institute Technical
Report, 1976

storage pool

Fig. 8.1.

The Run-Time Environment

9. Conclusion

We have seen how to compile good code for a dynamic

language. The generated code must be preceded by a
preamble stating the assumptions for its validity. In our
case these assumptions consist mostly of assertions about
the expression’s atom types. In ordinary APL usage, it is
extremely unlikely that these assumptions will be violated
during multiple executions of the expression. If that
should happen, then the compiler must be re-invoked on
the expression. Note that if our machine were able to
interpret bytecodes relative to a type specification, even
that step would not be necessary.

Acknowledgements: The authors would like to thank Alan J.
Perlis, Ronald L. Rivest, Alan Kay, and Peter Deutsch for
valuable comments on the paper.

10. References

[1] Philip Abrams, “An APL Machine”, SLAC

Report #114, Stanford University, February 1970

[2] Birtwistle, Dahl, Myhrhaug, and Nygaard,
SIMULA BEGIN, Auerbach, 1973

[3] A. P. Ershov, “On the Essence of Compilation”,
Proceedings of IFIP Conference on Formal

Description of Programming Concepts, August
1977, pp. 1.1-1.28

[4] Peter Henderson and James H. Morris, Jr., “A
Lazy Evaluator”, Proceedings of the 3rd ACM

Symposium on Principles of Programming
Languages, January 1976, pp. 95-103

[5]

[6]

Alan Kay et. al., SMALLTALK-72 INSTRUCTION
MANUAL, Xerox PARC Technical Report, SSL
76-6, 1976

Donald E. Knuth, “Semantics of Context Free
Languages”, MAth. Sys. Th. 2, 127, 1968

8

