
An APL-based Relational Data Management Language
Using SYSTEM R as Data Server

F. Antonacci, P. Dell’Orco

IBM Italy, Rome Scientific Center

Abstract

This report describes a system for accessing System R, via AQL, a
query language based on APL, developed by IBM Italy Scientific
Centers. System R and AQL reside in two different Virtual Machines:
the DB Machine and the User Machine, respectively. The two
Machines communicate through VMCF, an inter-machine
communication facility in VM/370 environment.
Queries formulated in AQL are shipped to System R, translated into
SQL (the native query language of System R) and the results brought
back to the User Machine.
The major advantage of this architecture is easiness of implementation
and separability between the two environments. From the user’s
standpoint, this approach combines a friendly and flexible query
language with a powerful data manager.

1. Introduction

The relational model of data [4] has been widely accepted in the Data
Base research community, mainly because of its conceptual simplicity,
symmetry and data independence. Within this framework, a number
of DBMS’s [I, 3, 5, 6, 71 has been developed.

Each of them has stressed some particular aspect either of the
management of the data or the user interface: some systems (e. g.
System R) give major emphasis to the general performance of the
system (efliciency, security, reliability, etc...); others (e. g. Query-by-
Example) give a user a friendly interface or, like AQL, offer a
homogeneous environment encompassing programming language and
access to the data.

Therefore the choice of one of these systems means often
renouncement of some characteristics in favour of others.

l

Our goal was to give to the user a system which is a reasonable
compromise among the characteristics of System R and those of AQL.
A system that combines a simple and flexible interface with an
efficient and reliable data manager can be implemented by translation

l

of the interface language into the language of the data manager.
0

AQL [l] is a query and data manipulation language. It can be
considered a supersystem of APL [2], with user friendly
characteristics, such as: use of default options, automatic navigation
among tables, homogeneous environment with the host language
(APL).

System R [3] is a data base management system (DBMS) with
characteristics mostly intended for the efficiency, reliability and
security of the data. Its query language is called SQL.
We propose therefore a system where System R is the DBMS and
AQL the query and manipulation language.

The core of the system is a translator which transforms each AQL
transaction into a corresponding set of SQL transactions, using APL
as a programming language and monitor/interpreter for the
communication between System R and AQL. This monitor allows it
to send transactions from AQL to System R, to execute them and
receive the results in the AQL environment. This approach will be
illustrated by a series of examples of AQL transactions, translated into
SQL.

The most important characteristics of System R we want to take
advantage of are the following:

efficiency in the execution of the transactions, due to the
optimization of the access paths to data;
possibility of multi-user updating, due to the choice of the
minimum entity to keep in the update;
security, due to the possibility to grant and revoke authorizations
to specific operations on the data base;
reliability. due to the checkpoint/restart procedures.

l

Permission to copy without fee all or part of this material is granted
a

provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by l
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

l

@ 1985 ACM 0-89791-157-l/85/005/0289 $00.75

Together with these characteristics, the proposed system adds the user
friendliness of AQL, which can be summarized as follows:

use of default options, which allows the user to give the minimum
information in writing transactions;

use of menus, by means of which, the user is asked to give the
missing information in case of ambiguity not resolvable by the
system:

use of synonyms, both of attributes or of keywords of the
language, defined by the user;

automatic navigation through relations, according to pre-
specified paths during the definition of the relational schemes;

conciseness in formulating transactions, by the possibility of using
not only single data, but also arrays of data inside the transaction
body, according to the APL philosophy:

easy extensibility of the language, by naming transactions and
adding new keywords;

homogeneity with the host language, which allows both the use
of APL elementary or user-defined functions in the body of a
transaction and the use of transactions in the body of a user-
detined function as well as the processing of results in an
interactive way.

APL RELATIONAL DBMS -289- F. ANTONACCI AND P. DELL’ORCO

The approach is to implement a translator which transforms the AQL
transaction in (a set) of SQL transactions, and to restructure their
results according to AQL syntax and data structure.
In general, an AQL transaction corresponds to the iteration of one
or more SQL transactions. In fact, despite the surface syntactic
similarity between the two languages, the greater semantic power of
AQL and its capability (inherited from APL) of treating in a
“transparent” way arrays of data, requests both a translation and an
execution control.

The cost of this choice is mainly due to the overhead for the
translation; nevertheless, the portion of this cost due to the syntactic
analysis of the translation is already present in the AQL transaction
for its completion (defaults fulfilling, synonymy resolution, etc..).
The residual costs are then only those due to the execution controller
and to the reshaping of the results: but these costs seem to be justified
with respect to the union of the advantages of both systems.

In the following section, the architecture of the proposed system is
exposed; after that, some cases of the translator action will be
illustrated through examples.

2. Architecture

The system allows communication between two environments (AQL
and System R or, more generally, APL and PLl) of which one of
“interpreter” (AQL/APL) and the other of “compiler” type (System
RjPLl); both working in an environment based on the concept of
“virtual machine” under the control of VM/370 [8] operating system.

This problem may be approached in two ways: by means of an
auxiliary processor that, from inside the same virtual machine, allows
the passage of shared variables from one environment to another. or
keeping the two environments in two different virtual machines and
using an auxiliary processor to manage the communication between
the two machines.

The first way offers advantages from the performance point of view
(data are transferred in the same machine, through the memory). but
it requires a virtual machine as large as the sum of the two machines,
that tends to be penalized; the second way performs data transfer via
supervisor, (with VMCF communication technique) with a loss of
efficiency that is not perceived by the user, and requires smaller virtual
machines, that are not penalized.

This fact, together with the particular operational environment,
suggests choice of the second way. In any case the following
considerations do not depend on the peculiar communication mode
between environments and may be applied to both contexts.

To describe the functioning of this system, we can examine the
processing of a transaction that is input from the machine containing
the AQL system (call it AQL machine).

This transaction undergoes the syntactic analysis that extracts from it
the corresponding parse tree, by controlling at the same time the
syntactic correctness of the statement.

The parse tree is then traversed to fulfill the relevant default options,
possibly interacting with the user through menus to resolve synonyms,
to perform the navigation among tables, etc..

The result of this process is the completed and correct version of the
transaction (canonical form) in the form of a parse tree; this is then
processed by the proper translation process.

This process is in turn performed by traversing the canonical form and
producing the SQL transaction scheme through the substitution of
AQL elementary syntactic structures with the corresponding SQL
structures. This process will be detailed later on.

The result of a translation is sent, through the auxiliary processor for
communication (in our case. AP401 [L,]) to the machine where System
R resides (call it S/R machine).

Here it is received by a monitor which provides for creation and
management of the PLl structures that are to receive both the
constant values present in the transaction and its result.

This monitor also activates and controls execution of the transaction
whose result is structured in a few PLl variables (one for each data
type) and sent to the AQL machine.
In this machine it is subdivided in as many APL variables as the
requested attributes are: this result has the same structure as the
results coming from AQL transactions.

3. The AQL-SQL translator

The translator, as seen before, accepts the canonical form of the AQL
transaction and builds the corresponding SQL transaction scheme.
The scheme of a given SQL transaction is obtained from the
transaction itself by substituting the values (or constants) that appear
in it, with the character ‘?’ (question mark).

In the case that data in the transaction are elementary data (not
arrays), the translator could deliver the transaction already containing
data; but in general AQL transactions may not only contain single
data, but also arrays of them.
In these cases, the transaction is conceptually equivalent to its
iteration on each element of the array or of the Cartesian product of
the arrays of data present in the transaction.
To clarify the matter, let us consider the following simple AQL request

(attr OF rel) WHEN am-1 fp vu1 ,

where artr and atrrl are attributes of the relation rel . fp is any
“comparison function” AQL (EQ, CT, etc..), OF and WHEN are
AQL keywords and val contains a constant or an array of constants.

If val is a single value, the result of this request is constituted
(conceptually) by a single list of values of attr that satisfy the
condition; if vu/ is an array of values, the result is constituted by a set
of lists each of which corresponding to a different element of val , so
simulating the iterative application of the request scheme to each
element of val.
Note that in AQL (as in APL) the concept of “list” is represented by
the concept of “array” (orthogonal set of data).

The SQL equivalent transaction (in the case vai is a single value) is:

SELECT attr FROM rel WHERE attrl camp ml,

where camp is the SQL keyword corresponding to fp , SELECT,
FROM, WHERE, are SQL keywords and the other symbols preserve
the meaning seen before.

An alternative way to put the same query is:

SELECT attr FROM rel WHERE attrl camp ?

by applying this scheme to val.

If, on the contrary, vu1 is an array of values, only the second
alternative can be applied, as the scheme has to be applied iteratively
to each element of val.
Further, at each iteration step, a subset of ref is delivered: these
results have then to be shaped to conform to the AQL results
structure.

The problem is more complicated if more conditions, connected by
logical functions (AND, OR) are present.
To illustrate this case, consider this AQL request:

(affr OF rcl) WHEN (utrrlfp val) AND rrttr2,fpl vail ,

where,fpl is a comparison function and crttr2 is an attribute of rel.
The structure of the result in this case depends on the dimensions of
twl and vail: if both are constituted by one value. a list of values of
utfr is obtained; if, on the contrary, at least one contains more than
one element. as many sets of lists are obtained as the elements of va!
are. each one containing as many lists as the elements of vail are; each

APL RELATIONAL DBMS -290- F. ANTONACCI AND P. DELL’ORCO

one of these lists will be constituted by the values of attr satisfying
both the conditions applied to each element of the Cartesian product
of val and vail.

For example, if vu/ contains three elements and vail contains two
elements, the result will be a three-dimensional array with three
planes, two rows, and the suitabIe number of columns.
In the first plane, the first row will contain (identifiers of) the elements
of (~tfr satisfying the two conditions applied to the lirst element of val
(i.e. val(lJ) and of vaJJ (i.e. vaJJ(1)); the second (identifiers of) the
values of attr for val(1) and vail(2) ; in the second plane, the first row
will refer to val(2J and vail(l) , the second to va1/2) and vall(2j ,
etc..
This process applies uniformly also when more logical functions are
present.

In the case of SQL. to deal with these cases, a transaction scheme has
to be necessarily produced and then iteratively applied to the Cartesian
product of the sets of values present in the conditions.
The SQL transaction equivalent to the one before seen is composed
of two parts: the first, constituted by the scheme:

SELECT artr FROM rel WHERE artrl camp ? AND allr2 compl ?

(compl is the SQL keyword for fplj. and the second, called
“combination table” constituted by the Cartesian product of the
elements of vat and vail.

Both these results of the translation process are sent to the S/R
machine, where monitor takes care of their execution, in the fashion
already seen, and sends the results back to the APL machine.

In what follows operations on the data base is illustrated, along with
their translation process.

3.1. Definition

The definition procedure in AQL has the following syntax:

dbname DEFINE relname ,

where relname is the name of the relation we want to create in the
collection of relations called dbnamr.
The system asks interactively to the user the name of the attributes,
as welt as their characteristics. so filling a table which lists names and
characteristics of the attributes of the relation we want to create.

In System R, collections of relations are held in spaces called
“segments” that have to be acquired before data definition: the name
dbname used in the AQL transaction may hence be given to this
collection.

The translation of this class of transactions gives then the class of SQL
transactions (in the following, a couple of square brackets is used to
enclose optional strings):

CREATE TABLE relname (utrr! ([charcrcteri.rtics of rrtrrl I),
(urrr2 ([chrrracrerisrics~- of_ crtfrl I),

)
IN SEGMENT dbnume.

The list of attribute names and their characteristics are deduced from
the table already seen.

Note that, as it will be better seen further on. there are substantial
differences in behavior between S,R and 4QL as far as the results of
grouping operation are concerned: in fact S:R returns as result a
relation that, as such, has no tuples repetition, while AQL gives as
rewlr a \et of APL variables that may contain possible repetitions.
It may happen that these repetitions are wanted: this may bc achieved
making the translator to add. in the list of “grouping” attributes. a
candidate key, in a wa) transparent to the user.
This key i\. in any ca\e. created by the system. during the data
delinitirln proces\. under form of an attribute with a system-reserved
name.

APL RELATIONAL DBMS -29i-

To do that, this attribute is added to the attribute list of the preceding
transaction. For simplicity, its name will be denoted by tids.
This attribute contains progressive integers, so identifying tuples.
In exactly the same way operations of update and deletion of the
relational scheme are translated, as well as operations of creation and
deletion of indices on attributes.

3.2. Data entry

In AQL, the operation of adding data to the relations can be
performed in four ways:

l interactively by means of a terminal;
l by means of APL variables, containing the data to add;
0 by means of query results;
l using bulk input files.

In the first case, the syntax of the AQL transaction is:

((atfr lisr) OF rel) ADD “,

where attr lisr is the list of the attributes to which new data are to
be added and rel is the relation nsme which they belong to.
The system answers by asking the new value, for each attribute.
Such values are collected in APL variables (one for each attribute in
altr Jisr).
Thetranslation of the transaction gives the following schema:

INSERT INTO rei (Jisrarrr): < ymarks 1,

where Jistattr is the list of the attributes contained in atw list,
separated by commas, and qmarks is a list of question marks (one for
each attribute), separated by commas.

Such a scheme is applied repeatedly by the executor (monitor) to the
set of variables which contain the input data, replacing in an orderly
way the question marks by the single values contained in the variables.

The second type of adding in AQL is, as follows:

((afrr - list) OF rel) ADD varncrmc- list ,

where Y~IYJ(~G-Z~- li.rt is a list of variable names containing the data to
be added.
The translation follows the criteria already seen; varname li.rt is used
to retrieve the variables which replace the question marks, according
to conditions before seen..

The third type of data adding has the following AQL syntax:

((u(tr list) OF rel) ADD query ,

where query is an AQL request.

Such a type of transaction is translated into:

INSERT INTO rrl (/i.startr) SQL- yuer.v ,

where S&f. query is a SQL request, whose treatment will be
considered iti the following.

The last case provides the massive adding of the data from secondary
storage and is formulated as follows:

((uttr Iist)OF rcl) ADD fncrme [,fiypefmode 1,

where ,/i~~rne, /“type and ,/mode represent the name, type and mode of
the bulk input file.

In the last case. the SQL data storage procedure BULKLOAD is
called by mean\ of the auxiliary processor that ~110~s the
comrllunication between APL and CMS (APIOO): this procedure is
executed from the same AQL machine.

F. ANTONACCI AND P. DELL’ORCO

3.3. Queries of the temporary variable, to which the result of the first part is
assigned.
Beginning from the last statement, the translator substitutes the AQL
keywords with corresponding SQL ones and uses the temporary
variables to select the next statement to translate. Unlike the data base operations seen until now, the queries can be

formulated by means a very rich syntax, since they can link an
undefined number of conditions by means of logical functions, can
nest an undefined number of queries, etc...

Moreover, selection, projection and join operations, grouping and
arithmetical operations can be performed, (counting, sum, etc...)
inside the queries.
Formally, (as it will appear more clearly in the following) both query
classes (with and without grouping) differ in the name of the last
function that appears in their canonical form (except for the
arithmetical functions).

We will deal separately with both queries groups, showing also the
action of arithmetical functions.

3.3.1. Simple queries

The common syntax of au AQL query is:

< finct name > (target - - list) WHEN condition- list ,

where funct name (optional) specifies the name of an AFL
elementary ordefined function to be applied to the result of the query;
target- list is a list of this type:

(attrl WITH attr2 WITH) OF rel.

This allows it to have a request list constituted of more than one
attribute name catenated by the keyword WITH; condition- list is a
list as the following:

(artr’fp val)fl atrY fp vafl..... ,

where at@‘, attr”, are attributes belonging to rel or to other relations,
fi is a “comparison function”, ji’ is a logical function (AND, OR (the
possible NOT precedes each single condition)), and at last val, ~11,
etc.. can represent a constant, a constant list, an APL defined variable,
or a query.
If rel is not specified, the qualification of the attribute list is made by
the system; if condition list is not specified, all the items of the
requested attributes are retrieved; the attribute list can consist of one
attribute only.

In the following we consider the translation cases of the main AQL
syntactic constructs,

i) Queries with one condition

To show this case, we consider the following simple query:

(attr OF rel) WHEN attrl fp vu1 .

where, for simplicity, we suppose that attrl belongs to rel.
The comparison function fp can be the function of “set membership”
(in AQL: ISONEOF) or one of the functions: LT (less than), LE (less
or equal than), EQ (equal), GE (greater or equal than), GT (greater
than), BETWEEN (included in).

Supposing that val is a constant (or a list), the corresponding
canonical form of the query is:

Al + attrl OF rel
Al + Al j), vu1
A2 + attr OF rel
Al + A2 WHEN Al

If vu1 represents a query. the canonical form contains in the first part
the analysis of the query corresponding to vu1 and in the second part
the canonical form already seen, where vaf is substituted by the name

Iffp is a membership function (ISONEOF), and val is a constant (or
a constant list), the translator produces the following AQL statement:

SELECT attr FROM rel WHERE attrl IN (constlist),

where constlist represents the elements of val separated by commas.
If val is a simple query, the translation is:

SELECT attr FROM rel WHERE aftrl IN (query).

In the case fp is one of the other comparison functions, and vu1 is a
constant (or a list), the translation is:

SELECT attr FROM rel WHERE attrl camp ?,

where camp represents the SQL corresponding to the AQL fp (< for
LT, < = for LE, = for EQ, etc..).
This transaction scheme is applied by the monitor to every element
of the list.

If vu1 is a query, the same scheme is produced and put in a stack, while
the elaboration is resumed on the remaining part of the canonical
form.
At the end of the process, the last element of this stack of schemes
(where necessarily val is a constant list) is executed: the next scheme
is applied to its result, and so on.

ii) Queries with more conditions

We suppose, for simplicity, that the query is:

(attr OF rel) WHEN (attrl fp vu1)fr attr2 fpl vail ,

wherefl represents a logical dyadic function (AND, OR).

The translation gives the following schema:

SELECT am FROM rel WHERE attrl camp ? j7 attr2 compl ?.

Furthermore, the combination table is produced, by executing the
Cartesian product of vu1 and vu11 , structured according to the criteria
seen before.

iii) Queries with more attributes

We consider, in this case, the query:

((attrl WITH am-2) OF rel) WHEN condition- list.

The translation in this case gives:

SELECT attrl,attr2 FROM rel WHERE condition- list ,

where, for condition list , is still valid what we noted before. -

In AQL, the function WITH can be used to express “join” operations;
in this case, it has as arguments the attribute lists belonging to two
different relations, as shown in the following example:

((attrl WITH attr2) OF rell)WITH((attr’ WITH attr”)OF rel2)
WHEN jcondition list.

In this case. jcondition list is formed by two parts:
the first (obligatory), which represents the join condition. and has the
following structure:

(attr’ OF ~12) fp attri OF rell

APL RELATIONAL DBMS F. ANTONACCI AND P. DELL’ORCO

while the second (optional) represents possible additional conditions
and has the structure:

jl condition Iist , -

which, by means of the use of the function GROUPBY, can be
rewritten:

(attr- list) GROUPBY attrl

with the usual meaning of the symbols.
The translation gives the following SQL string:

SELECT rell.attrl,rell.atfr2,rel2.attr’,rel2.attr” FROM rell,reI2
WHERE jcond.

The first part of jcond corresponds to the first part of jcondition- list
and has the structure:

attrl .rell Comp attr’.rel2 .

while the translation of the second part undergoes the same process
as before.

This way of grouping returns groups of the values of the requested
attributes, without identifying them with the values of the grouping
attribute (attrl); if it is required, the function GROUPBYID is used
with the same syntax of GROUPBY.

Furthermore, the grouping can be the left argument of a comparison
function in a condition, according to the following scheme:

(attr- list) WHEN ([funcf- name] attr GROUPBY atfrf)fp vu1 ,

with the usual meaning of the symbols.

We will divide both cases according to whether the grouping is in the
target list (request list) or in the condition list.

iv) Use of the functions
i) Grouping in the target list

In AQL, it is possible to use any APL elementary or defined function
at the left of the query, with the meaning that such a function must
operate on the result of the query. This query is always constituted in
AQL by the variable name containing the selected values or, in the
case that more attributes are requested, by the list of the names
corresponding to the variables containing the results.

In SQL, it is possible to use only specified functions (COUNT, AVG,
SUM, MAX, MIN, other than +, -, *, /) inside the queries: such
functions are called “built-in”.
To sample the action of the translator in these cases, we consider the
following AQL query:

funct name query , -

where query is any simple query.
In AQL, the functions corresponding to the built-in functions are:
HOWMANY, AVERAGE, SUMUP, MAX, MIN, +, -, x, i.

As we already said (see 3.1.), in SQL the results of grouping
operations do not contain repetitions: this may cause inconsistency if
we like to apply whichever function (different from the built-in
functions) to the result.
Therefore, in the scheme of each relation, transparently to the user,
an attribute (tids) is added, which will be used in the grouping
operations if we want to avoid the automatic exclusion of the
repetitions.

A simple grouping, formulated in AQL with:

(attr list) groupfn attrl -

(where groupfn is for GROUPBY or GROUPBYID) is translated in:

SELECT attrI.attr list,tids FROM rel
GROUP BY attrl,<ttr list,tids. -

If funct name is one of these keywords, the statement produced will
be: -

SELECT builtin (a&name) FROM .._,

where builtin is the SQL function corresponding to the one specified
in the query, attrname is the attribute name to which such a function
is applied, the remaining part of the query is translated according to
the previous rules.
On the other hand, iffunct name does not correspond to any built-in
function, the translator t&nslates the part of the canonical form
corresponding to query , and lets the result to be processed by the
specified ,jiunct name. -

From the SQL result, the column corresponding to tids is dropped
and, if groupfn is GROUPBY, even the column referring to attrl.

A recursive grouping, like:

(attr- list) GROUP attrl BY attr2 BY ”

is translated into:

SELECT attr list.tids FROM rel
GROUP BY &I. attr2. atfr list,tids ,

since SQL performs however a recursive grouping considering the
positional order of the grouping attributes; tids is in last position
because it does not affect the grouping.

3.3.2. Queries with grouping
ii) Grouping in the condition list

In AQL, the grouping is specified by means of the following syntax:

(attr- list) GROUP attrl BY attr2 BY.....BY “,
An AQL query with a grouping in the condition iist has the following
structure:

where attr /ist is a list of attribute names (qualified or not by the
relation), aTir1, attr2, the “grouping” attributes (i.e. the attributes with
respect to which the grouping is performed), GROUP and BY are
AQL keywords.
The previous form is the most general way, as it is possible to ask for
a grouping of a set of attributes for the attribute atrrl. inside of this
for the attribute nttr2. etc...

If the grouping is at only one level the previous statement becomes:

(attr list) GROUP attrl BY “; -

APL RELATIONAL DBMS -293-

(attr- list) WHEN ([finer- name] nftr GROUPBY attrl).fp val.

In the current version,junct name can be only a built-in function.
This statement has an immediate correspondence with the equivalent
SQL using the keyword HAVING:

SELECT attr list FROM rel GROUP BY attrl.atfr,attr- list
HAVING buiEn (attr) camp ?,

where buiftin denotes the SQL built-in function corresponding to
funct name. -

F. ANTONACCI AND P. DELL’ORCO

The result of built-in functions does not show traces of the exclusion
of the repetitions of the grouping result; therefore, it does not need the
use of the attribute tids in the grouping list.

3.4. Update operations

The syntax of the update in AQL is the following:

varname- list REPLACE query .

where query gives the element (or the elements) of the relation which
will be substituted by the value (or values) contained in each of the
variables whose names are contained in ramatne list.
Such names, in their turn, can be the result of a query.

To describe the action of the translator. we consider the query:

((atrr- list) OF rel) WHEN condition- ht.

The SQL schema corresponding to the previous statement is:

UPDATE rel SET nttrl = ?. attr2 = ?. ,,, WHERE condition- list.

where nrtrl. nttr2 , .__ are the elements of artr list; in such a scheme.
the question marks will be substituted in an oaerly way by the values
of each variable whose name is in rarnmne lisr during the execution -
of the updating process.

Conclusions

The main goal of this work was to develop a system that combines the
homogeneity with the host language and the user friendliness of AQL
with the power, efficiency and security of System R.

The advantages of such a system seem to justify the cost (in
efficiency) due to the translator: such a cost however does not seem
to be high.

Such a System has been developed in the frame of a project under way
at the IBM Scientific Center of Rome, for the development of a
territorial data base management system.

APL RELATIONAL DBMS -294- F. ANTONACCI AND P. DELL’ORCO

References

1.

2.

3.

4.

5.

6.

7.

8.

9

F. Antonacci, et al.: AQL: A Problem-Solving Query Language
for Relational Data Bases, IBM Journal of Research and
Development, vol. 22, No. 5, September 1978. 541-559.

APL Language, GC26-3847-4. IBM Corp..

D. D. Chamberlin, et al.: A History and Evaluation of System
R. Comm. ACM, vol. 24, No. 10, 632-646

E. F. Codd: A Relational Model of Data for Large Shared Data
Banks, Comm. ACM, vol. 13, No. 6, June 1970, 377-387.

M. M. Zloof: Query by Example, Proc. NCC, AFIPS, Vol. 44,
May 1975. 431-438.

S. J. P. Todd: The Peterlee Relational Test Vehicle - A System
Overview. IBM Svstems Journal, vol. 15, No. 4, 1976, 285-308.

M. R. Stonebraker. et al.: The Design and Implementation of
INGRES, ACM TODS. vol. 1, No. 3. Sept. 1976. 189-222.

VM/370 Commands (General User), GX20-1961, IBM Corp..

M. Udo. S. Uno: An Experimental Facility for Inter-virtual-
machine Communication between APL and non-APL Systems,
Proceedings of APL 80 International Conference.
Noordwijkerhout, June 1980, G. van der Linden. Ed., 63-70.

