AN APL IDIOM INVENTORY

Howard A, Peelle
University of Massachusetts
Cognitive Studies of Computers in Learning
Furcolo Hall #10
Amherst, MA 01003 USA
(413) 545 - Q1135

Abstract Besides, there does not seem to be much
need to judge idioms -~ only to catalogue
An instrument is proposed for rating APL and use them,

idioms. Scales include: .
Actually, answers to these questions may

Length have importance beyond mere curiosity about
010 Independence which idioms are most popu}ar. For
Usefulness instance, comparisons of idioms have
Efficiency implications for teaching APL: which APL
Generality idioms should students learn (and when)?
Clarity Not all in the FinnAPL L1brary!F1] And
Simplicity certainly not in the order given, Idiom
Memorability ratings may also 1pf1uence .de51gn 'of
Interestingness enhanced APL, perya?s in determlning‘wh1ch
Elegance functions to optimize or good <candidates

for implementation as future primitives,

This iom Ivento w ilot-te d .

Agi p?ggr;g;ersl agd IXPLasiﬁ;trﬁc:oige w:g This paper presents an experimental
rated a dozen selected APL idioms. The instrument -~ called "APL INDIOM INVENTORY"
results indicate which idioms they think ~-= Which has been tested by a small number
are "useful”, "easy to learn", "hard to of APL programmers and instructors with
remember®”, "interesting”, etc. Implications Some well-known APL idioms for try-out.

for teaching and related issues are also

discussed. s
APL Idiom Inventory
Introduction This APL 1Idiom Inventory is comprised of

ten scales which attempt to capture salient
APL programmers use some APL idioms* but features of an idiom. One scale @LENGTQ) is
not others, Why? Is it because a certain 2N Objective measure; one ({IO) is a binary
idiom is short? [I0-independent? efficient? feature; the others necessarily involve
clear? easy to remember? elegant? Just what SOme subjective judgments and may overlap
are the important qualities of idioms? How §°€:¥gi:éationdeg:2?:;g rangz fro;ngIZ;dggl
o} i e t idi j in * 2 y
an different idioms be judged, anyway? A facsimile of the APL Idiom Inventory is
It is understandable why the APL community ShOWn on the next page.
has not addressed these questions directly.

To begin with, there are no explicit T77777="==< TS SeTSssssssossessossoossessso-
criteria for rating APL idioms (much less * The term ’'idiom' is used here due to its
APL code in general). Issues involving 9eneral acceptance in the APL community
programming style are, of course, largely even though it is somewhat of a mlsnomer.
subjective and often controversial, (An idiom in English is an expression that,

through usage, has come to be known as

something other thamn its literal meaning,

E.g., "Wait a second” and "Heads up!*) In

L. . APL programming, the term ‘'phrase' may be
Permission to copy without fee all or part of this material is granted more appropriate to denote a <collection of
provided that the copies are not made or distributed for direct gymbols commonly recognized as a useful
commercial advantage, the ACM copyright notice and the title of building block, Nevertheless, an APL idiom
the publication and its date appear, and notice is given that copying can be regarded as a phrase which has

isbypﬂmk§onofmeA$odmkmIbrCompmmgthmmw.To become known (often by a denotative name)
copy_ogherwnse, or to republish, requires a fee and/or specfic for what it does, rather than by its
permission, strict, symbol-by-symbol interpretation,

© 1987 ACM 0-89791-226-8/87/0005/0362 75¢

362

APL IDIOM INVENTORY

Idiom: LENGTH gro
USEFULNESS
0 1 4 5 6 7 9 10
(o m—————————— pummm— e ——— ——————— >
common rare
EFFICIENCY
0 1 4 5 6 7 9 10
L ettt L e e L e >
efficient wasteful
GENERALITY
0 1 4 5 6 7 9 10
{mmmmmmrm e ——— et Bttt >
generalized specific
CLARITY
0 1 4 5 6 7 9 10
{mmmmr e ———————— $rrrm— e >
reveals conceals
SIMPLICITY
0 1 4 5 6 7 9 10
L L T T T TS o ———— >
simple complex
MEMORABILITY
0 1 4 5 6 7 9 10
L ittt DR e T P P S >
rememberable forgettable
INTERESTINGNESS
0 1 4 5 6 7 9 10
(e e >
insightful trite
ELEGANCE
(] 1 4 5 6 7 9 10
e b et >
elegant inelegant

363

Explanation of Scales

LENGTH is the number of characters in the
APL idiom,
(JI0 is the 1Index Origin assumed: 0 or 1

(QI0-dependent) or either ([JI0-independent)

USEFULNESS is a measure of how commonly the
idiom is found in applications. Please
judge this on the basis of actual use of
the idiom or an estimate of its use in the
field.

EFFICIENCY is a combined measure of speed
and space requirements for the idiom. Since

this is system-dependent, please estimate
over as many familiar implementations as
possible.

GENERALITY is a measure of the idiom's
ability to handle a wide range of cases =-
including both numeric and character data

types, arrays of higher rank, and special
cases (such as scalars and empty arrays).

CLARITY 1is the extent to which the idiom
reveals or conceals its underlying purpose,
Some idioms are expressed directly; others
distort their algorithms by using
artificial, unusual, tricky, or bizarre
coding techniques (albeit for efficiency in
length or space or speed).

SIMPLICITY is a measure of how easy or hard
it is to understand the idiom -- especially
when learning it for the first time. Please
take into account sophistication of
primitive functions and operators involved
as well as the complexity of expected data
structures,

MEMORABILITY is a measure of how easy or
hard it 1is to recognize (if reading) or to
recall (if writing) the idiom. It may be
remembered by rote or by reconstruction or
whatever.

INTERESTINGNESS 1is
assess the

concocted to
the idiom 1is

a scale
extent to which

surprising, lends insights, or leads to
fruitful interrelationships. One which
doesn't have many connections is called
"trite®,.

ELEGANCE is a very subjective scale which
is 1left open to judge an idiom intuitively
on aesthetic grounds,

- e - — - - - —— ——— - ————

A is any Array V is a Vector
B is a Boolean W is a vector
N is a Numeric scalar M is a Matrix

Ll and L2 are line lables

- e - - = " - - -

N.,B., Whenever possible, please base ratings
on comparisons with other idioms for
accomplishing the same purpose. If no
alternative is known, then compare to all
familiar idioms,

. 1dioms

Selected APL Idioms

about a dozen idioms were
the APL literature, guided by

For try-out,
chosen from

suggestions from APL experts. The 1idioms
are listed below, along with colloquial
names:

"Round* Lo.5+4

*Sort" Viav]

*"Unique"® ((VaV)=apV)/V

"First 1" <\&8

*Same Boolean" 2/0 1¢B

"Scalarize" Y104

*Difference" (T1yV)-14v

"Match" v/MAa.=V

*Merge" (v, W)L49B1]

*Identity Matrix" (\N)e.=N

*Coerce to Matrix™ (72+1 1,p4)p4

"If” +B/V

*Do N times" I+0
Lil: +(N<I«I+1)/L2
+L1
L2: ...

While this is only
idioms, the limit of

a small sample of APL

a (baker's) dozen was
imposed here to ensure that the evaluators
could finish their ratings within a
reasonable amount of time (approximately a
half hour).

A variety of different idioms were chosen,
including idioms with 1, 2 and 3 arguments;
arguments with 0, 1, 2 and unlimited ranks;
some idioms for numerical processing, some
for either data type, and scme restricted
to Booleans; some for iterative processes,
and some for array-processing; some fully
generalized, and some for specific
arguments only; and, in general, idioms
applicable to a wide range of disciplines.

omitted here 1include those which
could be considered as specific application
*tools”, e.q9., in text processing:
(-+/a\OM=" V)M (*Right-Justify®) and
(vAVer ") /v ("Delete Leading Blanks").

Also omitted were incomplete idioms such as
(Af(T 1+ 1pW)PWo . =V) /1 pV for string search
(which fails for certain edge conditions)
as well as 1long and complicated idioms,
usually warranting embodiment in defined
("cover”) functions, e.9., J[+(1-pW}+V ...
(VIIe.vr 1trpWIA.=W)/I«(I<(I=14W)/pl also
for string-searching,

364

Only Oro-independent idioms were chosen
here in order to be consistent, thereby
excluding idioms like "Bar Graph" Ve.2:1(/V

and “From" (scattered point selection)
(,A)[1+(pA)sraM-1]) as well as "String
Search® (both on previous page).
Idioms which cause side-effects (such as
variable assignment) were avoided -- with
the exception of "Do N times”, for which I
is expected to be localized.

Idioms which contain other idioms were also
avoided, e.g., +/Ve.=((VaV)=1pV)/V
"Frequencies" (using "Unique®), 1€ for no
other reason than difficulty in separating
out the influence of a sub-idiom,

Further, "obvious" idioms were not
preferred -- that 1is, those whose meanings
are no different from their direct literal
translation, such as "Test for Empty" 0Oepd
and "Howmany Rows" 1tp¥M and "Last" V(pV]
(although it might be noteworthy to compare
the last one with T14,4 which is more
general but results in a one-element
vector).

In any case, it is assumed that each idiom
is thought of as a unit, used frequently,
and has a common name.

In particular, "Round® was
it is usually thought of
to the nearest integer rather than
literally as “Floor of one half Plus N".
The more general form for rounding off to P
places -- (10*P)xL0.5+Nx10%P -~ was not
chosen because its greater 1length begs for
a defined function, (Both are mostly
obviated by the Format primitive function,
anyway.)

chosen because
as rounding off N

"Sort" was chosen in ascending order
arbitrarily over V[L[¥V] , Alternatively,
VOAVxN] uses controlling variable Nel 1
and may be potentially twice as usable but
is certainly less efficient; besides,
Reverse can be used easily as a prefix to
go from one ordering to the other.

*Unique"® (or "Nub") is perhaps the
most-often illustrated APL idiom and has
been implemented as a primitive function in
enhanced APL systems -- even though it
fails for a scalar and doesn't generalize
well, Compare it with (1 18<\Ve.:=V}/V |, And
compare ((ViV)=\pV«{JIOt+#A\MV,.2QN) /M With
(1 1Q<\MAr.=8M)+M to remove duplicate rows
of a matrix, and (1 1®<\1 3 3 284A.:=Q4)/4A
for rank-3 arrays, etc,

"First-1" is one of many idiomatic uses of

Scan -~-- one which seems to arise often in
various applications to find the first
position of a value in (rows of) an array.

Alternative idioms are much more cumbersome
or expensive or inelegant, e.q., 1=+\8 ,
Also, beware that it works for any numeric
array but with spurious meaning,

365

*Same Boolean®" may not be used that often,
but it has no 1less than ten alternative
expressions for detecting either all ls or
all Os ((2] p. 16). This idiom is not only
shortest, but perhaps surprisingly simple,.
Further, it leads to the related problem of

expressing an idiom for "Same Element®
(which is done a different way): A/,A=14,4
"Scalarize is a good example of a simple

idiom which the programmer may not want to
think about each time, but rather just use.

Indeed, ‘'' instead of (10) may be more
economical but dissonant when A is numeric
(fortunately, most interpreters are
forgiving).

"pifference” has a mirror-image idiom in
(14V)-"1+4V : this might cause pause in

remembering the direction in which the
differencing is to occur. It suggests the
more primitive idiom "Shift® 0, 1+V and its
relative "Restore® V-0,71+V (for restoring
the original vector from a Sum~scanned V).

"Match® seems to be a classic, works for
either data type, and has other related
forms, e.g9., (Ma.=V)11 for the index of the
first matching row, and v/Va.z=M for
matching by columns.

“Merge" requires
consequently, 1is

three arguments andg,
a good candidate for use
as an 1idiom rather than as a defined
function, It is, however, not a
straightforward way to merge; compare with
(B\V)L(~B)/\pBl+W or (B\V)+(~B)\W (for
numeric VvV and W),

"Identity Matrix"™ has applications beyond
linear algebra, but is it more natural than
alternatives (N,N)p(N+1)+1 or (N,N)pl,NpO ?
Does symmetry help in its recall? (Is that
why some people use redundant parens?) And
does it 1lend any insight into how to
generalize for diagonals of higher
dimensional arrays?

"Coerce to Matrix"™ accepts an argument of
any rank but returns only the first matrix
for ranks greater than 2 and fails for
special cases of empty rank 3 or dreater
arrays with non-empty rows and columns. The
alternative idiom ({x/"1+pA), 1tpA)p4
doesn't lose any data but restructures the
result and fails for a scalar.

defined function
and, of course, can

"If" 1is often found as a
in utility workspaces
be used as is for branching. Other similar
idioms are: -+Nx1B (not allowing vector
arguments and not (IO independent) or -+BplN
or »*Bt+N and »BN

.

"No N times™ is included as a single idiom
even though it is written over several
lines, It is one of several constructs for
iterative programs and, for instance, might

be compared with:

I«
Li: ...
>(N2I«I+1)/L1
which is one line shorter but must "no®" at
least one time., Another related construct
is "1f, Then, Else":
+(~B)/L1
+L2
Li:
L2:

Results

Results of the try=-out of the above idioms are summarized below
(with abbreviated scale names):

Scale L 0 U E G C S M I E

E I S 13 E L I E N L

Idiom N (o] E F N A M M T G
*Round”® 2,0 0.0 2.3 1.7 2.4 1.9 0.9 1.0 5,7 3.7
*Sort" 2,0 0.0 1.3 2,2 4,8 0.9 1.0 0.3 3.3 2.4
*Unique” 5.2 0.0 3.0 3.4 4.0 5.0 4.9 3.4 3.6 3.1
*First 1° 1.2 0.0 5.1 2.7 5.7 7.1 3.9 4.4 3.9 3.3

*Same Boolean® 2,8 0.0 7,6 3.6 4.8 5.6 4,0 5,7 5,9 4.2
"Scalarize" 1.6 0,0 1,9 0.9 0,5 3.4 2,1 2,1 5.3 5.2
"Difference” 4,0 0.0 3,5 3.0 5.7 2.5 3.4 4.5 4.8 5.2
Match 2,8 0.0 3.5 5.2 3.8 3.7 3.6 4.1 4.9 3.7
"Merge® 4.0 0.0 6.7 5.5 4.6 7.8 7.0 7.5 3,3 3,3
"Identity M" 3,6 0.0 3,7 6,3 5,8 2,2 2,6 1,1 3.6 3,1
"Coerce to M" 5.2 0.0 4.6 2.3 4.4 4.3 4.1 4.7 5.2 4.9
"I1f" 1.6 0.0 1.5 1.2 2.6 2.6 1.0 0.7 5.7 4.2
*Do N times" 10.0 0.0 0.6 2.4 2.9 2.6 2.9 1.6 6.7 G.i
Numbers are averages of ratings by all respondents (n = 10).

N.B, LENGTH has been adjusted to a scale of 0 to 10 by
multiplying 10 times the idiom's length (number of characters)

divided by the maximum length idiom given here (25),

N.B, 010 is scored as either 0.0 for Index-0Origin independent
idioms or 10.0 for Index-Origin dependent idioms.

366

Discussion

The data suggest that the "Round” idiom is
simple and easy to remember; "“Sort" is
useful, clear, simple, most memorable and
comparatively elegant; *Unique” is
ironically not wunique in any respect;
"First 1" is short but not very clear;
"same Boolean" seems to be rarely used;
"Scalarize" is very efficient and general;

*Merge® appears unclear, complex and hard
to remember -~- perhaps because it isn't
used much; *Identity Matrix" may be

somewhat inefficient and lacking generality
but is easy to remember; "If" is useful,
efficient, simple and rememberable; "Do N
times® is very useful, but long and hardly
interesting, In sum, "Sort" is possibly the
overall best (best = minimum total distance
from 0 on all scales).

There are some methodological issues which
beg to be discussed., First, the reliability
of the APL 1Idiom Inventory remains to be
determined, as well as cross-correlations
between scales, (This warrants a field test
with large N and more idioms, of course,)
Secondly, there is a confounding difficulty
in comparing idioms; that is, whether an
idiom must be compared strictly against
idioms which accomplish the same purpose,
{See note at bottom of Explanation of
Scales.) Or is it reasonable to compare an
idiom with other idioms -~ outside its
ecological niche? Are we not measuring
'survival of the fittest' anyway?* This
must be resolved in order for the ratings
to make sense.

-t - —— i —

* An idiom may have evolved from a basic
need for a certain expression; it may have
become popular because i* got used often;
it may minimize portabiiiiy problems, say,
by being [10-independent. When compared
with other idioms, it may have proved :to he
the fittest because it was most efficient
on certain computers and/or because it was
the most concise in writing and/or because
it was easiest to remember. Or, instructors
may have taught it to other people simply
because they liked 1it, For instance,
consider ?1 as an alternative to 010 (a
rather idiosyncratic 1idiom, to be sure),
You might prefer it because it is shorter.
You might be repulsed by it because it uses
a function totally unrelated to its
purpose, resets [JRL, and is probably less
efficient 1n execution, Or vyou might be
pleasantly surprised because you never
would have thought of it yourself., So, will
you use it or not?

367

Other issues focus on the design of the
instrument itself, For instance, USEFULNESS
could be determined theoretically by a
frequency count of all idioms in all
existent APL code (not a welcome task!),
And, EFFICIENCY ratings c¢ould be more
accurate if it were known which primitive
functions are optimized on particular
machines, Also: How much overlap is there
among scales such as CLARITY, SIMPLICITY,
and MEMORABILITY? What is ELEGANCE anyway,
and what does it correlate with? What
should the relative weights of scales be
(for determining a total rating)? After
all, there may well be considerable
differences between the author's
descriptions of these scales and other
people's interpretations,

For some programmers, utility is the only
important feature of an APL idiom: it gets
the Jjob done., Other features, such as
generality, may not be practically
relevant: "“If I never need it for higher
rank arrays, why should I care?"™ Some
people use APL idioms to think with; they
bring to mind helpful chunks for solving
problems or valuable identities for
constructing proofs. (See {3] .) And, maybe
some people use idioms without knowing it.

Eventually, an APL Idiom Inventory may help
clarify fundamental questions about APL
idioms. For instance, which are generally
better ~-- 1idioms or ®cover* {(defined)
functions? Dnefining a cover function does
require investing extra effort to embody
code and extra knowledge of function [/
group / workspace names {plus awareness of
possible conflicts), but it may help
understanding at least because the cover
names are connotative; whereas an idiom
itself must be retyped each time it is used
and may be construed as just a collection
of symbols to leartn by rote., On the other
hand, idioms may lead to better
understanding because one must learn to
recognize and wuse an idiom in context;
whereas a cover function c¢an be used
blindly, without looking at its definition
and perhaps forgetting special cases, So,
which will prevail in the future? (Whose
memory will we rely on -- ours or the
computer's?)

Conclusion
In the meantime, we can now find out what
the APL community thinks of various idioms

-~ by using an APL Idiom Inventory.

Readers are invited to evaluate the idioms

here (plus any other favorite APL idioms).
Please send ratings to the author along
with suggestions for improving this

instrument,

References

{11 *®FPinnAPL Idiom Library" (2nd Edition),
Finnish APL Assoc., Helsinki, Finnland
July 1982

{2] *“The APL Idiom List", Perlis & Rugaber
Computer Science Research Report #87,
Yale Univ., New Haven, CT April 1977

(3] *®APL Thinking: Examples", Eisenberqg &
Peelle, APLB87 Conference Proceedings,
APL Quote-Quad, (to appear) May 1987

(4] "Idioms and Problem Solving Techniques
in APL2", A. Graham, APLB86 Conference
Proceedings, APL Quote-Quad, Vol, 16,
No. 4, July 1386

Acknowledgements

Thanks to Professor Murray Eisenberg
(University of Massachusetts), Dr. Mike
Sutherland (Adaptive Data Systems, Inc.)
and Jim Weigang (STSC, Inc.) for help in
conceptualizing, testing, and refining this
APL Idiom Inventory.

368

