Array-Oriented Programming
in Education

Richard D. Neidinger
Davidson College
P. O. Box 1719
Davidson, NC 28036
E-mail: rineidinger@apollo.davidson.edu

Today’s campuses (college, university, and sec-
ondary school) are ready to make widespread use of
array-oriented programming, in a way that a decade
ago was known only to APL programmers. Array-
oriented programming uses powerful built-in func-
tions for array and matrix manipulation in an
interactive workspace of user-defined functions and
variables. While the tools for such programming
are now widely available, the style is still not well
known. This is where APL programmers can make
a valuable contribution. Schools are clamoring for
ways to use the new powerful computing tools, as
evidenced by the massive amount of work in calcu-
lus reform in the last five years. In the future,
array-oriented programming may be especially
important as demand grows for (portable) algo-
rithms that can take advantage of parallel comput-
ing. Since the potential for this tool of thought is
so great, this article is the first of a series discuss-
ing how academia can use array-oriented program-
ming in APL and in other (descendant) environ-
ments.

A simple example may help to distinguish the
array-oriented style. Consider the problem of calcu-
lating:

hi fla +ih)
i=1

where f is a real-valued function of one real vari-
able, @ and % are real numbers, and n is a positive

integer. (This is a Riemann-Sum estimate of the
definite integral from a to b of flx), where
h=({b—a):n.) In the most common control struc-

ture style, this could be written:

sum <« O
for i «1 ton
sum « sum + f£(a+ixh)
next i
sum <« h x sum
In a pure functional style using recursion, one

could implement the following:
Define the function }(f,a,k,n) to return

zero if n=0 or
h » £(a) + sum(£f,a+h,h,n-1) otherwise.

APL Quote Quad

17

In an array-oriented style using APL notation, it
could be:

sum « h x +/f at+h x n

To consider the nature of array-oriented pro-
gramming beyond a simple one-liner, think of a
whole workspace of related array tools, such as
tools for manipulating arrays of power series coeffi-
cients.

While many modern languages (including APL)
can implement all three styles, the language influ-
ences which style is more natural. Still, even when
the array-oriented approach is available, it may not
be considered because of the programmer’s unfamili-
arity.

Of course, the readers of Quote Quad are very
familiar with the array-oriented style and the pro-
gramming environment that makes it natural.
Thus, I would like to solicit three types of articles:

1. Examination of software packages, reviewing
the extent to which array-oriented programming
1s possible and natural. Specifically, show
implementations of simple array-oriented algo-
rithms such as the above sum program. In
addition, compare features of the package (or
lack of) with corresponding APL features such
as workspace, supplied array functions (primi-
tives), operators that apply scalar functions
across an array, and provision for multiple func-
tion arguments (dyadic?) and results. I’'m plan-
ning a first such article about Mathematica.
Please contact me to suggest other software and
reviewers, and to suggest other features or algo-
rithms to compare.

2. Examples of array-oriented programming being
used in education. These examples will serve
both te inform ourselves and to show this style
to those outside the APL community. This
could be an application of APL, J, or some
other array-oriented language. Of course, Quote
Quad has been publishing such articles for
many years.

3. Discussion of general issues concerning array-
oriented programming in education. Please
submit an article or a letter to the editor about
any related concern or reaction. To help stir
things up, I'll offer a few of my thoughts in this
area.

Communicating Algorithms in APL to
Outsiders

An enduring concern of mine is how we can
develop our communication so that those using
packages such as Mathematica or MATLAB can
understand our algorithmis. It is important to
emphasize that I'm concerned about the reader of



our code or pseudo-code and am not trying to fault
APL for being hard to learn or use. No matter
how simple or straight-forward, every language has
quirks and “features” that take practice to use
properly. (Just think of the jokes about VCR pro-
gramming!) Nevertheless, I can “understand” the
algorithms in well-written code or pseudo-code in
many diverse languages. To implement the idea, I
might have to use a different language that is more
familiar to me, but the writer has communicated
the algorithm. Of course, some languages are going
to be harder to understand than others but I sus-
" pect that the typical programmer views APL as the
most obscure of all. What can we do about this?

One idea is to use names in place of symbols
for primitive functions or idioms whenever the
name 1s widely understood and the symbol is not.
You can actually program in this style if you
develop a workspace of standard functions. This is
different from keywords or ASCII transliteration.
Since a reader could understand «, %, %, and £,
these symbols could stay. On the other hand, the
specific cases of the circle function could be named
(sin, cos, etc) and dyadic and monadic cases of the
same symbol could be named differently, as in max
and ceiling. There is also a third category of APL
symbols that enable array-oriented programming
and thus do not have names recognized by those
unfamiliar with the style, such as 1 and reduction
or scan. Explaining such symbols gets right to the
heart of the matter, and is much more beneficial
than explaining that APL uses a different symbol
for a familiar idea. Of course, there is a lot of gray
area in this scheme: when is a name or symbol
considered widely understood, what names should
be chosen, what functionality is lost? If there is
significant interest, maybe there could be a whole
article outlining such a scheme.

Another idea i1s to use pseudo-code if you really
need a control sétructure. Of course, first consider
if an array-oriented approach could avoid the struc-
ture. Otherwise, I see no reason why an expository
article, such as those solicited in 2 above, shouldn’
explain an algorithm using IF-THEN-ELSE or a
WHILE loop. = Any APL programmer could imple-
ment it, any programmer would understand it, and
the writer would be saved the embarrassment of
using goto’s in public.

Finally, I'd encourage authors to use good pro-
gramming style as taught in most beginning pro-
gramming courses. This means using decorations
that are designed for human readers including com-
ments, spacing, indentation, descriptive names, and
helpful use of UPPERCASE and lowercase. These
admonitions should be familiar enough to every pro-
grammer to need no explanation. Still, somehow
APL programmers feel privileged (because of old
software restrictions) to ignore such standard prac-
tices as indenting loops. There are several different
ways to use case sensitivity in APL. Personally, I

18

like to use lowercase for scalars and scalar-valued
functions, UPPERCASE for vectors or vector-valued
functions, and FirstLetterCap for character strings
or line labels. Many people have adopted the
MicroSoft standard of FirstLetterCap for functions
and procedures, lowercase for variables, and
UPPERCASE for constants. Peter Naeve believes
in letting the case represent the tier of develop-
ment, with lowercase functions feeding into the
higher-level UPPERCASE functions. In any case,
pay -attention to your readers. =

Grey Codes, Towers of Hanoi,
Hamiltonian Path on the N-Cube,
and Chinese Rings

Prof. Leroy J. Dickey
Department of Pure Mathematics
University of Waterloo
Waterloo, Canada N2L 3G1

Tel: 519-888-4567, ext 5559
Fax: 519-725-0160
E-mail: LJDickey@UWaterloo.CA

A Colorful Problem

Not long ago, on the UseNet news group of
comp.lang.apl, a question was put forward by
Clifford A. Reiter of Lafayette College, in Easton,
Pennsylvania <reiterc@lafcol.lafayette.edu>
which generated a score of responses. His question
is connected with creating:

“.. a function fo provide pure ‘hues’ when
working with comnputer images. The matrix
desired consists of Blue Green Red triples
running from red, to yellow, to green
through the spectrum and back to red.”

He asked readers to give a short APL or J

expression to create the following matrix:

0 01
011
01 0
110
100
101
0 01

I think of this matrix as having six fundamental
rows which then cycles back on itself. A number
of solutions were presented; Curtis A. Jones
<jonesca@sjevm5.vnet.ibm.com> noticed that
the matrix obtained by joining the first two rows

December 1993 ~ Volume 24, Number 2



