BUILDING MODELS: A DIRECT BUT NEGLECTED

APPROACH TO TEACHING COMPUTER SCIENCE’

John E. Howland

Department of Computer Science
Trinity University
715 Sadium Drive

San Antonio, Texas 78212-7200

Voice: (210) 999-7364
Fax: (210) 999-7477
E-mail: jhowland@Trinity.Edu
Web: http://mwww.cs.trinity.edu/~jhowland/

ABSTRACT

The use of software models for teaching a variety of computer science topicsisa
vauable technique. Such models may be studied by reading and examining each
model itsdf. Additionally, the models form the basis for experimentation. The J
language is particularly well suited for modeling. It is not necessary that students be
proficient in J programming to make effective use of Jmodels and experimentswith
models are easly devised so that |aboratory measurements may be taken. Example
models for a number of computer science topics are given.

Subject Areas. Computer Science Education, Computer Science Curriculum
Computer Science Laboratories.

Keywords: Modeling, J Programming Language.

1INTRODUCTION

In this paper, the term modeling is used in the context of software modeling, asin models
of computer science entities implemented as programs (or program fragments) in some
programming language. The extent to which model building is useful depends on the choice of

" Copyright © 2002 by the Consortium for Computing in Small Colleges. Permission to copy
without fee dl or part of this materia is granted provided that the copies are not made or
distributed for direct commercia advantage, the CCSC copyright notice and the title of the
publication and its date appear, and noticeis given that copying is by permission of the Consortium
for Computing in Smdl Colleges. To copy otherwise, or to republish, requires a fee and/or

oecific permission.

110

CCSC: South Central Conference

programming language as well asthe skill of the model builder. Since much of what we teach
incomputer scienceisbased in part on mathematicsit is useful for the modeling language to be
areasonable substitute for ordinary mathematical notation.

A good model building language should possess the following attributes:

1.1 Attributesfor Software Modeling

notation for mathematics

rich set of primitive operations

rich set of primitive data structures

exact and inexact arithmetic

higher level functions

CONCi Se expressive power

interactive environment

freely available on a variety of computing systems

A modeding language needs a wide variety of functions. These include the classical
functions of mathematics as well as functions for creating and manipulating data structures and
functions which performexact aswell asinexact arithmetic. A successful modeling language will
alow the expression of higher level functions (operators defined on function domains which
produce function results) and treat functions as first class data items.

Ordinary mathematical notation provides economical expression of powerful ideas such
as

b .
“rﬂ f(I’:IfEI limy oo T4 E:‘lzl L

A successful modeling language should be able to express powerful abstractions of mathematics
and computer science.

Findly, modern computer science lecture hdls and laboratory rooms have elaborate
computer driven, large-screen displays. A modding language should alow an interactive
environment so that an instructor can write the language as one would write equations or
diagrams on a white board.

1.2 Software M odels

Software models, described in precise notation, serve anexpository purpose. A student's
reading of the model gives ingght as to the form, structure and function of the entity being
modeled. The model may be inspected and abstracted to be used as abuildingblock foramore
complex entity.

111

JCSC 17, 5 (April 2002)

1.3 Reading Models

A reading of the source code for the model gives the student a precise description of the
entity being modeled. Expository use of notation serves to remove the ambiguity and
imprecision of natural language descriptions of a computing concept.

1.4 Experimentation with Models

Software models, being executable programs have the potential of providing experimental
apparatus. Experimentation with a model often provides insight and uncovers model behavior
which is counter-intuitive.

2JasaMODELING NOTATION

The J programming language [1,3,4,7] is, perhaps, the only programming language which
satisfies the criteria of Section 1.1. Jusesinfix notation with primitive functions denoted by a
special symbol, such as + or %, or a special symbol or word followed by the suffix of . or : .
Each functionname may be used asamonad (one argument, written to the right) or as a dyad
(two arguments, one on the |eft, the other on the right).

The Jvocabulary of primitive (built-in) functionsisshownin Figures 1 and 2. Thesefigures
show the monadic definition of afunction on the left of the* and the dyadic definition on the
right. For example, the function symbol +: represents the monad double and the dyad not-or

(nor).

= Sdf-classify * Equa
<Box * Less Than

> Open * Larger Than
_ Negative Sign Infinity

+ Conjugate * Plus

* Signum * Times

- Negative Sign/ Minus
% Riciproca * Divide

~ Exponential * Power

$ Shapre Of * Shape

~ Reflex* Passive/ EVOKE
| Magnitude * Residue

. Determinant * Dot Product
: Explicit/ Monad-Dyad

, Ravel * AppOrend

: Raze* Link

Tally + Copy

! Factoria * Out Of
[Insert * Table

\ Prefix * Infix

112

. Is(Local)

. Floor * Lessor Of (Min)
. Celing* Larger Of (Max)
_. Indeterminant

vV A

+

. Real / Imaginary * GCD (Or)

. Length/ Angle* LCM (And)

-. Not* Less

%. Matrix Inverse* Matrix Divide

*

A, Natural Log * Logarithm
$. Sparse
~. Nub*
| Reverse* Rotate (Shift)

.. Even

. Obverse

,. Ravel Items* Stitch
;. Cut

#. Base2* Base
I. Fit (Customize)
/. Oblique* Key
\. Suffix * Outfix

Figure1l: JVocabulary, Part 1

. 1s(Global)

: Decrement * Less Or Equa
. Increment * Larger Or Equal
_ Infinity

vV Al

: Double * Not-Or

: Square * Not-And
- Halve* Match

%: Square Root * Root

* 4

. Power

$: Sdlf-Reference

~: Nub Sieve* Not-Equal
|: Transpose

.. Odd

 Adverse

.. ltemize* Laminate
;> Word Formation *

#. Antibase 2 * Antibase
I: Foreign

[: Grade Up * Sort

\: Grade Down * Sort

CCSC: South Central Conference

J uses a smple rule to determine the order of evaluation of functions in expressions. The
argument of amonad or the right argument of a dyad isthe vaue of the entire expression on the
right. The vaue of the left argument of adyad is the first item written to the left of the dyad.
Parentheses are used in a conventional manner as punctuation which dters the order of
evauation. For example, the expression 3*4+5 produces the value 27, whereas (3*4)+5
produces the value 17.

[Same* Left

] Same* Right

{ Catalogue * From

} Item Amend * Amend

" Rank

' The (Gerund)

@ Atop

& Bond / Compose
? Roll * Dedl

a Alphabet

b. Boolean/ Basic

d. Derivate

e. RazeIn* Member (IN)

H. Hypergeometric

j. Imaginary * Complex
m. a Explicit Noun Args
p. Polynomial

r. Angle* Polar
t. Taylor Coefficient
u. v. Explicit Verb Args

Lev
Dex
. Head * Take
. Behead * Drop

Ay e —

". Do* Numbers

@. Agenda
&. Under (Dual)
?. Roll * Dedl (fixed seed)

a Ace (Boxed Empty)
c. Characteristic Values
D. Derivative

E. * Member of Interval

i. Integers* Index Of
L. Leve of

NB. Comment

p: Primes*

s Symbol
t: Weighted Taylor
u: Unicode

[: Cep

]: Identity

{: Tall * {:: Map * Fetch
}. Curtail *

": Default Format * Format
Evoke Gerund

@: At

&: Appose

A. Anagram Index * Anagram
C. Cycle-Direct * Permute
D: Secant Slope

f. Fix

i: Integers* Index Of Last
L: Leve At

0. Pi Times* Circle Function
g: Prime Factors* Prime Exponents

S Spread
T. Taylor Approximation
X. V. Explicit Arguments

x: Extended Precision _9: t0 9: Constant Functions

Figure 2: JVocabulary, Part 2

The evaluation of higher level functions (function producing functions) must be done (of
course) before any functions are applied. Two types of higher level functions exist; adverbs
(higher level monads) and conjunctions (higher level dyads). Figures 1 and 2 show adverbs
in bold itaic face and conjunctions in bold face. For example, the conjunction bond (Curry)
binds an argument of a dyad to a fixed vaue producing a monad function as a result (4&*
produces a monad which multiplies by 4).

J is a functional programming language which uses functional composition to model
computational processes. J supports aform of programming known as tacit. Tacit programs
have no reference to their arguments and often use special composition rules known as hooks
and forks. Explicit programs with traditional control structures may also be written. Inside an
explicit definition, the left argument of a dyad isaways named x. and the argument of a monad
(as well as the right argument of a dyad) is aways named y.

113

JCSC 17, 5 (April 2002)

Jsupportsapowerful set of primitive data structures for ligsand arrays. Data (recall that
functions have first-class status in J), once created from notation for constants or function
application, is never atered. Data items possess severa attributes such as type (numeric or
character, exact or inexact, etc.) shape (a list of the sizes of each of its axes) and rank (the
number of axes). Names are an abstraction tool (not memory cells) which are assigned (or re-
assigned) to data or functions.

3EXAMPLE MODELS

A smdl sample of models used in the teaching of various computer sciencetopicsisgiven
in Section 3. When reading each of the example models, remember that they are used for the
following purposes.

To give a precise specification of the topic
To allow examination of the properties of the topic
To use the model for experimentation

In Section 3.1 some detail about the model and experimental approach is given. The
remaining examplesin Sections 3.2 to 3.7 only give arepresentative J model and |eave out most
experimental details due to space constraints. When Jis used interactively, inputsto a J session
are shown indented by 3 spaces while responses begin at the left margin.

3.1 Algorithmsand their Processes

Howland [6] used the often studied recursive Fibonacci functionto describerecursive and
iterative processes. In J, the recursive Fibonacci function is defined as:

fi bonacci =. nonad define
if. y. <2

do. y

el se. (fibonacci y. - 1) + fibonacci y. - 2
end.

)
Applying fibonacci to the integers O through 10 gives:
fibonacci "0 i.11

01123581321 3455

Howland [6] aso introduced the idea of a continuation; a monad representing the
computation remaining in an expression after evaluating a sub-expression.

Given a compound expression e and a sub-expression f of e, the continuation of fine
isthe computation in e, written as a monad, which remains to be done after first evaluating f.
When the continuation of f ineisapplied to the result of evaluating f, the result is the same as
evaluating the expression e. Let ¢ be the continuation of f in e. The expression e may then be
written ascf.

114

CCSC: South Central Conference

Continuationsprovide a " factorization" of expressions into two parts; f whichisevaluated
firs and ¢ which is later applied to the result of f. Continuations are helpful in the analysis of
agorithms.

Analysis of the recursive f i bonacci definition reveas that each continuation of
f i bonacci iN fibonacci contains an application of fi bonacci . Hence, since at least one
continuation of arecursive application of i bonacci IS not the identity monad, the execution
of fi bonacci resultsin arecursive process.

Define a monad, fi b_wor k, to be the number of timesti bonacci is applied to evaluae
fibonacci. fib_work i, itself, afibonacci sequence generated by the J definition:

fib_work = nonad define
if. y. <2

do. 1

else. 1 + (fib_wrky. - 1) +fib wrky. - 2
end.

)
Applying fi b_wor k to the integers O through 10 gives.

fib work "0 i.11
1135915 25 41 67 109 177

3.1.1 Experimentation

Consider the experiment of estimating how long it would take to evaluate f i bonacci on
a workstation. First evauate fi b_work 100. Since the definition given above results in a
recursive process, it isnecessary to create a definitionwhichresultsin aniterative processwhen
evaluated. Consider the following definitions:

fib_work_iter =1 nonad def 'fib_iter 1 1, y.'

fib_iter = nonad define
(‘a" ; '"b" ; 'count') = y.
if. count = 0
do. b
else. fib_iter (L+a+b) , a, count - 1
end.

)
Applying fib_work_iter to the integers O through 10 gives the same result as applying

fib_work:

fib_work_iter "0 i. 11
1135915 25 41 67 109 177

Next, usefib_work_i ter t0 computefib_work 100 (exactly).

fib_iter 100x
57887932245395525494200

Findly, time the recursve fibonacci definition on arguments not much larger than 20 to get
an estimate of the number of applications/sec the workstation can perform.

(fib_work_iter ("0) 20 21 22 23) %tinme' fibonacci ("0) 20 21 22 23

115

JCSC 17, 5 (April 2002)

845.138 1367.49 2212.66 3580. 19

Using 3500 applications/sec as an estimate we have:

0 3500 #: 57887932245395525494200x
16539409212970150141 700

0 100 365 24 60 60 #: 16539409212970150141x
5244612256 77 234 16 49 1

which is (approximately) 5244612256 centuries!

An aternate experimental approach to solve this problem is to time the recursive
fi bonacci definition and look for patternsin the ratios of successive times.

experiment = (4 10 $' fibonacci ') ,. ": 41 $ 20 21 22 23
experi nent
fi bonacci 20
fibonacci 21
fi bonacci 22
fi bonacci 23
t = time "1 experinent
t
2.75291 4.42869 7.15818 11.5908
(1} t) %_11}. t
1.60873 1.61632 1.61924
ratio =1 (+ %#) (1}. t) %_11}. t
ratio
1. 61476
0 100 365 24 60 60 rep x: ratio”100
205174677357 86 306 9 14 40

This experimental approach produces a somewhat larger estimate of more than

205174677357 centuries. Students should be cautioned about certain flaws in ether
experimental design.

3.2 Computer Arithmetic

Arithmetic representations are easlly modeled. Blaauw[2], one of the designers of the
IBM Stretch and System/360 computers, recognized the importance of software modeling in
the design process. Blaauw used APL for his software models. Following are models of IEEE
754 dngle precision inexact representations. fs2bin gives the binary representation of an
inexact value.

fs2bin = nonad define
NB. check for infinities and nan's
if. _=y.
do. 011111111, 23 copy O
return.
elseif. __ =y.
do. 111111111, 23 copy O
return.
NB. this case is tricky since (for sone reason)
NB. . = . is false. Perhaps this is because

NB. TEEE 754 specifies _1 + 2 ~ 23 different

116

CCSC: South Central Conference

NB. representations for nan

elseif. 0 not_equal y. - vy.
do. 011111111, 23 copy 1
return.
end.

NB. conpute the characteristic

e= 1+ floor log2 | y. +y. =0

NB. now the manti ssa

f = 1 drop (24 copy 2) rep floor (2~ 24 - e) * | y.

NB. finally get the sign and exponent (binary forn)

se = (9 copy 2) rep (y. not_equal 0) * (256 * y. <0) + e + 126
se , f

)

bi n2fs = nonad define
s = 0 fromy.
e =. base 1234567 8fromy

f base 9 drop vy.
if. (O=¢e) and O

f

do. O

elseif. (265 =€) and 0 = f
do. _* 1~"s

elseif. (255 = e) and 0 not_equal f
do.

elseif. (0 = e) and 0 not_equal f

do. (1 ~s) *f *2"e- 126
elseif. 1

do. (1 ~s) * (2"e- 127) * (base 1, 9 dropy.) %2 ~ 23
end.

)

fs2bin 0.01
001111000010001111010111200001010

bin2ffs 001 1110000100011 11010111000010
10
0.01

3.3 Computer Circuits

or = +.
and = *.

not = -

bitO =: nonad define

(I aI ; 1] bl) =- y.

aorb

)

bit And =: nonad define

(I aI ; 1] bl) =- y.

a and b

)

bitNot =: not

bi t Hal f Adder =: nonad defi ne
(I aI ; 1] bl) =- y.

117

JCSC 17, 5 (April 2002)

bitO (bitAnd a , bitNot b) , bitAnd (bitNot a) , b
)

bi t Xor =: bitHal f Adder

wi reQut put =: nonad define

("pin" ; 'outputs') = y.

pin fromoutputs

)

bi t Adder =: nonad define

(ta" ; '"b" ; 'cin') = y.
t = bitHalfAdder a , b
g = bitAnd a, b
p= bitAndt , cin

(bitOr g, p) , bitHalfAdder t , cin
)

fourBitAlu =: nonad define

("a3" ; 'a2" ; 'al' ; 'a0" ; '"b3 ; '"b2' ; "bl" ; 'bO" ; 'sub') = y.

t0 =. bitAdder a0 , (bitXor b0 , sub) , sub

tl = bitAdder al , (bitXor bl , sub) , wireQutput 0 ; tO

t2 = bitAdder a2 , (bitXor b2 , sub) , wireQutput 0 ; t1

t3 =. bitAdder a3 , (bitXor b3 , sub) , wireQutput 0 ; t2

(wireQutput 0 1 ; t3) , (wreQutput 1 ; t2) , (wreQutput 1 ; t1) |,
wireQutput 1 ; tO

)

Below we show the sum and difference of _1 and 1 (ignoring the carry) producing
resultsofo o oo and 1 1 1 0 (0 and _2).
fourBitAul1111 00010
10000

fourBitAlu1 111 00011
11110

3.4 Computer Organization

Following are J models of the multiplier discussed in Section 4.6 of Patterson and
Hennessy [5]. First, an architectural model of a 32-bit ALU.

alu_32 =: nonad define

NB. a and b are each 32-bit sunmmands
NB. the result is a 32-bit sum

(ta" ; "b') = y.

(32#2) #: (#. x: a) +# Xxi b

)

Next, the multiplier:

mult3 = nonad define

(‘multiplicand ; 'multiplier') = vy.
product=. (32#0) , nmultiplier

count =. 32

while. 0 ~: count

118

CCSC: South Central Conference

do. control = (_1&) product
if. control
do. product = (alu_32 (32 {. product) ; multiplicand) , 32 }.
pr oduct
end.
product =. 0, _1 }. product
count =. <! count
end.
pr oduct
)
Finaly, we use the multiplier to form the product 3 * 2.

mul t3 ((30#0), 1 1); (30#0),1 O
000000000000000DO0O0O0DOO0OOOO0OOOOOOOO0OO0OOODO
0
0000000000000000000000000110

3.5 Object Programming

After taking a course in object programming, students sometimes lack a conceptual
understanding of object programming which is independent from the syntax of the object
programming language used in the course. The following model has been used to teach object
programming concepts. J locales are used to build objects which combine both data structure
and code. The J object programming system has a similar conceptual basis.

nmke z = 0!: 0 @<
for_effect_only z_ =: nonad def '''unspecified "'
inval i d_nethod_nane_i ndicator_z_ = 'unknown'
root_object_z = nonad define
('method" ; 'value') = 2 takey.
if. method -: 'type'
do. 'root object’
else. '"In root object: ',method,': Invalid nethod nane.'
end.

)
The following file is a definition of a stack object which inherits its printing method from
aprinting object.

NB. The stack object tenplate which inherits a print nethod
data =:

stack_z_ =: nonad def 0
("method" ; 'value') = 2 takey.
if. method match 'type'
do. 'stack’
el seif. method natch 'enptyp'
do. 0 =tally data
el seif. method natch ' push’

119

JCSC 17, 5 (April 2002)

do. for_effect_only data =: (box value) , data
el seif. nmethod match 'top
do. if. O =tally data
do. 'top: stack is enpty
el se. open first data
end.
el seif. nmethod nmatch ' pop
do. if. O =tally data
do. 'pop: stack is enpty
el se. for_effect_only data = rest data
end.
elseif. method nmatch 'size
do. tally data
el seif. nmethod match 'print
do. if. O =tally data
do. 'print: stack is enpty’
el se. for_effect_only display 'top of stack’

print 'print' ; box data
end.
elseif. 1
do. root_object nmethod ; val ue
end.
)
The Printing object:

NB. The stack and queue print object

print_z_=: nonad define
('method" ; 'value') = 2 takey.
if. method match 'type'
do. 'print’
el seif. nmethod match 'print
do

while. 0 < tally value
do. for_effect_only display open first val ue
value = rest value
end.
elseif. 1
do. base nethod ; val ue
end.

)

Followingisaninteractive session which makes a stack object, named s, and then pushes and
pops items on the stack.

make_s_ 'stackl.object.ijs'
stack_s_ <'type
st ack
stack_s_ <'size
0
stack_s_ < age
In root object: age: Invalid nethod nane.

120

CCSC: South Central Conference

stack_s_ 'push' ; i. 10
unspeci fied
stack_s_ <'size
1
stack_s_ 'push' ; ' Sone text
unspeci fied
stack_s_ <'size
2
stack_s_ <'top'
Sorre text
stack_s_ <'print'
top of stack
Sorre text
01234567829
stack_s_ <' pop'
unspeci fied
stack_s_ <'top'
8

01234567829

3.6 Computer Graphics

The J programming language provides severa facilities for various kinds of graphics
programming including an interface to the OpenGL libraries if available on the host system.
Models can be built for a variety of graphics topics. Included are models of the 2D
transformations (using homogeneous coordinates) scale, rotate and trandate.

mat _product = +/ . *

scale =1 nonad def '3 3 reshape (0 fromy.), 0 0 0O , (1 fromy.), 0 O
o

translate = nonad def '3 3 reshape 1 00 010 , vy. , 1

rotate =: nonad def '((2 2 reshape 1 1 1 1 * 2 1 1 2 o. (0. y.) %

180),.0),0 0 1'

NB. A square data object
square =: 52 $0010010 100 1000
square
0 0
10 O
10 10
0 10
0 0
translate 10 _10
1 00
0O 10
10 _10 1
(square,.1l) mat_product translate 10 _10
10 _10 1
20 _10 1
20 01
10 01
10 _10 1
NB. Don't do unnecessary multiplications

121

JCSC 17, 5 (April 2002)

(square,.1l) mat_product 3 2 {. translate 10 _10
10 _10
20 _10
20 O
10 O
10 _10
rotate 180
1 00
0_10
0 01
(square,.1l) mat_product 3 2 {. rotate 180
0 o
10 o
_10 _10
0 _10
0 o
new square =: (square,.l1) nmat_product 3 2 {. translate 10 10
new_squar e
10 10
20 10
20 20
10 20
10 10
NB. Rotate this square 90 degrees about the point 10 10
xform = (translate _10 _10)nmat_product (rotate 90) rmat_product
translate 10 10
xform
010
100
2001
(new_square,. 1) mat_product 3 2 {. xform
10 10
10 20
0 20
0 10
10 10

3.7 Computer Networking

The final example isamodd of the crcl16 which is often built into data communications
hardware.

crclé =. nonad define
bcc =. 16 $ 0
while. 0 ~ $vy. do.
ser_quo = (1 {. bcc) ~ 1 {. vy.

bcc == (0 { bcc),(ser_quo ~ 1 { becc),(2 3 45 6 7 8 9 10 11 12 13 {
bce), (ser_quo ~ 14 { bcc), 15 { bee

bcc =. (1 }. bcc), ser_quo

y. = 1}, vy.
end.
bcc

CCSC: South Central Conference

mg=11010110110000
crclé nsg
00111101120100011
crclé nsg,crclé nsg
0000OO0OO0OOOOOOOOOODO

4 CONCLUSIONS

The author has used J mode! building in most computer science courses taught during the
last ten years. J has proved invaluable in aiding student comprehension of difficult material as
well as providing many opportunitiesforlaboratory experimentationwhich otherwise would not
have been possible.

The author hastried to use, with some success, Jlanguage based models in courses where
students have no prior experience reading or writing J. It has been possible to use Jwith little
formd Jingtruction beyond learning the right-to-left evaluation rule. Since the notation may be
used interactively, students can begin using models provided by the instructor to perform
experiments before they have acquired sufficient J reading skills so that the models provide an
expository function.

As an added bonus, J Software, Incorporated, now makes the full J system, on-line
documentation and HTML versions of three books, J Dictionary, J User Manual and J
Phrases fredy avalable to anyone who wishes to access the J Web site,
http://www.jsoftware.conv .

BIBLIOGRAPHY

1. Bermry, P.C., Fakoff, A.D., Iverson, K. E., "Using the Computer to Compute: A Direct
but Neglected Approach to Teaching Mathematics', Technical Report Number 320-
2988, IBM New York Scientific Center, May 1970.

2. Blaauw, Gerrit, Digital System Implementation, Prentice-Hall, Englewood Cliffs New
Jersey, 1976.

3. Burke, Chris, J User Manual, J Software, Toronto, Canada, May 2001.

4. Burke, Chris,Hui, Roger K. W., lverson, Kenneth E., McDonnell, Eugene, E., MclIntyre,
Donald B., J Phrases, J Software, Toronto, Canada, March 2001.

5. Patterson, David A. and Hennessy, John L., Computer Organization & Design, The
Hardware Software Interface, Morgan Kaufmann Publishers, Inc., San Francisco,
Cadlifornia, 1998.

6. Howland, John E.,"Recursion, Iteration and Functional Languages', Journa for
Computing in Small Colleges, Volume 13, Number 4, April, 1998.

123

JCSC 17, 5 (April 2002)

7. Hui, Roger K. W., Iverson, Kenneth E., J Dictionary, J Software, Toronto, Canada,
May 2001.

124

