
AN APL IDIOM INVENTORY

Howard A. Peelle
University of Massachusetts

Cognitive Studies of Computers in Learning
Furcolo Hall #lO

Amherst, MA 01003 USA
(4131 545 - 0135

Abstract

An instrument is proposed for rating APL
idioms. Scales include:

Length
010 Independence
Usefulness
Efficiency
Generality
Clarity
Simplicity
Memorability
Interestingness
Elegance

This APL Idiom Iventory was pilot-tested by
APL programmers and APL instructors who
rated a dozen selected APL idioms. The
results indicate which idioms they think
are “useful”, “easy to learn”, ‘hard to
remember”, “interesting”, etc. Implications
for teachinq and related issues are also
discussed.

Introduction

APL programmers use some APL idioms* but
not others, Why? Is it because a certain
idiom is short? ac)-independent? efficient?
clear? easy to remember? elegant? Just what
are the important qualities of idioms? How
can different idioms he judqed, anyway?

It is understandable why the APL community
has not addressed these questions directly.
To begin with, there are no explicit
criteria for rating APL idioms (much less
APL code in general). Issues involving
programming style are, of course, larqely
subjective and often controversial.

Permission to copy without fee all or part of this material is granted
provided that the copies are no1 made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 ACM 0-89791-226-8/87/ooO5/0362 75C

Besides, there does not seem to be much
need to judge idioms -- only to catalogue
and use them.

Actually, answers to these questions may
have importance beyond mere curiosity about
which idioms are most popular. FOC

instance, comparisons Of idioms have
implications for teaching APL: which APL
idioms should students learn (and whe:;;
Not all in the FinnAPL Library! cl1
certainly not in the order given. Idiom
ratings may also influence design of
enhanced APL, perhaps in determining which
functions to optimize or good candidates
for implementation as future primitives.

This paper presents an experimental
instrument -- called “APL IDIOM INVENTORY”
-- which has been tested by a small number
of APL programmers and instructors with
some well-known APL idioms for try-out.

APL Idiom Inventory

This APL Idiom Inventory is comprised of
ten scales which attempt to capture salient
features of an idiom. One scale (LENGTH) is
an objective measure: one (lJI0) is a binary
feature; the others necessarily involve
some subjective judgments and may overlap
somewhat, depending on individual
interpretation. Ratings range from 0 to 10.
A facsimile of the APL Idiom Inventory is
shown on the next page.

------------------------------~------------
* The term ‘idiom’ is used here due to its
general acceptance in the APL community
even though it is somewhat of a misnomer.
(An idiom in English is an expression that,
through usage, has come to be known as
something other than its literal meaning.
E.g. I ‘Wait a second” and “Heads upl”) In
APL programming, the term ‘phrase’ may be
more appropriate to denote a collection of
symbols commonly recognized as a useful
building block. Nevertheless, an APL idiom
can be regarded as a phrase which has
become known (often by a denotative name)
for what it does, rather than by its
strict r symbol-by-symbol interpretation.

362

APL IDIOM INVENTORY

Idiom: LENGTH a10 -

USEFULNESS

0 12 3 4 5 6 7 8 9 10
<------------------------+------------------------,

common rare

EFFICIENCY

0 12 3 4 5 6 7 8 9'10
<------------------------ +------------------------>

efficient wasteful

GENERALITY

0 12 3 4 5 6 7 8 9 10
<------------------------+------------------------>

generalized specific

CLARITY

0 1 2 3 4 5 6 7 8 9 10
(------------------------+------------------------~

reveals conceals

SIMPLICITY

0 12 3 4 5 6 7 8 9 10
<------------------------ +------------------------>

simple complex

MEMORABILITY

0 12 3 4 5 6 7 8 9 10
<------------------------ +------------------------>

rememberable forgettable

INTERESTINGNESS

0 12 3 4 5 6 7 8 9 l0
<------------------------ +------------------------,

insightful trite

ELEGANCE

0 12 3 4 5 6 7 8 9 10
<------------------------ +------------------------>

elegant inelegant

363

Explanation of Scales

LENGTH is the number of characters in the
APL idiom.

010 is the Index Origin assumed: 0 or 1
(DIO-dependent) or either (CIIO-independent)

USEFULNESS is a measure of how commonly the
idiom is found in applications. Please
judge this on the basis of actual use of
the idiom or an estimate of its use in the
field.

EFFICIENCY is a combined measure of speed
and space requirements for the idiom. Since
this is system-dependent, please estimate
over as many familiar implementations as
possible.

GENERALITY is a measure of the idiom’s
ability to handle a wide range of cases --
including both numeric and character data
types, arrays of higher rank, and special
cases (such as scalars and empty arrays).

CLARITY is the extent to which the idiom
reveals or conceals its underlying purpose.
Some idioms are expressed directly; others
distort their algorithms by using
artificial, unusual, tricky, or bizarre
coding techniques (albeit for efficiency in
length or space or speed).

SXMPLICITY is a measure of how easy or hard
it is to understand the idiom -- especially
when learning it for the first time, Please
take into account sophistication of
primitive functions and operators involved
as well as the complexity of expected data
structures.

MEMORABILITY is a measure of how easy or
hard it is to recognize (if reading1 or to
recall (if writing) the idiom. It may be
remembered by rote or by reconstruction or
whatever.

INTERESTINGNESS is a scale concocted to
assess the extent to which the idiom is
Surprising, lends insights, or leads to
fruitful interrelationships. One which
doesn’t have many connections is called
.trite..

ELEGANCE is a very subjective scale which
is left open to judge an idiom intuitively
on aesthetic grounds.

------------__---____________L__________---
A is any Array V is a vector
B is a Boolean W is a vector
N is a Numeric scalar M is a Matrix
Ll and L2 are line lables
--------------------________cc______c___---

N.B. Whenever possible, please base ratinqs
on comparisons with other idioms for
accomplishing the same purpose. If no
alternative is known, then compare to all
familiar idioms.

Selected APL Idioms

FOtY try-out, about a dozen idioms were
chosen from the APL literature, guided by
suggestions from APL experts. The idioms
are listed below, along with colloquial
names:

“Round’

“Sort*

‘Unique9

“First 1’

“Same Boolean”

“Scalarize”

*Difference”

“Match”

‘Merge”

“Identity Matrix’

LO. 5tA

VLAVI

(cvlv)=lPv)/v

<\B

t/o 1EB

” pA

(‘ltv)-1tv

V/MA. =V

(V,W,C4TBJ

(tN)o.=1N

“Coerce to Matrix” t-241 1,pA)pA

“If’ *B/V

“Do N times’ I+0
Ll: -+(Iy<T+rtl)/I52

a * .
-CL1

L2: . . .

While this is only a small sample of APL
idioms, the limit of a (baker’s) dozen was
imposed here to ensure that the evaluators
could finish their ratings within a
reasonable amount of time (approximately a
half hour).

A variety of different idioms were chosen,
including idioms with 1, 2 and 3 arguments:
arguments with 0, 1, 2 and unlimited ranks;
some idioms for numerical processing, some
for either data type, and some restricted
to Booleans: some for iterative processes,
and some for array-processing: some fully
generalized, and some for specific
arguments only: and, in general, idioms
applicable to a wide range of disciplines.

Idioms omitted here include those which
could be considered as specific application
.too1s*, e.g., in text processing:
(-t/A\r$M=’ ‘)t$M (‘Right-Justify”) and
cv\vr ’ j/v (“Delete Leadinq Blanks”).

Also omitted were incomplete idioms such as
(Af(-lt~p~)~Wo.=V)ll~v for string search
(which fails for certain edge conditions)
as well as long and complicated idioms,
usually warranting embodiment in defined
(“cover”) functions, e.g., f+-(l-pW)tV . . .
(V[f-. t-ltIpWlA .=W)/I~(f~(l=ltW)/~p~ also
for string-searching.

364

only q IO-independent idioms were chosen
here in order to be consistent, thereby
excluding idioms like *Bar Graph” Fo.ktl/V
and .From” (scattered point selection1
(.A)Llt(pA)lWf-11 well as “String
Search” (both on previoutspage).

Idioms which cause side-effects (such as
variable assignment) were avoided -- with
the exception of ‘Do N times”, for which I
is expected to be localized.

Idioms which contain other idioms were also
avoided, e.g., +fvo .=((V1V1=1pV)/V
“Frequencies” (using ‘Unique”), if for no
other reason than difficulty in separating
out the influence of a sub-idiom.

Further, “obvious. idioms were not
preferred -- that is, those whose meanings
are no different from their direct literal
translation, such as “Test for Empty’ OEPA
and ‘Howmany Rows’ l+pM and “Last. VCpVl
(although it might be noteworthy to compare
the last one with -1f.A which is more
general but results in a one-element
vector I.

In any case, it is assumed that each idiom
is thought of as a unit, used frequently,
and has a common name.

In particular, “Round” was chosen because
it is usually thought of as rounding off N
to the nearest integer rather than
literally as “Floor of one half Plus N”.
The more general form for rounding off to P
places -- (1o*P)~Lo.5tNxlO*P -- was not
chosen because its greater length begs for
a defined function. (Roth are mostly
obviated by the Format primitive function,
anyway. 1

.sortn was chosen * ascending order
arbitrarily over vCPvfn.
VC4VxflJ

Alternatively,
uses controlling variable Nel 1

and may be potentially twice as usable but
is certainly less efficient; besides,
Reverse can be used easily as a prefix to
go from one ordering to the other.

‘Unique” (or ‘Nub.) is perhaps the
most-often illustrated APL idiom and has
been implemented as a primitive function in
enhanced APL systems -- even thouqh it
fails for a scalar and doesn’t generalize
well. Compare it with (1 lQ<\Vu.=V)/F . And
compare ((V~I/)=~pV+lllOttfI\~Mv.~~M)IM with
(1 lQ<\Mh.=QM)fM to remove duplicate rows
of a matrix, and (1 IQ<\1 3 3 ZQAh.=QA)fA
for rank-3 arrays, etc.

“First-l” is one of many idiomatic uses of
scan -- one which seems to arise often in
various applications to find the first
position of a value in (rows of) an array.
Alternative idioms are much more cumbersome
or expensive or inelegant, e.g., l=t\B .
Also, beware that it works for any numeric
array but with spurious meaning.

-Same Boolean’ may not be used that often,
but it has no less than ten alternative
expressions for detecting either all 1s or
all OS (C21 p. 16). This idiom is not only
shortest, but perhaps surprisingly simple.
Further, it leads to the related problem of
expressing an idiom for “Same Element’
(which is done a different way): A/.A=~+,A

‘Scalarize is a good example of a simple
idiom which the programmer may not want to
think about each time, but rather just use.
Indeed, I1 instead of (10) may be more
economical but dissonant when A is numeric
(fortunately, most interpreters are
forgiving).

‘Difference” has a mirror-image idiom in
(l+V)--lcv : this might cause pause in
remembering the direction in which the
differencing is to occur. It suggests the
more primitive idiom “Shift’ O,-l+V and its
relative ‘Restore” v-o, -1sv (for restoring
the original vector from a Sum-scanned V).

‘Match’ seems to be a classic, works for
either data type, and has other related
forms, e.g., (M~.=v)ll for the index of the
first matching row, and V/Vh.=M for
matching by columns.

l Merge’ requires three arguments and,
consequently, is a good candidate for use
as an idiom rather than as a defined
function. It is, however, not a
straightforward way to merge: compare with
(B\V)L(-B)/lpBJ+W or (B\V)t(-B)\W (for
numeric V and W).

‘Identity Matrix” has applications beyond
linear algebra, but is it more natural than
alternatives (N.N)p(N+l)+l or (N,N)pl.NpO 3
Does symmetry help in its recall? (Is that
why some people use redundant parens?) And
does it lend any insight into how to
generalize for diagonals of higher
dimensional arrays?

“Coerce to Matrix” accepts an argument of
any rank but returns only the first matrix
for ranks greater than 2 and fails for
special cases of empty rank 3 or greater
arrays with non-empty rows and columns. The
alternative idiom ((x/-l+pA),-lfpA)pA
doesn’t lose any data but restructures the
result and fails for a scalar.

*If’ is often found as a defined function
in utility workspaces and, of course, can
be used as is for branching. Other similar
idioms are: +NxlB (not allowing vector
arguments and not Cl10 independent) or +BpN
or +BtN and +B+N .

‘Do N times” is included as a single idiom
even though it is written over several
lines. It is one of several constructs fot
iterative programs and, for instance, might
be compared with:

365

.: L . . _’

I+1
Ll: . . .

+(N2I+It1)/Ll
. . .

which is one line shorter but must “no. at
least one time. Another related construct
iS ‘If, Then, Else*:

+(-B)/Ll
. . .

+L2
Ll: . . .
L2: . . .

Results

Results of the try-out of the above idioms are summarized below
(with abbreviated scale names):

Scale L 0 0 E G C S M I E
E I S P E L I E N L

Idiom N 0 E F N A M M T G

‘Round. 2.0 0.0 2.3 1.7 2.4 1.9 0.9 1.0 5.7 3.7

*Sort 2.0 0.0 1.3 2.2 4.8 0.9 1.0 0.3 3.3 2.4

‘Unique” 5.2 0.0 3.0 3.4 4.0 5.0 4.9 3.4 3.6 3.1

“First 1’ 1.2 0.0 5.1 2.7 5.7 7.1 3.9 4.4 3.9 3.3

‘Sane Boolean” 2.8 0.0 7.6 3.6 4.8 5.6 4.8 5.7 5.9 4.2

‘Scalarize” 1.6 0.0 1.9 0.9 0.5 3.4 2.1 2.1 5.3 5.2

‘Difference’ 4.0 0.0 3.5 3.0 5.7 2.5 3.4 4.5 4.8 5.2

‘Match’ 2.8 0.0 3.5 5.2 3.8 3.7 3.6 4.1 4.9 3.7

“Merge’ 4.0 0.0 6.7 5.5 4.6 7.8 7.0 7.5 3.3 3j3

.Identity M’ 3.6 0.0 3.7 6.3 5.8 2.2 2.6 1.1 3.6 3.1

‘Coerce to M” 5.2 0.0 4.6 2.3 4.4 4.3 4.1 4.7 5.2 4.9

‘If” 1.6 0.0 1.5 1.2 2.6 2.6 1.0 0.7 5.7 4.2

‘Do N tines” 10.0 0.0 0.6 2.4 2.9 2.6 2.9 1.6 6.7 6.1

Numbers are averages of ratings by all respondents (n = 10).

N.B. LENGTH has been adjusted to a scale of 0 to 10 by
multiplying 10 times the idiom’s length (number of characters)
divided by the maximum length idiom given here (25).

N.B. 010 is scored as either 0.0 for Index-Origin independent
idioms or 10.0 for Index-Origin dependent idioms.

366

Discussion

The data sugqest that the “Round” idiom is
simple and easy to remember ; “Sort” is
useful, clear, simple, most memorable and
comparatively elegant; “Unique” is
ironically not unique in any respect;
‘First 1’ is short but not very clear;
‘Same Boolean’ seems to be rarely used;
.Scalarize’ is very efficient and general;
.Merge” appears unclear, complex and hard
to remember -- perhaps because it isn’t
used much ; “Identity Matrix” may be
somewhat inefficient and lacking generality
but is easy to remember: “If” is useful,
efficient, simple and rememberable: “Do N
times’ is very useful, but long and hardly
interesting. In sum, “sort” is possibly the
overall best (best = minimum total distance
from 0 on all scales).

Other issues f ecus on the design of the
instrument itself. FoK instance, USEFULNESS
could be determined theoretically by a
frequency count . .
existent APL code O:noat”a :d,~~%e izsk?::
And, EFFICIENCY ratings could be more
accurate if it were known which primitive
functions are optimized on particular
machines. Also: How much overlap is there
among scales such as CLARITY, SIMPLICITY,
and MEMORABILITY? What is ELEGANCE anyway,
and what does it correlate with? What
should the relative weights of scales be
(for determining a total rating)? After
all, there may well be considerable
differences between the author’s
descriptions of these scales and Other
people’s interpretations.

There are some methodological issues which
beq to be discussed. First, the reliability
of the APL Idiom Inventory remains to be
determined, as well as cross-correlations
between scales, (This warrants a field test
with large N and more idioms, of course. 1
Secondly, there is a confounding difficulty
in comparing idioms; that is, whether an
idiom must be compared strictly against
idioms which accomplish the same purpose.
(See note at bottom of Explanation of
Scales.) Or is it reasonable to compare an
idiom with other idioms -- outside its
ecological niche? Are we not measuring
‘survival of the fittest’ anyway?* This
must be resolved in order for the ratinqs
to make sense.

* An idiom may have evolved from a basic
need for a certain expression; it may have
become popular because jL got used often;
it may minimize poKtabiliLy problems, say,
by being IJIO-independent. When compared
with other idioms, it may have proved to be
the fittest because it was most efficient
on certain computers and/or because it was
the most concise in writing and/or because
it was easiest to remember. Or, instructors
may have taught it to other people simply
because they liked it. For instance,
consider ?l as an alternative to Uro (a
rather idiosyncratic idiom, to he sure).
You might prefer it because it is shorter.
You might be repulsed by it because it uses
a function totally unrelated to i t ‘j
purpose, resets ch..L, and is probably less
efficient In execution. Or you miqht be
pleasant1 y surprised because YOU never
would have thought of it yourself. So, will
you use it or not?

For some programmers, utility is the only
important feature of an APL idiom: it gets
the job done. Other features, such as
generality, may not be practically
relevant: “If I never need it for higher
rank arrays, why should I care?’ some
people use APL idioms to
bring

think with: they
to mind helpful chunks for solving

problems valuable identities
constructini’proofs. (See 131 .) And, ma;::
some people use idioms without knowing it.

Eventually, an APL Idiom Inventory may help
clarify fundamental questions about APL
idioms. For instance, which are generally
better -- idioms or gcovere (defined)
functions? Defining a cover function does
require investing extra effort to embody
code and extra knowledge of function /
group / workspace names (plus awareness of
possible conflicts), but it may help
understanding at least because the cover
names are connotative; whereas an idiom
itself must be retyped each time it is used
and may be construed as just a collection
of symbols to learn by rote. On the other
hand, idioms may lead to better
understanding because one must learn to
recognize and use an idiom in context;
whereas a cover function can be used
blindly, without looking at its definition
and perhaps forgetting special cases. So,
which will prevail in the future?
memory will we rely on -- ours (Whose or the
computer Is?)

Conclusion

In the meantime, we can now find out what
the APL community thinks of various idioms
-- by using an APL Idiom Inventory.

Readers are invited to evaluate the idioms
here (plus any other favorite APL idioms).
Please send ratings to the author along
with suggestions f0t improving this
instrument.

367

, : :

References

Cl1 “FinnAPL Idiom Library” (2nd Edition),
Finnish APL Assoc., Helsinki, Finnland
July 1982

c21 ‘The APL Idiom List”, Perlis h Rugaber
Computer Science Research Report 187,
Yale Univ., New Haven, CT April 1977

c31 ‘APL Thinking: Examples”, Eisenberg (i
Peelle, APL87 conference Proceedings;
APL Quote-Quad, (to appear) May 1987

c41 ‘Idioms and Problem Solving Techniques
in APLZ”, A. Graham. APL86 Conference
Proceedings, APL Quote-Ouad, Vol. 16,
No. 4, July 1986

Acknowledgements

Thanks to Professor Murray Eisenberg
(University of Massachusetts), Dr. Mike
Sutherland (Adaptive Data Systems, Inc. 1
and Jim Weigang (STSC, Inc.) for help in
conceptualizing, testing, and refining this
APL Idiom Inventory,

368

