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Abstract

It was previously shown [1] that APL conrained the

most powerful idiom #\ that could be used, directly

in the language all computers know : binary algebra, to

build models as well for physics as for biology and

computer science. Several papers on the subject were

published or submitted reside the “APL world” as well

as outside (Bibliography in [2]). The purpose of the

present paper is to show how a classical model, built to

generate fractal shapes in plane geometry (2-D) can be

revisited and considerably extended, thanks to the

properties of #\ and of array-oriented binary algebra.

Introduction

The APL-specific #\u idiom gathers two most

fundamental concepts of theoretical physics : “ParitY-

symmetly”, induced by 1 # w (equivalent to - )w on one

hand, and “parity-asymmetry” induced by “\” on the other

hand, which led to suspect that #\w might be considered

as a plausible mathematical model of the’’Elementary

Interaction”, usually apprehended by Hamiltonians or

tensors in the field of continuous functions. Some

mathematical developments indeed proved that a

topological parity universe built with #~ as its unique

force, exhibits properties which are indeed observed and

yet unsatisfactorily explained.
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During the past year, it was found and published that

A) such a topological universe should have ijxo facto

three equivalent spatial dimensions [2], B) that time-

irreversibility need not be postulated anymore [3],

C) that entropy remains constant although highly-

organised structures can appear [4]. It was also found

that #\ gave the model of the non-integer-order

derivation as well as integration. directly at the quantum

level of information processing : the bit (see the section

involving elementary mathematical theory).

Most shapes in Nature are now recognised as fractals,

from snowflakes to galaxies, and #\ alone indeed allows

to write the most condensed program to generate a

fractal, the Sierpinski gasket, as well as discrete holograms

[1,2]. But another question was : Coulcl #\ also generate

the shapes we observe everyday around us, flowers in

the gardens, crystalline, molecular and biological

structures seen under the microscope or studied by

spectroscopy, patterns painted, carved or woven by artists

who ignore mathematics, physics and biology ?

Of course, such a question is ambitious . . . but not

irrelevant. At the present time, one cannot answer it

because not enough people have worked on the subject

(and because too many scientists still ignore APL).

But many mathematicians, botanists, physicists, artists

and philosophers did study and observe shapes in the

past, from the Greek to Leonardo da Vinci, from

Church to Mandelbrot, from Cantor to Julia, Agosti,

Barndey, Val&-y and Them. One of the most sunple and

clever approaches in plane geometry was proposed in

1903 by von Koch in order to explain the shapes of

snowflakes. At the same time, the model helped people

to discover that the length of a coastline depends from

the elementary quantum, I.e. from the unit that the

geometer uses when he measures the length, step after

step.
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The following sections will first describe an APL-

function “SHAPES” which extends von Koch’s model

into various directions. Many natural shapes already

indeed appear in a two-dimensional environment all

shapes are “strange attractors”, usually modelled by

continuous functions, with some mathematical

difficulty, many restrictions and, in general, some high

budget for computer experiment.

This is just the beginning of the APL-Atlas which

might be extended to 3-D objects in the future. May this

function bring the proofs :

1) that APL is the most powerful tool to study shalpes

with a new eye, the one of pure binary algebra (the

quantum field of information) as much as possible;

2) that indeed #\ alone produces a variety of shapes

which look familiar, sometimes strange but always

aesthetic, close to flowers and to molecular structures;

these latter cannot be thought of easily, if one trim to

forge continuous functions for that purpose; for

mathematicians, physicists, biologists, which were

interviewed, there is no hope of finding one day a

continuous function which can describe a human be~ng.,.

while man is indeed described by 23 nice pairs of

chromosomes which represent a large but finite number

of bits; then, some simple binary mechanism must BE the

program;

3) that no high budget is anymore necessary to

obtain fractals on microcomputers even when complex

algebra is not available.

The SHAPES function
Here is function SHAPES which produces 2-D shapes

(arguments and sub-functions will be explained in

detail afterwards. Function EXAMPLES, in the

Appendix, proposes a selection of arguments which

generate nice patterns). “Opt.” means “default opticm”.

V S SHAPES N; B; D; I; K; L; M;OIO

[1] L+O=IJNC ‘S’ O QL/’S+O’ O B+, tlIO+O

[~] D++20T+24p0 1011101

[3] ‘B+, T[B;]’ do I ltN O I+r DxpB O B+I’TB

[4] L+O<K+l?l JS 0 S+1$S O QL/’B+COGB’

[5] L+O>K O S+S+6XO=S O QL/’B-HEL B’

[6] I+S,pK+M+22pM,01 ‘1xM+2 1002+S0 M~-IpM

[7] 1+0 O T+K O ‘MII+I+ l;;]+T+T+. xK’do S-1

[8] ‘B+#\B’ do lTltNO K+-SxpB

[9] K+Kx1 +1+#/KpB

[10] K+02, LK+D++2 O M~KpM[;;O] O 1+1 +2T 1.SXD

[11] T+S I ‘1+ ‘lO+\IIKIO]pB] O B+M-K+pT~M[T;]
[12] ‘T+TxKp2/l, Ag+GOLDxAgA. =0’do 2=CINC ‘Ag’

[13] T+++T O T-TxIG255 O T-D+T O K+pT~LT

[14] T@T-Kp L #’r’ O K-I+ r /T@,T O T+TxK O T6-T+D

[15] T- LT O REDUTN O T+T,2tT O PLOTT
v

The result T is a global vector XO YO, Xl Yl, .... Xn Yn,

XO YO here containing integers from O to 255, so that it

may be kept as a character vector, using a converter such

as T+U AF T in APL2. Due to the fact that T++NT is

the unique arithmetical operation (line [13]) performed

on coordinates, precision on the absolute coordinates

thus obtained is at its best, even on sophisticated

shapes; then, enlargements of small sub-images can be

easily obtained. Of course, constant 255 may be

increased in order to keep T as an array of integers with

more precision, e.g. to 1023 or 65535; however, this is

almost useless on common CRT’s (e.g. PC, Mac, Atari).

GOLD is the golden section v R + GOLD
1.618033988749895, either a [11 R+.5x1+5*.5
variable or the niladic funcuon v

subfunctions :

AE is a character vector, an APL expression. AE do N

shall iterate N times expression AE .

C+ COG B rehlrns C the “Cognitive Transform” of B.

H+HEL B returns H the “Helical Transform” of B.

(B is a bit-vector. See the cognitive-transform paragraph.)

The binary matrix operators which can perform the

transforms were named “Genitons” [1]. The 2- and 4-

genitons are:

1111

11 1010
10 1100

1000

If G is a conforming geniton (a square Sierpifiski matrix,

so that 1~~ G is the same power of 2 as Q i.e. PB),

then Hisgiven by @G#. ” B and C by G#. A@B .

9 S : Symmetry {6}

R N : Recursivity, {ID No}

9 Contour bit string B

Fl Opt. Cognitive transform

n Opt. Helical transform

F7Rotation Matrix :225 pM

~ M: S first powers of M

R Opt. binary integration

9 Parity of B must be even

9 Matrix indexing

~ Relative coordinates : T
Fl Opt. irregularity

R Absolute coordinates (for absolute plotters)

n Scale adjustment (especially to compact results)

~ Opt. Compaction and Plot (implementation-dependent)
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However, much faster algorithms, with execution

time proportional to Q , were described elsewhere [5].

If E is the elementary sequence E+Q t 1 , then the Q

successive rows of matrix G are obtained iterating Q

times E+#\ E . Then, the last row, as well as the last

column of G (which is a symmetric binary matrix),

reproduces the original E. Here is the 4-geniton (when

Qis 4):

1111 Every (2k)-geniton contains three k-genitons

1010 { North-West}

1100 as its { North-East } quadrants : 11

1000 { South-West} 10 .

The South-East quadrant always contains O’s only.

Note the identity (for PB a power of 2) :

(0 COG B) a HEL (oB.

REDUTN reduces the size of T, detecting repetitions; e.g. if

the first half of T is the same as the right half, T gets

reduced in length by 2, recursively. This is also applied

to thirds, fifths, etc... at wall. The use of REDUTN is

optional; the main advantage comes from the possibility

of keeping the graphic results as character vectors, then

in compact APL-independent system files.

PLOTT (implementation-dependent) has to plot the

graph of T. Every odd item in T is an abscissa, every

even one an ordinate, so that any “polyline” software is

convenient. In (APL*PLUS II), colour patterns can be

generated as a function of S, the basic symmetry; the

number of vectors may exceed 100,000 with no difficulty

(with large S or with recursion 7).

When T does not refer to a periodical shape (last

point different from the first one), PLOTT shall detect

this and remove the two last items of T which were

appended by T+T, 2$T .

More comments

When the left argument S (for symmetry) is undefined,

6 (hexagonal symmetry) becomes the default option, so

that SHAPES 4 will produce von Koch’s snowflake at

the 4th order of recursion, which is enough for most

screens of microcomputers. When recursion increases by

1, the number of points increases by 4:

As in the snowflake, every segment N replaced, at

every recursion, by 4 segments so that:

_ becomes A_v

then the number of bits which is necessary to describe a

closed contour by a binary vector IS :

2Wtr-l+2xR+lt N with R the order of recursion.

Note: Although the word “recursion” is kept in the text,

the SHAPES function is not recursive (so as to improve

speed and decrease memory use ).

I&O corresponds to a polygon (starred if R is cdd and

25). (All rotations between two consecutive segments are

left turns).

E&1 corresponds, for Ss6, to the bit vector O 1, which will

be repeated as much as necessary to close the contour

(the David star has 12 segments with alternate left and
right turns).

A left turn will be with angle a 02-S i.e. in this case 60°.

A right turn will be with angle -a i.e. in this case -60°.

SS 6 and BsO 1 completely describe this concave polygon.

E&2 will correspond to sequence O 10 1 1 101 i.e. to

the former sequence O 1 in which O is replaced by O 101

while 1 is replaced by 1 101.

&3 corresponds to the 32-bit sequence B :

01011101010111011101110 101011101
{0}{ 1}{0){1}{11{11 {01{ 1]

etc..., with the same recursive replacement.

In SHAPES, sequence B is obtained at the end of line [3].

For I&7, it has 8192 bits; it is then repeated to form the

full contour of a von Koch’s snowflake (when SS6) which

has 12 times as many very small elementary segments,

i.e. 98184. So, a l-kilobyte binary sequence codes this

jagged fractal.

Note. From E&O to &1, the replacement of O by

O 1 0 1 produces... 0 10 1 which “is periodical and,

then, can be reduced to O 1 only.

Towards many more shapes

about SHAPES is

construct at the

Until now. what has been explained

classlcal. Von Koch Imagined his

beginning of this century, in order to understand real

snowflakes he could see on his windows. In fact, all

snowflakes are different from one another. Many

chemical compounds (metal salts) also crysta]hse on flat

surfaces giving very beautiful symmetric and asymmetric

fractal patterns. With the help of APL, and of the

generalised theory of binary integration (ref. [6], [7], etc...),

we have tried to extend the classical von Koch’s construct :
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1) to any symmetry,

2) to irregular shapes,

3) to any integral,

4) to their transforms :

cognitive (C) and helical (H);

the goal was to gather all these extensions into only one

small function which should execute very quickly in any

common APL implementation available on regular

microcomputers. This is the reason why ISO-APL is used

here (the only non-ISO-APL extension is “replicate”

which is now accepted by all interpreters).

Especially for high orders of recursion, when B is replaced

by one of its P, B successive integro-differentials, the

number of possible shapes will increase. If B is replaced

either by its cognitive transform C, or by its hel~cal

transform H, all the successive integro-differentials of C

and H are also different from B and from its integro-

differentials (in the general case). Then, the following

table gives the maximum number NS of different shapes

that are expected, i.e. 3 times P,B at every order of

recursion, for every possible symmetry :

R :01234567

p)B : 1 2 8 32 128 512 2048 8192

NS : 3 624 96 384 1536 6144 24576

In addition, line [12] of SHAPES allows irregularity.

The global variable ng may contain any numeric or

Boolean vector. This line is not executed when ng is

absent. When ng is O, the length of all succes:$ive

segments becomes modulated by 1, GOLD repeated all

along the contour. With ngs10 100 1000, the

successive length of segments will be modulated by 110

100 1000. It is possible to include negative values. So,

“random” fractals, such as imaginary islands are aasily

composed by SHAPES. But the best results were NOT

obtained by this technique ... which is, in fact, “ad hoc”.

The nicest displays come from studies in symmetries that

are not commonly investigated; as an example, symmetry

30 conjugates symmetry 6 (frequent in chemistry :

graphite, benzene molecule) and symmetry 5 (the one of

quasi-crystals). Such a conjunction is common in tiving

structures (eggs, vu-uses, the guanine and cytosine t}ases

of DNA and RNA, which exhibit a 5-atom ring,

adjacent to a 6-atom ring). It forms the quasi-spherical

structure of the “full erene” or “footballene” C@, new

variety of Carbon - look at a soccer-ball... So, exploring

symmetry 30, one could expect some surprises. This

happened to a biologist, M. V. Locquin, SHAPES on
Atari ST (APL.68000), with 30 SHAPES 521 , which

produces in 7680 points an astonishing pattern of 15

bees or flies, linked by magnified fly-eyes...

A glance to the mathematical theory and physics

As written in prewous papers, all the main laws of

physics were obtained by Newton, Laplace, Maxwell,

Navier-Stokes, Schrodinger, Kortweg-de Vries, Sine-

Gordon and Einstein, among many physicists and

mathematicians, using mtegro-differential equations.

In a variety of books about fractal geometry and natural-

shape synthesis, some mentions concern the

Riemann-Liouville integral. This mathematical construct

is, at the present time, the best tml which allows to build

the so-called “non-integer integrals” and the “non-integer

derivatives” of a continuous function. The main use of it

was to simulate the visco-elastic behaviour of matter

(lava, bread and pizza paste, marshmallow, rubber, fused

glass, emulsions, polymers etc...), which is very important

for almost all modern industries.

Other names of such mathematical tools are “fractional”,

“half- integer” integration and derivation operators.

First, any signal, any variation of any continuous function

can be described by a convergent sequence of bits. A

good example of this is digital recording (CD), which has

reached the HiFi quality in the recent years, So} the 5th

Symphony by Beethoven (or Mahler) can be expressed as

a binary sequence B (equivalent to a modulation in

frequency).

Second, APL contains THE MAGIC IDIOM #\ which

corresponds, for bit sequences, exactly to what Riemann-

Liouvllle integrations and differentiations do with

continuous functions. Moreover, the choice of the

coefficients a and (l-a) for interpolation, i.e. mixing a

function and Its integral or derivative, is left to the user:

this latter chooses a value for a which fits at best his

experimental results. But, the formulae for the “half-

integral” and the “half-derivative” are unfortunately

NOT so simple with the Riemann-Liouville theory.

Analytical feasibility is reduced to some special cases...

Discrete differentiation for small (but not infinitely

small) intervals At on a function F(t) will give the

varlauon of a studied phenomenon [F( t +At) -F(t)] /At as

a vector, with the length of the initial data minus 1,
resulting from sampling (experimental measurement) e.g.

at At = O, 1, 2, 3, etc.,.

Transposed to Modulo-2 algebra, then to the binary field,

the arithmetic difference becomes MINUS Modulo 2,

then the EXCLUSIVE OR, then the logical difference, i.e.

simply # in APL. The first binary difference on any
binary vector B is :

l$BA-lOB
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In general, in physics, F(t) is unknown. Most perceptions

and measurements correspond to differences along axes of

space or time. So, one sets, in the most common case,

some differential equations. The goal consists in finding

the solutions ) for F from these equations. For most

natural phenomena, it is a hard job. Fortunately, with

the help of the computer, one performs discrete

integration, In APL, discrete integration (undefined

integral or CUMULATION) is simply performed by +\

(while the defined integral or SUM is+/) . Transposed
to Modulo-2 algebra, then to the binary field, the

arithmetic sum becomes PLUS Modulo 2, then the

EXCLUSIVE OR, then the logical sum, i.e. simply # in

APL, another time.

Then, since # keeps all the properties of +

(associativity, commutativity), binary algebra becomes

the UNIQUE case for which the difference is also

associative and commutative.

The propagated difference or differential of B is #\ B while

the local differential will be BtII101, 1$ B#- 10 B for any

vector B. The interest of correcting the first item is that:

1) the shape of B and the one of Its local differential

remain the same;

2) the local differential is identified with the Gray code

of B (cf. [81);

3) the following identity is true for any vector B :

B s#~ BICIIOI, 14-B# ‘1oB

Any binary integral (undefined integral of any signal B)

is given by #\ as well as any propagated differential : All

the mathematical difficulties, inherent to the use of

the Riemann-Liouville functions, disappear. #\ has

“something of an integrator” and “something of a

differentiator”. We shall call It the unified “Integro.

Differentiator” (ID for short).

APL is the unique programming language with an ISO

standard [9], that can offer, as a convergent notation

which extends to arrays, i.e. “parallel vectors”, THE

tool that all physicists should know before thinking of

their physical problems and tring to model fractality or

chaos with a computer.

So, we had the feeling - and any physicist can check

this immediately, if he knows APL - that mathematics,

applied to physics, might be drastically simplified, using

this new method of investigation, able to mimic the

elementary interaction, if not to describe it completely at

the level of fundamental parities i.e. the information

quantum either O or 1, cf. [10].
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Moreover, #\ may be applied as well as its inverse

function, as many times as one wishes, always with no

error. Every signal, then every discrete function, with a

large number of so small intervals that the plot looks

continuous, could become a priori infinitely “non-integer

integro- dlfferentlable”, and, last but not least, easily.

A rapid study of the properties of #\ iterated, let appear

not only confirmations, but also unknown properties of

Boolean algebra, with fantastic progresses about periodicity,

discrete holography, genetic automata, symmetries,

chirality (the left/right or “levo/dextro” asymmetry),

neuronics, wave propagation and... applied mathematics.

If the hypotheses of physicists are correct, given any

system, described by a function such as F(t), the status of

the system after At (e.g. a small unit interval of time, a

“quantum”), is given by F ‘ (t).At which becomes F ‘(t) if
At is a unit interval. For many “independent” variables,

one uses total differentials; before understanding complex

systems, let us first try to discover what happens to a

signal, with just one variable. Physlclsts suspected that

fractality required non-integer integro-differential formulae

which are not currently taught at school.

So, according to theoretical grounds for signal sampling,

i.e. measurement, which lie beyond the scope of the

present paper, and after exploring the properties of

array-binary algebra, we came to the following hypothesis :

Given any binary sequence B which describes e.g. any

signal as a function of some parameter, its ‘(next future”

should be given by #i B , moreover with NO ERROR

because # is a logical function.

This hypothesis was checked on several systems, using O

and 1 to describe parities : less-stable/more-stable,

absent/present, massless/weighing, anion/cation, coldhot,

fundan~ental/exci ted, recessive/dominant (in genetics),

and seemed to lead to very good results : in fact, no

exception to the rule was found...

A very simple example in the field of computer science is

the MS-DOS command COPY. If we want to copy a

public-domain APL from disk A: to disk B: , we may

write : COPY A:APL.EXE B:

If 1 is the existence of file APL. EXE on the diskettes

inserted mto the drives A: and B: of a PC, the initial

state before copy is one of the 4 following ones :

A: B: A: B: A: B: A B:

00011011
Future forecast is

#\ apphed to

these vectors i.e. O 0 011110.
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We want to propagate APL.EXE from A: to B: If the file

does not exist on A: , is the final state the same as the

initial one? The answer is : “TRUE”,

If the file exists on A:, not on B: , the subsequent state is

11 (successful COPY). So, the hypothesis is TRUE.

If the file also exists on B: (fourth case), the subsequent

state is NOT the one after a copy : we have a conflict.

#\ immediately reveals a necessary condition : the existing

file on B: with the same name (although the content may

be different) MUST be deleted first (anti-copy). So,

there is a new subsequent state 10, which is the same as

the third initial state. Now, the copy can take place

normally; (some systems ask the user about his intentions

before destroying APL.EXE from drive B: while MS-

DOS does not). #\ detects that there are two steps in

this last situation.

#\ gives, on a very long sequence, the possibility of

obtaining by successive iterations what we call the

successive ID’s (for Integro-Differentials) or QUID’S (for

“Quantum Unified ID” in papers for physics, because one

can study models at any desired scale of quantisation). ThN

has been studied with APL for some years now and

published [I], [2], [5]. When the length of B is c a power

of 2, the cth ID always reproduces B. For any sequence

B, #Z B (by analogy with +Z ) is its defined integral. It

is 1 if the sequence has an odd number of l-bits, thus

expressing the parity of the whole sequence. #/B has the

same value as -1 ~#\ B except that the latter idiom

produces a vector with length 1 instead of a scalar.

The vector containing the last item of each successive ID

of B was named C for “Cogniton”. C is the cogniri ve

transform of B. It contains :

(#z B), (#z#\B), (#z#\#\B), (#l#\#\#\B),

etc... or

E-l+”” (#\B) (#\#\B) (#\#\#\B) (#\#\#\#~B)

etc... in APL2.

This transformation is an involution (just like the

Fourier transform, but always exact), so that the cogniton

of C is the original B (we restrict here to an integer power

of 2 for PB).

The other transformation which is used In SHAPES

corresponds to the helical transform H. The mirror of H,

i.e. o H contains :

(#z B),(#z#%- l$B),(#/#\#\-2J B),(#/#\#\#\-3$ B),

etc...

The helical transformation is also an involution : the

helical transform of H is the original B, and UIH is also the

cognitive transform of I$B (see [1, 2]).

All these properties in vector and matrix binary algebra

(a field which seems to have never been explored

systematically in mathematics and in computer science)

were discovered thanks to APL, and may be used directly

in the memory of the computer, on giant arrays, thus short-

circuiting huge computer-business and most frequently-

used methods of applied mathematics...

But what has now become possible, thinking in APL and

using It, has probably be used by Nature itself before APL

was invented... (The least-action prtnciple does not state

anything else. )

As an attempt to prove it (many other directions are

explored in parallel), the SHAPES function was written.

The connection with fractals, namely with Sierpinski’s

work, was shown before [1, 11]; a new idea was to use the

Sierpinski construct as a matrix operator so as to replace

the Fourier transform by something much more simple,

efficient and accurate.

Genetic automata (see [2], [12], [13]), based exclusively on

the #\ rule, immediately led to a new explanation of

Mendel laws without any ad-hoc hypothesis. Similarly,

#\ can also produce and explain the famous “l/f-signals”

which had no sausfactory mathematical model m physics

[2], [6].

Towards natural shapes

The most useful mathematical construct used in research

for the synthesis of fractal (i.e. realistic) inlages is indeed

the Fast Fourier Transform (FFT) [14! (which is also

connected to the Rien~ann-Liouville integral ).

Then, the Idea that Nature could also use some

simple mechanism, based on parity hierarchies, and very

close to the cognitive-helical transforms to build its

complex shapes, was in the air. We also knew that #\ was

intimately connected to the Fibonacci series, which

produces the parastichies of some flowers (sun-flower),

the shapes of pine-cones and pine-apples, with visible

orthogonal spirals which can be counted, and sometimes

also modelled in fluid dynamics [151 [161.

But “what can be counted” does not cover all

shapes (unfortunately named “random” fractals because
they were not understood).

Most flowers do not exhlblt Fibonaccian structures
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(dahlias do, roses, apparently do not). In two dimensions,
or almost-2D, Nature produces creeping plants, (ivy,

honeysuckle) as well as naphtalene, anthracene, graphite

(these compounds are formed in a plane or, for graphite,

built by stacking of planes of carbon atoms with hexagonal

symmetry), and frost crystals on windows for Xmas. Could

only one mechanism lead to such a variety of shapes ?

Von Koch’s initial idea was excellent (simple ideas are

always good). It also led to explain the coast-line length

paradox : the length of a ragged coast depends on the scale

at which the measurements are performed. Every book on

fractals, chaos or mathematical games does show this

construct. Nature is indeed fractal. So is #\ which could

be used in order to improve, as explained above, the

variety of accessible shapes, without much numeric

computation, except in order to remain compatible...

with existing graphic software and habits.

This is just what we have done (limiting ourselves to

2-D experiments so that microcomputers with APL may

be used).

The first goal was to avoid recursivity and to accelerate

every sub-algorithm using a minimum of arithmetics or

trigonometry.

The second goal was to minimise errors, another good

reason to work with bits.

So, given a symmetry, e.g. 6-fold (hexagonal) symmetry to

start with, the one of snowflakes and of honeycombs, we

just need to compute once ONE rotation matrix; for

the 6-fold symmetry, u is 60°:

Cos LJ sin u Then, around the central point, we may

- sin u Cos u turn S times; for Ss 6, we can generate

the other matrices, for 2W, 3W, etc... raising this matrix to

its successive powers (line [7] of SHAPES). The Sth

power of such matrices has to be a unit-matrix. In fact,

most lines of SHAPES could be used only once :

Sequences for recursions lower than 7 are the first items

of the sequence for 7. Cognitive and helical transforms

also have such properties : Cforl&5 is-512 ?Cfor W6 ,

while H for&5 is 512*H for I&6 , etc...

The necessary successive powers of the rotation matrices

for significant symmetries (4, 5, 6, 8, 12... ) can also be

computed once and kept in a file or in the workspace.

Line [8] is no[ optimal: it iterates B + #~ B 1000 times if

you want the 1000th ID. This expression is just for

demonstration; otherwise, optimal algorithms can give

you the 1000th ID directly, without computing the 999

first ones, see [7].

A turtle at work

As far as rotation matrices are concerned, we will only use

one half of them; this explains the MC; ;~l of line [10].

( M[; ; 11 is useless) : in order to plot the shape, the

graphic cursor operates exactly like the turtle of LOGO.

Every displacement is possible in one of the S centro-

symmetnc directions around the origin, e. g. the center

of the screen : for S=4, the turtle may go East, North,

West or South as far as one quantum at each move. But

when the quantum is small (lower than the physical

pixel), the turtle can reach any point of the screen,

nevertheless, cumulating its tiny moves.

For a displacement with angle u , X is cos w and Y is sin u.

These values are exactly the 2nd column of each matrix, so

that no computation is anymore necessary; indexing is

enough.

The role of the turtle (it does so when R, recursion, is O

and B also O), is to start from the origin, go a quantum

along one direction, turn left by 02+ S (60° when S is 6),

go a quantum that way, turn again left by the same

angle, go another quantum that way, etc... until it gets

back to the origin. On some CRT’s, the Oy-axis goes

down so that the image may be reversed; d-us has no

importance at all for the shape, Then, {6} SHAPES O will

produce an equilateral triangle, not a hexagon.

Although the scale is the quantum, the automatic

centering and resizing in lines [13] and [14] will magnify

this triangle.

For F&1, then, with BsO 1 , the turtle becomes more

subtle : From the origin, it still goes along one direction

for one quantum, turns left by OF!+S because the first

item of B is O, goes a quantum that way and turns left by

0-2+s , i.e. right. by the absolute value of the same

angle, because of the 2nd item of B, which is 1.

Sequence B is the turtle’s computer program, its Turing

ribbon, which N repeated as much as necessary.

The first O-turn applies power 1 of the rotation matrix,

i.e. cumulates the second column (X and Y) of the

rotation matrix itself with its initial move (XO, YO) before

turning.

Before Ilne [11] is executed, for SHAPES 1, symmetry S

is 6, the binary sequence B is O 1 and I is 4 1 (given by

l+2t L S+2 ) at the end of line [10]. K[al is 12, i.e. &e

pre-computed number of segments forming David’s star.

The APL expression : S1-l+-l UI+\ICK[~]PBI

produces : 534 23 1 20 1 5 04 which IS put into

variable T.

Building the APL Atlas of Natural Shapes 140 APL93



This vector of integers contains N-NW N-NE

(this will hold for any S and R) . io)’ .(1)

directly the indices in O-origin,

x

of the successive directions taken by w (z)_......- ‘__.._. ,(5!k

the subtle turtle : it goes East (5)

then Sotrth-SouthWest (3), then

SE-SE(4), then West (2), etc...
{3) (4) “

S-sw S-SE
until the last move S-SE (4) which

brings it back to the initial location, closlng the contour.

The successive moves are numbered

following schema.

M already contains the elementary X

and Y for the S possible rotations.

T+M[ T; 1 recreates T as the array

containing the incremental moves

both along X and Y for incremental

gdotters; this has been obtained with

no arithmetics or trigonometry once

the 2nd columns of the successive S

powers of the suitable rotation matrix

from O to 11 in the

are known. The absolute coordinates of the successive

n.tr-de locations are given by ++T and will fit CRT

graphics ( DGLINE, vdi or cgi “polylines”, etc...),

Roundings are done after obtaining the absolute

coordinates, so that errors remain, even for many points,

insignificant.

How a turtle draws flowers and natural shapes

Extending the snowflake construct to all symmetries and

to all ID’s of cogmtive and helical transforms was just a

small idea that could a priori prove to physicis(.s,

botanists and crystallographers, that Nature knew #\

before the “scan operator” was introduced into APL.SV

a decade and a half ago (and then IS an ideal and general

plausible mathematical model of the Elementary

Interaction). Although the SHAPES function restricts to

2-D graphics, the surprise was great when the results

came out, especially in full colour. Function EXAMPLES

contains some suggestions, but experiments with #~ are

stall a virgin island... (The whole documented software

will be available as a small workspace for APL*PLUS I

& 11, easily adaptable for any other APL,-

implementation, at the Software Exchange booth). The

plates, unfortunately in black-& -whire, give a faint idea of

what shapes APL can prcduce at low cost.

Plates Each plate was obtained in a few seconds on the

Atari ST, a slow machine at 8 MHz, using APL.68000,

with either a newly-written polYline/polymarker function,

or direct adressing of the graphic screen as a bitmap (just
the equivalent of a 256,000-bit APL vector) which

shortcuts all the previously-necessary graphic software

and may be extended to produce also colour output.
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EXAMPLES

FI { } default option

9 ‘1 SHAPES 5 89 R Nice flowers

F1-r -r ‘r’r Integro-Differential (ID) number

F1’r ‘r ‘r— Order of Recursion (from O to 6 or 7 with high LIWA)

R’r ‘r Transform. ‘1 : Helical Transform, {O} : No Transform, 1: Cognitive Transform.

t7 {6 O} is taken with monadic syntax.

R’r Symmetry (3 or 4 or 5 or 6 or 8 or 9 or more...) Reduce recursion for high symmetry codes.

SHAPES 5 ~ Von Koch’s snowflake (symmetry 6, recursion 5)

5 SHAPES 6 9 Pentagonal snowflake

5 SHAPES 5 22 R Celtic ladies

5 1 SHAPES6 11 Fl Strange runner

15 ‘1 SHAPES 6732 FI Chestnut crown

30 SHAPES 5 21 fi Fly crown

32 SHAPES 5 71 F! Handsome pilot-fish

104 1 SHAPES 4 31 FI Close the apple o~tlze eye, increasing ID from31 to 63 then 127;

R also try ‘1 instead of 1 for less aperture until Nu@owvz.

FI More to try (with high recursion-orders, with APL*PLUS II...)

~ Indications for nice colour display is available.

9 Colour output will be included in the versions for the software exchange.
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llThe chestnUt CROW”

34th ID U+ the I

cognitive transform

for Recursion 5

in 15-fold synrnetry

II,-

4 tlsyrnnetric rosace floner :

~
55th ID of the cognitive

.,..,.,

transform for Recursion 5 g
.,,.,.,..,,,,..,,.,,,.,,

in 15-fold symmetry,
,.,,,.,,,,.,.,,.,....,,..,...,..,..,....,.,,,...

Interest lies not only in R‘~,,,,..,.,,,,.,

the final output, but also ~~..,...,.,.,.,,,.,,.,.
in the way it is plotted, ;%.,.,,,:;.:.:.:,;:,:+,.,,,...,,.,,,..,.,,.,,.,.,..:,:,.,.....,...,..,.,,,,,.,,..,..,,...,,

0.,.,.,...,,.,,,,,,..,,.,::::::::::::::::.::::::::::,:,:,:,:,:,:,:.:.:.:,:,:,:,:,:.:.:.:.~:::~::.:,:,:,:,:,:,:.:.,.:.:,~.................................................................................. ...... ,..................::::: : :::.:.:.:.:.,
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The 89th ID of the helical

transform for Recursion 5
,.,.,.,:.,,,,,

in 15-fold symmetry builds ;fi,>,,:,:,.,,,.
a completely different $;

.,,.,,,,.,:
bunch of attractors R..,,,...,.,.

(splendid nhen colour may g:
,,..,.,....::,.:

be used), ,...,....,,,.,.,.,......,..,..,.,,
,.,...,..,,...,.....,,,,,.,.,,.,
.:,:,.,:...,.,.,.,,,,.,,

9 flower from the RPLgarden ;

89th ID of the cognitive transform
,.,:.,:

for Recursion 5 in 15-fold $j..,.,,.,...,..,
symmetry,

,.,....,,.,..,....,...,.,...:,:,:.:,,,..,.,.
The central crown exhibits

,,,,,.,.,......,.,.,..,,,.,.,..,...,.,........,.,...,.
3t+fold symmetry,

.,.,.,,.,,..::.:,.,.,,,,...:.,.,.,.,....,.,..
Fill the chestnut sub-shapes %?....,,,,,.,...,.
nay be ~onsidered as “strange ~:

:,:.:.,.......,,..,.
attractors” (see Chaos Theory), ;$.
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fin easily_uritten cover function allom to dra~ two Shal)es per screen : p

ID number 89 of the helical (left) and cognitive transforms (right). X
LThe cursor sprite of the Iltari (a bee) pays a visit to strange insects. ,, j;

I *\ both preserves symmetry and creates chirality (helicity, vorticity) : El

Symetr

Recursi

ID number 127 of the helical (left) and cognitive transform (right),

/ 3 tiIW S12 patterns for each symetrg are available “ith recursion 5, H
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OCtogcms I1 11 Octogoris,
..,.

How$\ a symmetry maker and a symetry breaker at the same time, produces :$2
regular crystal-like patterns, introducing odd nunbers spontaneously, ;::
Note, fill genitons are cubic roots o+ the conforming binary unit matrices, ~

0! .........’.........................................’..........’............!..... ............. ....... .,.:.:.:.::.:.:..~,’,...,........................................ ....... ..............:,:,:,,.,,..10 ?

I Helical transform Cognitive transform

!.,...:,,,....,
Elementary stacking of cells, <;

Compare ~ith ID 63 for which ~
,,,.,.,.

elementary (B6nard?) cells :;

have a larger radius, but are :’::::::

less nunerous in the “rnernbrane” ‘ii

formed by the 1824 residual elementary vectors (initially 16384 vectors), jj
b“

QI
,,.,,,,,,,,,,,..... .....::::.,:,:::::.::.:,:::::,:::::::::,:::::,.::.:.::::.:.:.:.:.:.:.,::...,.,.,,,., .......,,,,,, ,.:......... ...,..,,,.:, .,. ......,:....’... : .,,.. :/o i’
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High symmetries may be explored;

hrwever, intermediate arrays can

reach a large sizet

Such a flower originally has

13,312 vectors, ~hich reduce to

3,328, fortunately, already for

Recursion 4,

This is the equivalent of the

von Koch’s snowflake (which exhibits a 6-fold symetry), Symmetry is 104, g
o................,.,.,.,,,,,,,.,.,...,,,...........................................,.,.,.,.

0/
,.,.,.,.,.,.,.,.,.,...::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::~::::::::::,::..::.>.’....,.........’,...10 j’....................................................................................................... .......

I Symmetry104 Recursion 4 ID number 2 i ,e, -W of M

the Helical transform

(the birth of a torus ?)

the Cognitive transfom
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