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Abstract

It was previously shown [1] that APL contained the
most powerful idiom #\ that could be used, directly
in the language all computers know : binary algebra, to
build models as well for physics as for biology and
computer science. Several papers on the subject were
published or submitted inside the “APL world” as well
as outside (Bibliography in [2]). The purpose of the
present paper is to show how a classical model, built to
generate fractal shapes in plane geometry (2-D) can be
revisited and considerably extended, thanks to the
properties of #\ and of array-oriented binary algebra.

Introduction

The APL-specific #Nw idiom gathers two most
fundamental concepts of theoretical physics : “parity-
symmetry”, induced by 1 # v {equivalent to ~ @) on one
hand, and “parity-asymmetry” induced by “\” on the other
hand, which led to suspect that #\w might be considered
as a plausible mathematical model of the“Elementary
Interaction”, usually apprehended by Hamiltonians or
tensors in the field of continuous functions. Some
mathematical developments indeed proved that a
topological parity universe built with #\ as its unique
force, exhibits properties which are indeed observed and
yet unsatisfactorily explained.
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During the past year, itwasfound and published that
A) such a topological universe should have ipso facto
three equivalent spatial dimensions [2). B) that time-
irreversibility need not be postulated anymore [3],
C) that entropy remains constant although highly-
organised structures can appear [4]. It was also found
that #\ gave the model of the non-integer-order
derivation as well as integration. directly at the quantum
level of information processing : the bit (see the section
involving elementary mathematical theory).

Most shapes in Nature are now recognised as fractals,
from snowflakes to galaxies, and #\ alone indeed allows
to write the most condensed program to generate a
fractal, the Sierpinski gasket, as well as discrete holograms
[1,2].  But another question was : Could #\ also generate
the shapes we observe everyday around us, flowers in
the gardens, crystalline, molecular and biological
structures seen under the microscope or studied by
spectroscopy, patterns painted, carved or woven by artists
who ignore mathematics, physics and biology ?

Of course, such a question is ambitious... but not
irrelevant. At the present time, one cannot answer it
because not enough people have worked on the subject
(and because too many scientists still ignore APL).

But many mathematicians, botanists, physicists, artists
and philosophers did study and observe shapes in the
past, from the Greek to Leonardo da Vinci, from
Church to Mandelbrot, from Cantor to Julia, Agosti,
Barnsley, Valéry and Thom. One of the most simple and
clever approaches in plane geometry was proposed in
1903 by von Koch in order to explain the shapes of
snowflakes. At the same time, the model helped people
to discover that the length of a coastline depends from
the elementary quantum, t.e. from the unit that the
geometer uses when he measures the length, step after
step.
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The following sections will first describe an APL-
function “SHAPES” which extends von Koch’s model
into various directions. Many natural shapes already
indeed appear in a two-dimensional environment; all
shapes are “strange attractors”, usually modelled by
continuous functions, with some mathematical
difficulty, many restrictions and, in general, some high
budget for computer experiment.

This is just the beginning of the APL-Atlas which
might be extended to 3-D objects in the future. May this
function bring the proofs :

1) that APL is the most powerful tool to study shapes
with 2 new eye, the one of pure binary algebra (the
quantum field of information) as much as possible;

2) that indeed #\ alone produces a variety of shapes
which look familiar, sometimes strange but always
aesthetic, close to flowers and to molecular structures;
these latter cannot be thought of easily, if one tries to
forge continuous functions for that purpose; for
mathematicians, physicists, biologists, which were
interviewed, there is no hope of finding one day a
continuous function which can describe a human being...
while man is indeed described by 23 nice pairs of
chromosomes which represent a large but finite number
of bits; then, some simple binary mechanism must BE the
program;

3) that no high budget is anymore necessary to
obtain fractals on microcomputers even when complex
algebra is not available.

The SHAPES function

Here is function SHAPES which produces 2-D shapes
(arguments and sub-functions will be explained in
detail afterwards. Function EXAMPLES, in the
Appendix, proposes a selection of arguments which
generate nice patterns).  "Opt." means "default option".

V S SHAPES N;B;D;I;K;L;M; 010
[1] Le0=0ONC ’S’ © ¢L/’S<0’ ¢ B«,010<0
[2] D20 T«24p01011101
[3] 'B<,T[B;]’ do| 1ITN ¢ I« DXpB ¢ B<ITB
[4] LcO<K«1T14S O S«11S ¢ ¢L/"B«<COG B’
[S] L€0>K < S«S+6X0=S ¢ ¢L./’"B<HEL B’

[6] 1S, pKe«M«2 20 M, 01 T1XM«2 1002+50 M«IpM

[7] 1€0 © TeK O "M[I«I+1;;]¢T«T+.XK’do S-1
[8] 'B«#\B’ do 1T 1IN O K«SXpB
[9] K€KxX1+I«#/KoB

[10] K«$2,LK+D¢+2 O MeKpM[;;0] © I«1+2T LSXD

[11] TS| 71+ T19 H\I[K[0]pB] © BeM«K<pT<M[T;]

[12] 'Te<TxKp2/1,Ag+GOLDXAgA. =0’do 2=[NC ’Ag’

[13]1 Te+NT O TeTx[«255 ¢ T€D+T ¢ KepT« LT
[14] T«T-Kp L #T © Kel+ T /T, T O T€TXK & T¢T+D
[15] T<LT © REDUTN © T«T,27T © PLOTT

v
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The result T is a global vector X0 Y0, X1 Y1,.... Xn Yn,
X0 YO here containing integers from O to 255, so that it
may be kept as a character vector, using a converter such
as T¢OAF T in APL2. Due to the fact that Te+N\T is
the unique arithmetical operation (line [13]) performed
on coordinates, precision on the absolute coordinates
thus obtained is at its best, even on sophisticated
shapes; then, enlargements of small sub-images can be
easily obtained. Of course, constant 255 may be
increased in order tokeep T as an array of integers with
more precision, e.g. to 1023 or 65535; however, this is
almost useless on common CRT’s (e.g. PC, Mac, Atari).

GOLD is the golden section © Re GOLD
1.618033988749895, either a  [|] Re.5x1+5%X.5
variable or the niladic function v

Subfunctions

AE is a character vector, an APL expression. AE do N
shall iterate N times expression AE .

CeCOGB  returns C the “Cognitive Transform” of B.

HeHEL B  returns H the “Helical Transform” of B.

(Bis abit-vector. See the cognitive-transform paragraph.)
The binary matrix operators which can perform the

transforms  were named “Genitons” [1}. The 2- and 4-
genitons are:
1111
11 1010
10 1100
1000

If Gis aconforming geniton (a square Sierpinski matrix,
so that 17 G is the same power of 2 as Qie. pB),
then Hisgiven by ¢G#.~ B and C by G#.~¢B .

A S : Symmetry {6}

A N : Recursivity, {ID No}

A Contour bit string B

A Opt. Cognitive transform

A Opt. Helical  transform

A Rotation Matrnix : 2 2=poM

A M: S first powers of M

A Opt. binary integration

A Parity of B must be even

A Matrix indexing

A Relative coordinates : T

A Opt. irregularity

A Absolute coordinates (for absolute plotters)

A Scale adjustment (especially to compact results)
A Opt. Compaction and Plot (implementation-dependent)
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However, much faster  algonthms, with execution
time proportional to (Q, were described elsewhere [5].
If E is the elementary sequence E€Q 11 , then the Q
successive rows of matrix G are obtained iterating Q
times E€#\E . Then, the last row, as well as the last
column of G (which is a symmetric binary matrix),
reproduces the original E. Here is the 4-geniton (when

Qis 4):

1111 Every (Zk)-geniton contains three k-genitons

1010 { North-West }
1100 as its {North-East } quadrants: 11
1000 { South-West } 10

The South-East quadrant always contains O’s only.

Note the identity (for B a power of 2):
(6 COG B) = HEL ¢B.

REDUTN reduces the size of T, detecting repetitions; e.g. if
the first half of T is the same as the right half, T gets
reduced in length by 2, recursively. This is also applied
to thirds, fifths, etc... at will. The use of REDUTN is
optional; the main advantage comes from the possibility
of keeping the graphic results as character vectors, then
in compact APL-independent system files.

PLOTT (implementation-dependent) has to plot the
graph of T. Every odd item in T is an abscissa, every
even one an ordinate, so that any “polyline” software is
convenient. In (APL*PLUS II), colour patterns can be
generated as a function of S, the basic symmetry; the
number of vectors may exceed 100,000 with no difficulty
(with large S or with recursion 7).

When T does not refer to a periodical shape (last
point different from the first one), PLOTT shall detect
this and remove the two last items of T which were
appended by TeT, 24T .

More comments

When the left argument S (for symmetry) is undefined,
6 {hexagonal symmetry) becomes the default option, so
that SHAPES 4  will produce von Koch’s snowflake at
the 4th order of recursion, which is enough for most
screens of microcomputers. When recursion increases by
1, the number of points increases by 4 :

As in the snowflake, every segment 1s replaced, at
every recursion, by 4 segments so that:

— becomes I\,

then the number of bits which is necessary to describe a
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closed contour by a binary vector 1s :

2Xar "1+2xRe1tN with R the order of recursion.
Note: Although the word “recursion” is kept in the text,
the SHAPES function is not recursive (so as to improve
speed and decrease memory use).

Rz0 corresponds to a polygon ({starred if R is odd and
>5). (All rotations between two consecutive segments are
left turns).

R=1 corresponds, for Sz 6, to the bit vector 0 1, which will
be repeated as much as necessary to close the contour
(the David star has 12 segments with alternate left and
right turns).

A left turn will be with angle & 02+S i.e. in this case 60°.
A right turn will be with angle —a  i.e. in this case =60°.
Sz6 and Bz01 completely describe this concave polygon.

Rz2 will correspond to sequence 01011101 ie to
the former sequence O 1 in which 0 is replaced by 010 1
while 1 is replacedby 110 1.

R=z3 corresponds to the 32-bit sequence B :

10

111010101110
Ho1}

111011101110
Fi1}

010 01 1101110101011101
{0 {0 fri{1rrtoH 1}

etc..., with the same recursive replacement.

In SHAPES, sequence B is obtained at the end of line [3].
ForR=7, it has 8192 bits; it is then repeated to form the
full contour of a von Koch’s snowflake (when Sz6) which
has 12 times as many very small elementary segments,
i.e. 98184. So, a 1-kilobyte binary sequence codes this
jagged fractal.

Note. From Rz0 to Rz1, the replacement of 0 by
0101 produces... 0101 which is periodical and,
then, can be reduced to0 1 only.

Towards many more shapes

Until now. what has been explained about SHAPES is
classical. Von Koch 1magined his construct at the
beginning of this century, in order to understand real
snowflakes he could see on his windows. In fact, all
snowflakes are different from one another. Many
chemical compounds (metal salts) also crystallise on flat
surfaces giving very beautiful symmetric and asymmetric
fractal patterns. With the help of APL, and of the
generalised theory of binary integration (ref. [6], {7], etc...),
we have tried to extend the classical von Koch's construct :
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1) to any symmetry,
2) to irregular shapes,
3) to any integral,
4) to their transforms :
cognitive (C) and helical (H);

the goal was to gather all these extensions into only one
small function which should execute very quickly in any
common APL implementation available on regular
microcomputers. This is the reason why ISO-APL is used
here (the only non-ISO-APL extension is “replicate”
which is now accepted by all interpreters).

Especially for high orders of recursion, when B is replaced
by one of its p, B successive integro-differentials, the
number of possible shapes will increase. If B is replaced
either by its cognitive transform C, or by its helical
transform H, all the successive integro-differentials of C
and H are also different from B and from its integro-
differentials (in the general case). Then, the following
table gives the maximum number NS of different shapes
that are expected, i.e. 3 times p,B at every order of
recursion, for every possible symmetry -

R : 01 2 3 4 5 6 7
e, B 1 2 8 32 128 512 2048 8192
NS 3 624 96 384 1536 6144 24576

In addition, line [12] of SHAPES allows irregularity.
The global variable @g may contain any numeric or
Boolean vector. This line is not executed when Qg is
absent. When 9¢g is 0, the length of all successive
segments becomes modulated by 1, GOLD repeated all
along the contour. With @g=10 100 1000, the
successive length of segments will be modulated by 1 10
100 1000. It is possible to include negative values. So,
“random” fractals, such as imaginary islands are easily
composed by SHAPES. But the best results were NOT
obtained by this technique... which is, infact, “ad hoc”.

The nicest displays come from studies in symmetries that
are not commonly investigated; as an example, symmetry
30 conjugates symmetry 6 (frequent in chemisery :
graphite, benzene molecule) and symmetry 5 (the one of
quasi-crystals). Such a conjunction is common in living
structures (eggs, viruses, the guanine and cytosine bases
of DNA and RNA, which exhibit a 5-atom ring,
adjacent toa 6-atom ring). It forms the quasi-spherical
structure of the “fullerene” or “footballene” Cqy, new
variety of Carbon - look at asoccer-ball... So, exploring
symmetry 30, one could expect some surprises. This
happened to a biologist, M. V. Locquin, SHAPES on
Atari ST (APL.68000), with 30 SHAPES 5 21, which
produces in 7680 points an astonishing pattern of 15
bees or flies, linked by magnified fly-eyes...
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A glance to the mathematical theory and physics

As written in previous papers, all the main laws of
physics were obtained by Newton, Laplace, Maxwell,
Navier-Stokes, Schrodinger, Kortweg-de Vries, Sine-
Gordon and Einstein, among many physicists and
mathematicians, using integro-differential equations.

In a variety of books about fractal geometry and natural-
shape synthesis, some mentions concern the
Riemann-Liouville integral. This mathematical construct
is, at the present time, the best tool which allows to build
the so-called “non-integer integrals” and the “non-integer
derivatives” of a continuous function. The main use of it
was to simulate the visco-elastic behaviour of matter
(lava, bread and pizza paste, marshmallow, rubber, fused
glass, emulsions, polymers etc...), which is very important
for almost all modern industries.

Other names of such mathematical tools are “fractional”,
“half- integer” integration and derivation operators.

First, any signal, any variation of any continuous function
can be described by a convenient sequence of bits. A
good example of this is digital recording (CD), which has
reached the HiFi quality in the recent years. So, the 5th
Symphony by Beethoven (or Mahler) can be expressed as
a binary sequence B (equivalent to a modulation in
frequency).

Second, APL contains THE MAGIC IDIOM #\ which
corresponds, for bit sequences, exactly to what Riemann-
Liouville integrations and differentiations do with
continuous functions. Moreover, the choice of the
coefficients & and (1-e) for interpolation, i.e. mixing a
function and 1ts integral or derivative, is left to the user :
this latter chooses a value for & which fits at best his
experimental results. But, the formulae for the “half-
integral” and the “half-derivative” are unfortunately
NOT so simple with the Riemann-Liouville theory.
Analytical feasibility is reduced to some special cases...

Discrete differentiation for small (but not infinitely
small) intervals At on a function F(t) will give the
variation of a studied phenomenon [F(t +At) ~F(t)]/At as
a vector, with the length of the initial data minus 1,
resulting from sampling (experimental measurement) e.g.
at At=0,1,2,3,etc.

Transposed to Modulo-2 algebra, then to the binary field,
the arithmetic difference becomes MINUS Modulo 2,
then the EXCLUSIVE OR, then the logical difference, i.e.
simply # in APL. The first binary difference on any
binary vector B is:

I¥B="1¢B
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In general, in physics, F(t) is unknown. Most perceptions
and measurements correspond to differences along axes of
space or time. So, one sets, in the most common case,
some differential equations. The goal consists in finding
the solution(s) for F from these equations. For most
natural phenomena, it is a hard job. Fortunately, with
the help of the computer, one performs discrete
integration. In APL, discrete integration (undefined
integral or CUMULATION) is simply performed by +\
(while the defined integral or SUM is +/) . Transposed
to Modulo-2 algebra, then to the binary field, the
arithmetic sum becomes PLUS Modulo 2, then the
EXCLUSIVE OR, then the logical sum, i.e. simply # in
APL, another time.

Then, since # keeps all the properties of +
(associativity, commutativity), binary algebra becomes
the UNIQUE case for which the difference is also
associative and commutative.

The propagated difference or differential of B is #\B while

the local differential will be BLOIO1,14B#™ 1B for any
vector B. The interest of correcting the first item is that :

1) the shape of B and the one of 1ts local differential
remain the same;

2) the local differential is identified with the Gray code
of B (cf. [8]);

3) the following identity is true for any vector B:

B =#\ BLOIO], 14B# “1¢B

Any binary integral (undefined integral of any signal B)
is given by #\ as well as any propagated differential : All
the mathematical difficulties, inherent to the use of
the Riemann-Liouville functions, disappear. #\ has
“something of an integrator” and “something of a
differentiator”. We shall call 1t the unified “Integro-
Differentiator” (ID for short).

APL is the unigue programming language with an ISO
standard [9], that can offer, as a convenient notation
which extends to arrays, i.e. “parallel wvectors”, THE
tool that all physicists should know before thinking of
their physical problems and tring to model fractality or
chaos with a computer.

So, we had the feeling - and any physicist can check
this immediately, if he knows APL - that mathematics,
applied to physics, might be drastically simplified, using
this new method of investigation, able to mimic the
elementary interaction, if not to describe it completely at
the level of fundamental parities i.e. the information
quantum either Qor 1, cf.[10].
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Moreover, #\ may be applied as well as its inverse
function, as many times as one wishes, always with no
error.  Every signal, then every discrete function, with a
large number of so small intervals that the plot looks
continuous, could become a priori infinitely “non-integer
integro- differentiable”, and, last but not least, easily.

A rapid study of the properties of #\ iterated, let appear
not only confirmations, but also unknown properties of
Boolean algebra, with fantastic progresses about periodicity,
discrete holography, genetic automata, symmetries,
chirality (the left/right or “levo/dextro” asymmetry),
neuronics, wave propagation and... applied mathematics.

If the hypotheses of physicists are correct, given any
system, described by a function such as F(t), the status of
the system after At (e.g. a small unit interval of time, a
“quantum”), is given by F '(t).At which becomes F '(t) if
At is a unit interval, For many “independent” variables,
one uses total differentials; before understanding complex
systems, lec us first try to discover what happens to a
signal, with just one variable. Physicists suspected that
fractality required non-integer integro-differential formulae
which are not currently taught at school.

So, according to theoretical grounds for signal sampling,
i.e. measurement, which lie beyond the scope of the
present paper, and after exploring the properties of
array-hinary algebra, we came to the following hypothesis :

Given any binary sequence B which describes e.g. any
signal as a function of some parameter, its “next future”
should be given by #AB, moreover with NO ERROR
because # isa logical function.

This hypothesis was checked on several systems, using 0
and 1 to describe parities : less-stable/more-stable,
absent/present, massless/weighing, anion/cation, cold/hot,
fundamental/excited, recessive/dominant (in genetics),
and seemed to lead to very good results : in fact, no
exception to the rule was found...

A very simple example in the field of computer science is
the MS-DOS command COPY. If we want to copy a
public-domain APL from disk A: to disk B:, we may
write : COPY A:APL.EXE B:

If 1 is the existence of file APL.EXE on the diskettes
inserted into the drives A: and B: of a PC, the initial
state before copy is one of the 4 following ones :

A:B: A: B: A:B:  A:B:
00 01 10 11

Future forecast is

#\  applied to

these vectors ie. 0 0O 01 11 10
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We want to propagate APL.EXE from A: to B: If the file
does not exist on A:, is the final state the same as the
initial one! The answer is : “TRUE”.

If the file exists on A:, not on B:, the subsequent state is
1 1 (successful COPY). So, the hypothesis is TRUE.

If the file also exists on B: (fourth case), the subsequent
state is NOT the one after a copy : we have a conflict.
#\ immediately reveals a necessary condition : the existing
file on B: with the same name (although the content may
be different) MUST be deleted first (anti-copy). So,
there is a new subsequent state 1 0, which is the same as
the third initial state. Now, the copy can take place
normally; (some systems ask the user about his intentions
before destroying APL.EXE from drive B: while MS-
DOS does not). #\ detects that there are two steps in
this last situation.

#\ gives, on a very long sequence, the possibility of
obtaining by successive iterations what we call the
successive 1D's (for Integro-Differentials) or QUID’s (for
“Quantum Unified ID” in papers for physics, because one
can study models at any desired scale of quantisation). Thus
has been studied with APL for some years now and
published [1], [2], [5]. When the length of Bis ¢ a power
of 2, the cth ID always reproduces B.  For any sequence
B, #/B (by analogy with +/) is its defined integral. It
is 1 if the sequence has an odd number of 1-bits, thus
expressing the parity of the whole sequence. #7B has the

same value as " 11+#\B except that the latter idiom
produces a vector with length 1 instead of ascalar.

The vector containing the last item of each successive 1D
of B was named C for “Cogniton”. C is the cognitive
transform of B. [t contains :

(#/B), (#/#\B), (#/#\#\B), (Z/#\#A\#\B),
etc... or

€117 (F\NB) (FV\#\B) (FN#ENENB) (F\NENENENB)
etc... in APL2Z.

This transformation is an involution (just like the
Fourier transform, but always exact), so that the cogniton
of C is the original B (we restrict here to an integer power
of 2 for pB).

The other transformation which is used in SHAPES

corresponds to the helical transform H.  The mitror of H,
ie. oH contains :

(#/B),#/#\T1IB),(Z/#NANT2Y B), (F/#NEENT 3L B),
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etc...

The helical transformation is also an involution : the
helical transform of H is the original B, and $H is also the
cognitive transform of B (see [1, 2]).

All these properties in vector and matrix binary algebra
(a field which seems to have never been explored
systematically in mathematics and in computer science)
were discovered thanks to APL, and may be used directly
in the memory of the computer, on giant arrays, thus short-
circuiting huge computer-business and most frequently-
used methods of applied mathematics...

But what has now become possible, thinking in APL and
using 1t, has probably be used by Nature itself before APL
was invented... (The least-action principle does not state
anything else.)

As an attempt to prove it (many other directions are
explored in parallel), the SHAPES function was written.
The connection with fractals, namely with Sierpinski’s
work, was shown before [1, 11}; a new idea was to use the
Sierpinski construct asa matrix operator so as to replace
the Fourier transform by something much more simple,
efficient and accurate.

Genetic automata (see [2], [12], [13]), based exclusively on
the #\ rule, immediately led to a new explanation of
Mendel laws without any ad-hoc hypothesis. Similarly,
#\ can also produce and explain the famous “1/f-signals”
which had no satisfactory mathematical model in physics

(2], [6].

Towards natural shapes

The most useful mathematical construct used in research
for the synthesis of fractal (i.e. realistic) images is indeed
the Fast Fourier Transform (FFT) {14] (which is also
connected to the Riemann-Liouville integral).

Then, the idea that Nature could also use some
simple mechanism, based on parity hierarchies, and very
close to the cognitive-helical transforms to build its
complex shapes, was in the air. We also knew that #\ was
intimately connected to the Fibonacci series, which
produces the parastichies of some flowers (sun-flower),
the shapes of pine-cones and pine-apples, with visible
orthogonal spirals which can be counted, and sometimes
also modelled in flurd dynamics [15] [16].

But “what can be counted” does not cover all
shapes (unfortunately named “random” fractals because
they were not understood).

Most flowers do not exhibit Fibonaccian structures
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(dahlias do, roses, apparently do not). In two dimensions,
or almost-2D, Nature produces creeping plants, (ivy,
honeysuckle) as well as naphtalene, anthracene, graphite
(these compounds are formed in a plane or, for graphite,
built by stacking of planes of carbon atoms with hexagonal
symmetry), and frost crystals on windows for Xmas. Could
only one mechanism lead to such a variety of shapes ?

Von Koch’s initial idea was excellent (simple ideas are
always good). It also led to explain the coast-line length
paradox : the length of a ragged coast depends on the scale
at which the measurements are performed. Every book on
fractals, chaos or mathematical games does show this
construct. Nature is indeed fractal. So is #\ which could
be used in order to improve, as explained above, the
variety of accessible shapes, without much numeric
computation, except in order to remain compatible...
with existing graphic software and habits.

This is just what we have done (limiting ourselves to
2-D experiments so that microcomputers with APL may

be used).

The first goal was to avoid recursivity and to accelerate
every sub-algorithm using a minimum of arithmetics or
trigonometry.

The second goal was to minimise errors, another good
reason to work with bits.

So, given a symmetry, e.g. 6-fold (hexagonal) symmetry to
start with, the one of snowflakes and of honeycombs, we
just need to compute once ONE rotation matrix; for
the 6-fold symmetry, w is 60°:

cos w sinw Then, around the central point, we may
~sinw cosw turn S times; for Sz6, we can generate
the other matrices, for 2w, 3w, etc... raising this matrix to
its successive powers (line [7] of SHAPES). The Sth
power of such matrices has to be a unit-matrix. In fact,
most lines of SHAPES could be used only once
Sequences for recursions lower than 7 are the first items
of the sequence for 7. Cognitive and helical transforms

also have such properties : C for R=5 is 5124 C for Rz6,
while H forRz5 is 5124H forRz6, etc...

The necessary successive powers of the rotation matrices
for significant symmetries (4, 5, 6, 8, 12...) can also be
computed once and kept in a file or in the workspace.

Line [8] is not optimal: it iterates B € #\B 1000 times if
you want the 1000th ID. This expression is just for
demonstration; otherwise, optimal algorithms can give
you the 1000th ID directly, without computing the 999
first ones, see [7].
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A turtle at work

As far as rotation matrices are concerned, we will only use
one half of them; this explains the ML ; ;81 of line [10].
(ML; ;17 is useless) :in order to plot the shape, the
graphic cursor operates exactly like the turtle of LOGO.
Every displacement is possible in one of the S centro-
symmetric directions around the origin, e. g. the center
of the screen : for Sz4, the turtle may go East, North,
West or South as far as one quantum at each move. But
when the quantum is small (lower than the physical
pixel), the turtle can reach any point of the screen,
nevertheless, cumulating its tiny moves.

For a displacement with anglew , Xis cosw and Y is sinw.
These values are exactly the 2nd column of each matrix, so
that no computation is anymore necessary; indexing is
enough.

The role of the turtle (it does so when R, recursion, is 0O
and B also 0), is to start from the origin, go a quantum
along one direction, tumn left by 02+S (60° when S is 6),
go a quantum that way, turn again left by the same
angle, go another quantum that way, etc... until it gets
back to the origin. On some CRT’s, the Oy-axis goes
down so that the image may be reversed; this has no
importance at all for the shape. Then, {6} SHAPES 0 will
produce an equilateral triangle, not a hexagon.
Although the scale is the quantum, the automatic
centering and resizing in lines [13] and [14] will magnify
this triangle.

For Rz1, then, with Bz20 1, the turtle becomes more
subtle : From the origin, it still goes along one direction
for one quantum, turns left by ©2+S because the first
item of B is 0, goes a quantum that way and turns left by

072+S , i.e. right. by the absolute value of the same
angle, because of the 2nd item of B, which is 1.
Sequence B is the turtle’s computer program, its Turing
ribbon, which s repeated as much as necessary.

The first O-turn applies power 1 of the rotation matrix,
i.e. cumulates the second column (X and Y) of the
rotation matnx itself with its initial move (X0, YO) before
turning.

Before line [11] is executed, for SHAPES 1, symmetry S
is 6, the binary sequence Bis 0 1 and Iis4 1 (given by
1+21L S+2) at the end of line [10]. K[B is 12, ie. the
pre-computed number of segments forming David’s star.

The APL expression : SIT1+710+\NILK[B1pB]

produces : 534231201504 which 1s put into
variable T.
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This vector of integers contains N-Nw N-NE
(this will hold for any S and R) M Lw
directly the indices in O-origin,
of the successive directions taken by VW
the subtle turtle : it goes East (5) ; '
then South-SouthWest (3), then ;
SE-SE(4), then West(2), etc.. oo ~ o
until the last move S-SE (4) which

brings it back to the initial location, closing the contour.
The successive moves are numbered from O to 11 in the
following schema.

M already contains the elementary X
and Y for the S possible rotations.
TeMLT;] recreates T as the array
containing the incremental moves
both along X and Y for incremental
plotters; this has been obtained with
no arithmetics or trigonometry once
the 2nd columns of the successive S -
powers of the suitable rotation matrix
are known. The absolute coordinates of the successive
turtle locations are given by +N\T and will fit CRT
graphics (OGLINE, vdi or cgi “polylines”, etc...).

Roundings are done after obtaining the absolute
coordinates, so that errors remain, even for many points,
unsignificant.

How a turtle draws flowers and natural shapes

Extending the snowflake construct to all symmetries and
to all ID’s of cognitive and helical transforms was just a
small idea that could a priori prove to physicists,
botanists and crystallographers, that Nature knew #\
before the “scan operator” was introduced into APL.SV
a decade and a half ago (and then IS an ideal and general
plausible mathematical model of the Elementary
Interaction). Although the SHAPES function restricts to
2-D graphics, the surprise was great when the results
came out, especially in full colour. Function EXAMPLES
contains some suggestions, but experiments with #\ are
still a virgin island... (The whole documented software
will be available as a small workspace for APL*PLUS 1
& 11, easily adaptable for any other APL-
implementation, at the Software Exchange booth). The
plates, unfortunately in black-&-white, give a faint idea of
what shapes APL can produce at low cost.

Plates Each plate was obtained in a few seconds on the
Atari ST, aslow machine at 8 MHz, using APL.68000,
with ecither a newly-written polyline/polymarker function,
or direct adressing of the graphic screen as a bitmap (just
the equivalent of a 256,000-bit APL  vector) which
shortcuts  all the previously-necessary graphic software
and may be extended to produce also colour output.
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EXAMPLES

~1 SHAPESS5 89

DD

AT

SHAPES 5

5 SHAPES 6
5 SHAPES 5 22
5 1 SHAPES6 11
15 71 SHAPES 6 732
30 SHAPES 5 21
32 SHAPES 5 71
104 1 SHAPES 4 31

A {} default option

A Nice flowers

9
T T T__ Integro-Differential (ID) number

T 7 T Order of Recursion (from O to 6 or 7 with high TWA)

T Transform. ~1 : Helical Transform, {0} : No Transform, 1 : Cognitive Transform.

A {6 0} is taken with monadic syntax.

Symmetry (3 or 4 or 5 or 6 or 8 or 9 or more...) Reduce recursion for high symmetry codes.

A Von Koch’s snowflake (symmetry 6, recursion 5)

A Pentagonal snowflake

A Celtic ladies

A Strange runner

A Chestnut crown

A Fly crown

A Handsome pilot-fish

A Close the apple of the eye, increasing ID from 31 to 63 then 127;
A also try "1 instead of 1 for less aperture until shurdown.

A More to try (with high recursion-orders, with APL*PLUSII...)

A Indications for nice colour display is available.

A Colour output will be included in the versions for the sofiware exchange.
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"The Chestnut CROMWN"
34th ID of the
cognitive transform

for Recursion 5

in 15-fold symmetry

¢

Asymnetric rosace flower !
S5th ID of the cognitive
transform for Recursion §
in 15-fold symmetry.

Interest lies not only in
the final output, but also

in the way it is plotted,

<]
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The 89th ID of the helical
transform for Recursion 3
in 15-fold symmetry builds
a conpletely different
buach of attractors

(splendid when colour may

be used).

e

f flower from the APL garden :
89th ID of the cognitive transform
for Recursion § in 15-fold
synmetry.,

The central croun exhibits

I0-fold symmetry.

All the chestnut sub-shapes

may be considered as "strange

attractors" (see Chaos Theory).

-
{:

<] F
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fin easily-written cover function allows to draw two shapes per screen @

’L ._, \T ' g et L~
B MDy
e

ID number 89 of the helical (left) and cognitive transforms (right).
The cursor sprite of the Atari (a bee) pays a visit to strange insects...

#\ both preserves symmetry and creates chirality Chelicity, verticity) ! U;

Symmetry 1
Recursion 5
ID aumber 127 of the helical (left) and cognitive transforms (right).

3 times 512 patterns for each symmetry are available with recursion 5.

¢l
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/

Recursion 5

Symmetry 16 L

b 127

2 %3 2 %5 1/2 pattern of
pattern of octogons, altogether
octogons 11 octogons.

How #\ a symmetry maker and a symmetry breaker at the same time, produces
regular crystal-like patterns, introducing odd numbers spontaneously.
Note, A1} genitons are cubic roots of the conforming binary unit matrices.

lel

Helical transform Cognitive transform

Summetry 32
Recursion 5
ID I

Elementary stacking of cells,
Compare with ID 63 for which
elementary (Bénard?) cells
have a larger radius, but are

less numerous in the “membrane"

formed by the 1824 residual elementary vectors (initialiy 16384 vectors).

al B
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High symmetries mau be explored;
however, intermediate arrays can
reach a large size.

Such a flower originally has

13,312 vectors, which reduce to

3,328, fortunately, already for

Recursion 4.

This is the equivalent of the

von Koch's snowflake (which exhibits a 6-fold symmetry). Suymmetry is 164,

¢
Synmetry 1064 Recursion 4 ID number 2 i.e, #\#\ of
the Helical transform the Cognitive transform
(the birth of a torus 7)
¢
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