
* Copyright © 2002 by the Consortium for Computing in Small Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Consortium
for Computing in Small Colleges. To copy otherwise, or to republish, requires a fee and/or
specific permission.

110

BUILDING MODELS: A DIRECT BUT NEGLECTED

APPROACH TO TEACHING COMPUTER SCIENCE*

John E. Howland
Department of Computer Science

Trinity University
715 Stadium Drive

San Antonio, Texas 78212-7200
Voice: (210) 999-7364
Fax: (210) 999-7477

E-mail: jhowland@Trinity.Edu
Web: http://www.cs.trinity.edu/~jhowland/

ABSTRACT

The use of software models for teaching a variety of computer science topics is a
valuable technique. Such models may be studied by reading and examining each
model itself. Additionally, the models form the basis for experimentation. The J
language is particularly well suited for modeling. It is not necessary that students be
proficient in J programming to make effective use of J models and experiments with
models are easily devised so that laboratory measurements may be taken. Example
models for a number of computer science topics are given.

Subject Areas: Computer Science Education, Computer Science Curriculum
Computer Science Laboratories.

Keywords: Modeling, J Programming Language.

1 INTRODUCTION

In this paper, the term modeling is used in the context of software modeling, as in models
of computer science entities implemented as programs (or program fragments) in some
programming language. The extent to which model building is useful depends on the choice of

CCSC: South Central Conference

111

programming language as well as the skill of the model builder. Since much of what we teach
in computer science is based in part on mathematics it is useful for the modeling language to be
a reasonable substitute for ordinary mathematical notation.

A good model building language should possess the following attributes:

1.1 Attributes for Software Modeling

• notation for mathematics
• rich set of primitive operations
• rich set of primitive data structures
• exact and inexact arithmetic
• higher level functions
• concise expressive power
• interactive environment
• freely available on a variety of computing systems

A modeling language needs a wide variety of functions. These include the classical
functions of mathematics as well as functions for creating and manipulating data structures and
functions which perform exact as well as inexact arithmetic. A successful modeling language will
allow the expression of higher level functions (operators defined on function domains which
produce function results) and treat functions as first class data items.

Ordinary mathematical notation provides economical expression of powerful ideas such
as

A successful modeling language should be able to express powerful abstractions of mathematics
and computer science.

Finally, modern computer science lecture halls and laboratory rooms have elaborate
computer driven, large-screen displays. A modeling language should allow an interactive
environment so that an instructor can write the language as one would write equations or
diagrams on a white board.

1.2 Software Models

Software models, described in precise notation, serve an expository purpose. A student's
reading of the model gives insight as to the form, structure and function of the entity being
modeled. The model may be inspected and abstracted to be used as a building block for a more
complex entity.

JCSC 17, 5 (April 2002)

112

1.3 Reading Models

A reading of the source code for the model gives the student a precise description of the
entity being modeled. Expository use of notation serves to remove the ambiguity and
imprecision of natural language descriptions of a computing concept.

1.4 Experimentation with Models

Software models, being executable programs have the potential of providing experimental
apparatus. Experimentation with a model often provides insight and uncovers model behavior
which is counter-intuitive.

2 J as a MODELING NOTATION

The J programming language [1,3,4,7] is, perhaps, the only programming language which
satisfies the criteria of Section 1.1. J uses infix notation with primitive functions denoted by a
special symbol, such as + or %, or a special symbol or word followed by the suffix of . or : .
Each function name may be used as a monad (one argument, written to the right) or as a dyad
(two arguments, one on the left, the other on the right).

The J vocabulary of primitive (built-in) functions is shown in Figures 1 and 2. These figures
show the monadic definition of a function on the left of the * and the dyadic definition on the
right. For example, the function symbol +: represents the monad double and the dyad not-or
(nor).
= Self-classify * Equal
< Box * Less Than
> Open * Larger Than
_ Negative Sign Infinity

+ Conjugate * Plus
* Signum * Times
- Negative Sign / Minus
% Riciprocal * Divide

^ Exponential * Power
$ Shapre Of * Shape
~ Reflex * Passive / EVOKE
| Magnitude * Residue

. Determinant * Dot Product
: Explicit / Monad-Dyad
, Ravel * App0rend
; Raze * Link

Tally + Copy
! Factorial * Out Of
/ Insert * Table
\ Prefix * Infix

=. Is (Local)
<. Floor * Lessor Of (Min)
>. Ceiling * Larger Of (Max)
_. Indeterminant

+. Real / Imaginary * GCD (Or)
*. Length / Angle * LCM (And)
-. Not * Less
%. Matrix Inverse * Matrix Divide

^. Natural Log * Logarithm
$. Sparse
~. Nub *
|. Reverse * Rotate (Shift)

.. Even
:. Obverse
,. Ravel Items * Stitch
;. Cut

#. Base 2 * Base
!. Fit (Customize)
/. Oblique * Key
\. Suffix * Outfix

=: Is (Global)
<: Decrement * Less Or Equal
>: Increment * Larger Or Equal
_: Infinity

+: Double * Not-Or
*: Square * Not-And
-: Halve * Match
%: Square Root * Root

^: Power
$: Self-Reference
~: Nub Sieve * Not-Equal
|: Transpose

.: Odd
:: Adverse
,: Itemize * Laminate
;: Word Formation *

#: Antibase 2 * Antibase
!: Foreign
/: Grade Up * Sort
\: Grade Down * Sort

Figure 1: J Vocabulary, Part 1

CCSC: South Central Conference

113

J uses a simple rule to determine the order of evaluation of functions in expressions. The
argument of a monad or the right argument of a dyad is the value of the entire expression on the
right. The value of the left argument of a dyad is the first item written to the left of the dyad.
Parentheses are used in a conventional manner as punctuation which alters the order of
evaluation. For example, the expression 3*4+5 produces the value 27, whereas (3*4)+5
produces the value 17.
[Same * Left
] Same * Right
{ Catalogue * From
} Item Amend * Amend

" Rank
' The (Gerund)
@ Atop
& Bond / Compose
? Roll * Deal

a. Alphabet
b. Boolean / Basic
d. Derivate
e. Raze In * Member (IN)

H. Hypergeometric
j. Imaginary * Complex
m. a. Explicit Noun Args
p. Polynomial

r. Angle * Polar
t. Taylor Coefficient
u. v. Explicit Verb Args
x: Extended Precision

[. Lev
]. Dex
{. Head * Take
}. Behead * Drop

". Do * Numbers

@. Agenda
&. Under (Dual)
?. Roll * Deal (fixed seed)

a: Ace (Boxed Empty)
c: Characteristic Values
D. Derivative
E. * Member of Interval

i. Integers * Index Of
L. Level of
NB. Comment
p: Primes *

s: Symbol
t: Weighted Taylor
u: Unicode
_9: to 9: Constant Functions

[: Cap
]: Identity
{: Tail * {:: Map * Fetch
}. Curtail *

": Default Format * Format
': Evoke Gerund
@: At
&: Appose

A. Anagram Index * Anagram
C. Cycle-Direct * Permute
D: Secant Slope
f. Fix

i: Integers * Index Of Last
L: Level At
o. Pi Times * Circle Function
q: Prime Factors * Prime Exponents

S: Spread
T. Taylor Approximation
x. v. Explicit Arguments

Figure 2: J Vocabulary, Part 2

The evaluation of higher level functions (function producing functions) must be done (of
course) before any functions are applied. Two types of higher level functions exist; adverbs
(higher level monads) and conjunctions (higher level dyads). Figures 1 and 2 show adverbs
in bold italic face and conjunctions in bold face. For example, the conjunction bond (Curry)
binds an argument of a dyad to a fixed value producing a monad function as a result (4&*
produces a monad which multiplies by 4).

J is a functional programming language which uses functional composition to model
computational processes. J supports a form of programming known as tacit. Tacit programs
have no reference to their arguments and often use special composition rules known as hooks
and forks. Explicit programs with traditional control structures may also be written. Inside an
explicit definition, the left argument of a dyad is always named x. and the argument of a monad
(as well as the right argument of a dyad) is always named y.

JCSC 17, 5 (April 2002)

114

J supports a powerful set of primitive data structures for lists and arrays. Data (recall that
functions have first-class status in J), once created from notation for constants or function
application, is never altered. Data items possess several attributes such as type (numeric or
character, exact or inexact, etc.) shape (a list of the sizes of each of its axes) and rank (the
number of axes). Names are an abstraction tool (not memory cells) which are assigned (or re-
assigned) to data or functions.

3 EXAMPLE MODELS

A small sample of models used in the teaching of various computer science topics is given
in Section 3. When reading each of the example models, remember that they are used for the
following purposes:

• To give a precise specification of the topic

• To allow examination of the properties of the topic

• To use the model for experimentation

In Section 3.1 some detail about the model and experimental approach is given. The
remaining examples in Sections 3.2 to 3.7 only give a representative J model and leave out most
experimental details due to space constraints. When J is used interactively, inputs to a J session
are shown indented by 3 spaces while responses begin at the left margin.

3.1 Algorithms and their Processes

Howland [6] used the often studied recursive Fibonacci function to describe recursive and
iterative processes. In J, the recursive Fibonacci function is defined as:
fibonacci =. monad define
if. y. < 2
 do. y.
 else. (fibonacci y. - 1) + fibonacci y. - 2
end.

)

Applying fibonacci to the integers 0 through 10 gives:
 fibonacci "0 i.11
0 1 1 2 3 5 8 13 21 34 55

Howland [6] also introduced the idea of a continuation; a monad representing the
computation remaining in an expression after evaluating a sub-expression.

Given a compound expression e and a sub-expression f of e, the continuation of f in e
is the computation in e, written as a monad, which remains to be done after first evaluating f.
When the continuation of f in e is applied to the result of evaluating f, the result is the same as
evaluating the expression e. Let c be the continuation of f in e. The expression e may then be
written as c f.

CCSC: South Central Conference

115

Continuations provide a ̀ `factorization'' of expressions into two parts; f which is evaluated
first and c which is later applied to the result of f. Continuations are helpful in the analysis of
algorithms.

Analysis of the recursive fibonacci definition reveals that each continuation of
fibonacci in fibonacci contains an application of fibonacci. Hence, since at least one
continuation of a recursive application of fibonacci is not the identity monad, the execution
of fibonacci results in a recursive process.

Define a monad, fib_work, to be the number of times fibonacci is applied to evaluate
fibonacci. fib_work is, itself, a fibonacci sequence generated by the J definition:
fib_work =. monad define
if. y. < 2
 do. 1
 else. 1 + (fib_work y. - 1) + fib_work y. - 2
end.
)

Applying fib_work to the integers 0 through 10 gives:
 fib_work "0 i.11
1 1 3 5 9 15 25 41 67 109 177

3.1.1 Experimentation

Consider the experiment of estimating how long it would take to evaluate fibonacci on
a workstation. First evaluate fib_work 100. Since the definition given above results in a
recursive process, it is necessary to create a definition which results in an iterative process when
evaluated. Consider the following definitions:
fib_work_iter =: monad def 'fib_iter 1 1 , y.'
fib_iter =: monad define
('a' ; 'b' ; 'count') =. y.
if. count = 0
 do. b
 else. fib_iter (1 + a + b) , a , count - 1
end.

)

Applying fib_work_iter to the integers 0 through 10 gives the same result as applying
fib_work:
 fib_work_iter "0 i. 11
1 1 3 5 9 15 25 41 67 109 177

Next, use fib_work_iter to compute fib_work 100 (exactly).
 fib_iter 100x
57887932245395525494200

Finally, time the recursive fibonacci definition on arguments not much larger than 20 to get
an estimate of the number of applications/sec the workstation can perform.
(fib_work_iter ("0) 20 21 22 23) % time'fibonacci ("0) 20 21 22 23'

JCSC 17, 5 (April 2002)

116

845.138 1367.49 2212.66 3580.19

Using 3500 applications/sec as an estimate we have:
 0 3500 #: 57887932245395525494200x
16539409212970150141 700
 0 100 365 24 60 60 #: 16539409212970150141x
5244612256 77 234 16 49 1

which is (approximately) 5244612256 centuries!

An alternate experimental approach to solve this problem is to time the recursive
fibonacci definition and look for patterns in the ratios of successive times.
 experiment =: (4 10 $'fibonacci ') ,. ": 4 1 $ 20 21 22 23
 experiment
fibonacci 20
fibonacci 21
fibonacci 22
fibonacci 23
 t =: time "1 experiment
 t
2.75291 4.42869 7.15818 11.5908
 (1 }. t) % _1 }. t
1.60873 1.61632 1.61924
 ratio =: (+/ % #) (1 }. t) % _1 }. t
 ratio
1.61476
 0 100 365 24 60 60 rep x: ratio^100
205174677357 86 306 9 14 40

This experimental approach produces a somewhat larger estimate of more than
205174677357 centuries. Students should be cautioned about certain flaws in either
experimental design.

3.2 Computer Arithmetic

Arithmetic representations are easily modeled. Blaauw[2], one of the designers of the
IBM Stretch and System/360 computers, recognized the importance of software modeling in
the design process. Blaauw used APL for his software models. Following are models of IEEE
754 single precision inexact representations. fs2bin gives the binary representation of an
inexact value.
fs2bin =: monad define
NB. check for infinities and nan's
if. _ = y.
 do. 0 1 1 1 1 1 1 1 1 , 23 copy 0
 return.
 elseif. __ = y.
 do. 1 1 1 1 1 1 1 1 1 , 23 copy 0
 return.
NB. this case is tricky since (for some reason)
NB. _. = _. is false. Perhaps this is because
NB. IEEE 754 specifies _1 + 2 ^ 23 different

CCSC: South Central Conference

117

NB. representations for nan.
 elseif. 0 not_equal y. - y.
 do. 0 1 1 1 1 1 1 1 1 , 23 copy 1
 return.
end.
NB. compute the characteristic
e =. 1 + floor log2 | y. + y. = 0
NB. now the mantissa
f =. 1 drop (24 copy 2) rep floor (2 ^ 24 - e) * | y.
NB. finally get the sign and exponent (binary form)
se =. (9 copy 2) rep (y. not_equal 0) * (256 * y. < 0) + e + 126
se , f
)

bin2fs =: monad define
s =. 0 from y.
e =. base 1 2 3 4 5 6 7 8 from y.
f =. base 9 drop y.
if. (0 = e) and 0 = f
 do. 0
elseif. (255 = e) and 0 = f
 do. _ * _1 ^ s
elseif. (255 = e) and 0 not_equal f
 do. _.
elseif. (0 = e) and 0 not_equal f
 do. (_1 ^ s) * f * 2 ^ e - 126
elseif. 1
 do. (_1 ^ s) * (2 ^ e - 127) * (base 1 , 9 drop y.) % 2 ^ 23
end.
)

 fs2bin 0.01
0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0 1 0
 bin2fs 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 1 0
1 0
0.01

3.3 Computer Circuits
or =: +.
and =: *.
not =: -.
bitOr =: monad define
('a' ; 'b') =. y.
a or b
)
bitAnd =: monad define
('a' ; 'b') =. y.
a and b
)
bitNot =: not
bitHalfAdder =: monad define
('a' ; 'b') =. y.

JCSC 17, 5 (April 2002)

118

bitOr (bitAnd a , bitNot b) , bitAnd (bitNot a) , b
)
bitXor =: bitHalfAdder
wireOutput =: monad define
('pin' ; 'outputs') =. y.
pin from outputs
)

bitAdder =: monad define
('a' ; 'b' ; 'cin') =. y.
t =. bitHalfAdder a , b
g =. bitAnd a , b
p =. bitAnd t , cin
(bitOr g , p) , bitHalfAdder t , cin
)

fourBitAlu =: monad define
('a3' ; 'a2' ; 'a1' ; 'a0' ; 'b3' ; 'b2' ; 'b1' ; 'b0' ; 'sub') =. y.
t0 =. bitAdder a0 , (bitXor b0 , sub) , sub
t1 =. bitAdder a1 , (bitXor b1 , sub) , wireOutput 0 ; t0
t2 =. bitAdder a2 , (bitXor b2 , sub) , wireOutput 0 ; t1
t3 =. bitAdder a3 , (bitXor b3 , sub) , wireOutput 0 ; t2
(wireOutput 0 1 ; t3) , (wireOutput 1 ; t2) , (wireOutput 1 ; t1) ,
wireOutput 1 ; t0
)

Below we show the sum and difference of _1 and 1 (ignoring the carry) producing
results of 0 0 0 0 and 1 1 1 0 (0 and _2).
 fourBitAlu 1 1 1 1 0 0 0 1 0
1 0 0 0 0
 fourBitAlu 1 1 1 1 0 0 0 1 1
1 1 1 1 0

3.4 Computer Organization

Following are J models of the multiplier discussed in Section 4.6 of Patterson and
Hennessy [5]. First, an architectural model of a 32-bit ALU.
alu_32 =: monad define
NB. a and b are each 32-bit summands
NB. the result is a 32-bit sum
('a' ; 'b') =. y.
(32#2) #: (#. x: a) + #. x: b
)

Next, the multiplier:

mult3 =: monad define
('multiplicand' ; 'multiplier') =. y.
product=. (32#0) , multiplier
count=.32
while. 0 ~: count

CCSC: South Central Conference

119

 do. control =. (_1&{) product
 if. control
 do. product =. (alu_32 (32 {. product) ; multiplicand) , 32 }.
product
 end.
 product =. 0 , _1 }. product
 count =. <: count
 end.
product
)

Finally, we use the multiplier to form the product 3 * 2.

 mult3 ((30#0), 1 1); (30#0),1 0
0 0
0
0 1 1 0

3.5 Object Programming

After taking a course in object programming, students sometimes lack a conceptual
understanding of object programming which is independent from the syntax of the object
programming language used in the course. The following model has been used to teach object
programming concepts. J locales are used to build objects which combine both data structure
and code. The J object programming system has a similar conceptual basis.

make_z_ =: 0 !: 0 @ <
for_effect_only_z_ =: monad def '''unspecified'''
invalid_method_name_indicator_z_ =: 'unknown'
root_object_z_ =: monad define
('method' ; 'value') =. 2 take y.
if. method -: 'type'
 do. 'root object'
 else. 'In root object: ',method,': Invalid method name.'
end.

)

The following file is a definition of a stack object which inherits its printing method from
a printing object.

NB. The stack object template which inherits a print method

data =: ''

stack_z_ =: monad def 0
('method' ; 'value') =. 2 take y.
if. method match 'type'
 do. 'stack'
 elseif. method match 'emptyp'
 do. 0 = tally data
 elseif. method match 'push'

JCSC 17, 5 (April 2002)

120

 do. for_effect_only data =: (box value) , data
 elseif. method match 'top'
 do. if. 0 = tally data
 do. 'top: stack is empty'
 else. open first data
 end.
 elseif. method match 'pop'
 do. if. 0 = tally data
 do. 'pop: stack is empty'
 else. for_effect_only data =: rest data
 end.
 elseif. method match 'size'
 do. tally data
 elseif. method match 'print'
 do. if. 0 = tally data
 do. 'print: stack is empty'
 else. for_effect_only display 'top of stack'
 print 'print' ; box data
 end.
 elseif. 1
 do. root_object method ; value
end.
)

The Printing object:

NB. The stack and queue print object

print_z_ =: monad define
('method' ; 'value') =. 2 take y.
if. method match 'type'
 do. 'print'
 elseif. method match 'print'
 do.
 while. 0 < tally value
 do. for_effect_only display open first value
 value =. rest value
 end.
 elseif. 1
 do. base method ; value
end.
)

Following is an interactive session which makes a stack object, named s, and then pushes and
pops items on the stack.

 make_s_ 'stack1.object.ijs'
 stack_s_ <'type'
stack
 stack_s_ <'size'
0
 stack_s_ <'age'
In root object: age: Invalid method name.

CCSC: South Central Conference

121

 stack_s_ 'push' ; i. 10
unspecified
 stack_s_ <'size'
1
 stack_s_ 'push' ; 'Some text'
unspecified
 stack_s_ <'size'
2
 stack_s_ <'top'
Some text
 stack_s_ <'print'
top of stack
Some text
0 1 2 3 4 5 6 7 8 9
 stack_s_ <'pop'
unspecified
 stack_s_ <'top'
0 1 2 3 4 5 6 7 8 9

3.6 Computer Graphics

The J programming language provides several facilities for various kinds of graphics
programming including an interface to the OpenGL libraries if available on the host system.
Models can be built for a variety of graphics topics. Included are models of the 2D
transformations (using homogeneous coordinates) scale, rotate and translate.

mat_product =: +/ . *
scale =: monad def '3 3 reshape (0 from y.), 0 0 0 , (1 from y.), 0 0
0 1'
translate =: monad def '3 3 reshape 1 0 0 0 1 0 , y. , 1'
rotate =: monad def '((2 2 reshape 1 1 _1 1 * 2 1 1 2 o. (o. y.) %
180),.0),0 0 1'

 NB. A square data object
 square =: 5 2 $ 0 0 10 0 10 10 0 10 0 0
 square
 0 0
10 0
10 10
 0 10
 0 0
 translate 10 _10
 1 0 0
 0 1 0
10 _10 1
 (square,.1) mat_product translate 10 _10
10 _10 1
20 _10 1
20 0 1
10 0 1
10 _10 1
 NB. Don't do unnecessary multiplications

JCSC 17, 5 (April 2002)

122

 (square,.1) mat_product 3 2 {. translate 10 _10
10 _10
20 _10
20 0
10 0
10 _10
 rotate 180
_1 0 0
 0 _1 0
 0 0 1
 (square,.1) mat_product 3 2 {. rotate 180
 0 0
_10 0
_10 _10
 0 _10
 0 0
 new_square =: (square,.1) mat_product 3 2 {. translate 10 10
 new_square
10 10
20 10
20 20
10 20
10 10
 NB. Rotate this square 90 degrees about the point 10 10
 xform =: (translate _10 _10)mat_product (rotate 90) mat_product
translate 10 10
 xform
 0 1 0
_1 0 0
20 0 1
 (new_square,. 1) mat_product 3 2 {. xform
10 10
10 20
 0 20
 0 10
10 10

3.7 Computer Networking

The final example is a model of the crc16 which is often built into data communications
hardware.

crc16 =. monad define
bcc =. 16 $ 0
while. 0 ~: $ y. do.
 ser_quo =. (1 {. bcc) ~: 1 {. y.
 bcc =. (0 { bcc),(ser_quo ~: 1 { bcc),(2 3 4 5 6 7 8 9 10 11 12 13 {
bcc),(ser_quo ~: 14 { bcc),15 { bcc
 bcc =. (1 }. bcc), ser_quo
 y. =. 1 }. y.
end.
bcc

CCSC: South Central Conference

123

)

 msg =: 1 1 0 1 0 1 1 0 1 1 0 0 0 0
 crc16 msg
0 0 1 1 1 1 0 1 1 0 1 0 0 0 1 1
 crc16 msg,crc16 msg
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 CONCLUSIONS

The author has used J model building in most computer science courses taught during the
last ten years. J has proved invaluable in aiding student comprehension of difficult material as
well as providing many opportunities for laboratory experimentation which otherwise would not
have been possible.

The author has tried to use, with some success, J language based models in courses where
students have no prior experience reading or writing J. It has been possible to use J with little
formal J instruction beyond learning the right-to-left evaluation rule. Since the notation may be
used interactively, students can begin using models provided by the instructor to perform
experiments before they have acquired sufficient J reading skills so that the models provide an
expository function.

As an added bonus, J Software, Incorporated, now makes the full J system, on-line
documentation and HTML versions of three books, J Dictionary, J User Manual and J
Phrases freely available to anyone who wishes to access the J Web site,
http://www.jsoftware.com/ .

BIBLIOGRAPHY

1. Berry, P. C., Falkoff, A. D., Iverson, K. E., ̀ `Using the Computer to Compute: A Direct
but Neglected Approach to Teaching Mathematics'', Technical Report Number 320-
2988, IBM New York Scientific Center, May 1970.

2. Blaauw, Gerrit, Digital System Implementation, Prentice-Hall, Englewood Cliffs, New
Jersey, 1976.

3. Burke, Chris, J User Manual, J Software, Toronto, Canada, May 2001.

4. Burke, Chris, Hui, Roger K. W., Iverson, Kenneth E., McDonnell, Eugene, E., McIntyre,
Donald B., J Phrases, J Software, Toronto, Canada, March 2001.

5. Patterson, David A. and Hennessy, John L., Computer Organization & Design, The
Hardware Software Interface, Morgan Kaufmann Publishers, Inc., San Francisco,
California, 1998.

6. Howland, John E.,``Recursion, Iteration and Functional Languages'', Journal for
Computing in Small Colleges, Volume 13, Number 4, April, 1998.

JCSC 17, 5 (April 2002)

124

7. Hui, Roger K. W., Iverson, Kenneth E., J Dictionary, J Software, Toronto, Canada,
May 2001.

