
APL Berlin 2000 Proceedings

A n A P L C o m p i l e r
Tilman P. Otto

Paud-Mar t in-Ufer 13

68163 M a n n h e i m , G e r m a n y

T i lman@ Otto.tom

Abstract
E v e n i f A P L is the best-su/ ted p rogramming

language for mul t i -dimensional clam, nowadays
c o m p u t e r applications additionally require complex
graphical use~r mteaffaces, i n t eme t and database access.
Combinitxg sof tware wri t ten in C, C + + or Java with
in terpre ted A P L programs is difficult. A h o m o g e n e o u s
solut ion has been f o u n d by automaticaUy conver t ing
A P L programs into nat ive C code. A comple te APL2,
like system including interpreter and session manage.r
has been imp lemen ted in ISO C f rom scratch based
on the standaxd C libraxy. I t is the p roper ty o f the
author and n o t ye t cornmercially available. I t has been
successfully compi led on several operat ing systems.
The built in system ea].l AP.E2C allows one to
compi le any A P L funct ion including all referenced
:Eu.net i .ons o r operators within the workspace i n t o

nadve C code and complete ly removes the inte.tpreter
using direct calls to the C c o d e d A P L primitives. Only
obvious r e s U d c t i o n s (no r e . r e t i r e e e x e c u t i o n o f

character arrays or dynamic creation o f functions via
FX~ apply. In addition, a makefl ie is created to enable

the simple bui ld o f s tandalone eexecutable flies. T h e C
flies, generated b y APZ 2 C, can be easily mixed with
other C / C + + source flies and compi led on any
p la t fo rm prov ided that the required libtax3r for the
A P L p~im/tives is available.

In t roduct ion
In the course o f the nearly 40 years o f APL[6]

history, one o f the main p rob lems Was the missing
possibil i ty to create real executable flies that could be
easily spread to users. The idea o f developing an A P L
compiler dates back to the middle 80ies [2,3,4]. T h e
A P E X pro jec t [1] aims at an analysis and comple te

Permission to make cBgitaJ or hard cop i= of =]1 or part of
this work for personal or classroom use is granted witlxout f©¢
prov/d~d that copies ate no t made or distr/buted for p ~ f i t o~
e.ornmc~:ial advanVage, and that copim b a r this no fee and. the ful l
dtat ion on the ffixlst page. T o copy oil-intwist to republish, to pos t
on s~rvcrs, or to zedistfi.bum to lists, ~equixes pricer specific
pcma.ission r o d / o r a fee.
APLO0, 07/00, Berlin, G e r m a n y
@2001 ACM 1-58113-182-8101/0007 5.00

unders tanding o f the A P L p rogram data f low to be
able to automatically generate highly opt imized native
C code. G iven the complex functionality o f A P L wi th
its palm/t ire functions, opera tors and nested arrays,
this turns ou t to b e a v c t y difficult task. T h e approach
presen ted in this paper is a pragmatic rather than
demanding one. T h e compiler conver ts A P L funct ions
into C code, zephc ing the interpreter by direct calls to
the C c o d e d A P L palm/tires.

The APL2C System
A comple te A P L sys tem has been deve loped by

the au thor since 1991. I t comprises an interpreter, a
session manager and a simple funct ion editor to define
funct ions and operators . I t suppor ts all standaxd A P L
palm/tires (functions and operators) , nes ted arrays,
selective and v e c t o r assignments, wheteas complex
numbers axe n o t suppor ted . T he system was
imp lemen ted ~ o m scratch in ISO Standaxd C [4]; sole
basis were calls to the s tandard C library. It was
successfially compi led on seevetal operat ing systems
such as W i n d o w s 9 5 / 9 8 / N T , L ine r , S G I h-ix, I B M
A I X and Sun Solaris. T w o cliffelrent user interfaces axe
avai lable: A tex t -based interface using VT100 terrrt.inal
emulat ion (for unix platfozxns) and a graphical user
intectface for Windoxx~, wri t ten in C + + using the
Mic rosof t F o u n d a t i o n Classes (MFC~, see figure 2. F o r
the text -based interface it is poss ible to define
keeywords for every A P L s y m b o l in an external ASCII
flic (see figLum 1), whereas the W i ndow s interface
allows to enter A P L symbols using a toolbax or user
definable ho t key combinat ions . T h e system is able to
s tore and load workspaces and the m o s t impor tan t
sys tem vat/shies and funct ions axe available (e.g. I 0 ,

CT, L C, FX, CR, NL, etc.). Within a
workspace , the user m a y define n/lad/c, monad /c and
dyadic user funct ions as well as monad ic and dyadic
operators . In case o f a run- t ime eaxor or a user
i n t ~ u p t , the intetprete.t can be s t op pe d after the
execut ion o f an T line o f A P L source code. A n
execut ion stack was imp lemen ted and the system
c o m m a n d ") S I ' " is u sed to v iew pend ing functions.
Wi th a call to the ")RESET" funct ion, all pending

1.8,6 77/man P. Otto

APL Berlin 2000 P r o ~ n g s

functions are cleared Erom the stack. With the
specif icat ion o f an argument the given n u m b e r o f
pend ing funct ions can be r e m o v e d f z o m the stack, e.g.
"')RESET 3"'. In the current implementat ion , a
w o r k s p a c e c a n n o t be saved as long as there are still

functions pending. With the c o m m a n d " L C" the

execut /on o f a pend ing funct ion can be cont inued, or,
w i th , the comple te list o f pending functions for
the last submit ted A P L c o m m a n d l ine can be r e m o v e d
ffirom the stack.

token ["0xE4 ")
token ("0xE5")
token ("0xE6")
token ("0xE7 ")
token ["0xE8 ")
token ("0xE9 ")

char("0x8C") [#) / * quad
char["0x82") Encode /* up tack
char("0xBl") Circle /* circle
char("0xBD") Shape /* rho
char("0x97") Max /* up stile
char(a0x87") Drop /* down arrow

Figare 1: The APL2C system allows to define keywords in a user definable ASCII file as a
replacement o f APL special symbols (e.g. the kcyword "Drop" replaces the "down arrow"
character). With the second column, every single character o f a special APL font can be
assigned to its corresponding interval token. This al lows adapting the system for different APL
fonts.

Figm-e 2: Screen snapshot o f the APL2C system for Windows NT. The special APL symbols
can be entered by means o f the toolbar or a user definable hotkey combination.

typedef struct
(

1 ong
unsigned char
unsigned char
unsigned char
unsigned char
long
long
//

} aplarray;

length; // total length in bytes
type; // SIMPLE or NESTED
rank; // Dimension
eltype; // INTG, CHAR, REAL PNTR
reserved; // unused
number; / / total number of elements
dim[l]; // dimension[s), dep. on rank
• .. // Data [dynamic)

Figure 3: The definition o f an APL array in C. The field 'dim[]" has, in fact, 'rank' elements
and the array's data directly fo l low the last 'dim' element.

An APL Compiler 187

APL Berl in 2000 Proceedings

Implementation
Th e implementa t ion o f a comple te A P L system is

n o t that easy. A power fu l low-level progxamrrfing
language is required t o / m p l e m e n t the interpreter and
all APL pr/mitives. W h a t is fu.tthermore needed /s a
high portabil i ty o f the source flies, thus being opexLfot
all compu te r platforms. I S O Standard C [6], def ined by
ISO/I_EC 9899:1990, 611Rl|s b o t h requirements. A
compiler for Standard C is available on every operanng
system; C is very flexible w/th regards to data
manipulat ion and m e m o r y handling.

APL data s~ucture
T h e m o s t impor tan t data stZuCtULZe is the

definition o f A P L arrays, as shown in Figure 25. The
three different examples in figm:e 4 explain h o w the
A P L arrays are. represen ted in the memory . Simple
arrays ate s tored cont inuous ly in one m e m o r y block.
Nested azzays have one memory block for the root
array and one for every sub-atomy. T he A.PL2C system
suppor ts the fo l low ing basic data types: Boolean,
character, integer, s h o e integer and real (float).

x 5
length type rank altype rea. number

16 SIMPLE 0 INTG 0 1 5

X 'abc '

length type rank eltype res. number dim[O]

19 S|MPLE 1 CHAR 0 3 3 'a' , 'b'

X (i 2) (3 4)
lena

24

'o'

F igure 4: Examples for the representation of two simple and one nested APL array in
memory according to the type definition shown in figure 3.

aplarray *FnName(
aplarray *axis,
aplarray *larg,

aplarray *rarg // right argument
);

/ / Axis
/ 1 left argument

Examples : "R rotate (NULL, NULL, R)

L"R rotate(NULL, L, R)

L#[X]R rotate(X, L, R)

Figure S: The prototype definition of every APL primitive function in C. For monadic calls or
calls without axis the corresponding parameter is NULL.

188 771mon P. OZto

APL Bedin 2000 Proceedin#$

C Prototypes for APL primil~-ves
.All APL primitive "functions show identical

prototypes. The prototype definition is displsyed in
figure 5. For niladic functions, all parameters are equal
to the null pointer (NULL), and for monadic functions
the argument q~g" is NULL. The proto-type
definition for operators is shown in figure 6.

Symbol table
For every APL system a so-called ~9~wbol table is

needed; here the meaning and values for each symbol
within the workspace are defined (see figure 7). The
symbol table allows one to define local and pseudo
local vsrisbles. When an APL function is entered for
execution, the interpreter saves the actual contents of
the symbol table for all local variables. The contents
will be restored as soon as the interpreter leaves the
executed function. In some APL systems implemen-

; y rnbo l Name Typq

'M' Var iable --

'TEST' Funcl ion • - -

'MYOP' Operator •

'DX' Var iable • - -

Figure 7: For every symbol name within the
workspace the symbol table keeps the object type
and the object's memory address.

tations, the symbol ruble is limited in size (e.g. to
32678 symbols).

However, the symbol table of the APL2C system
is only limited by the size of free memory available. To
accelerate the execution speed of an APL function, all
symbol names were replaced by the corresponding
index to the symbol table within the internal
representation of the function.

aplarray *OpName(
aplarray *axis,
aplarray *larg,
elptr *lop,
aplarray *laxis,
elptr *ro9,
aplarray *raxis,
aplarray *rarg

);

// Axis for operator
// left data argument
// left functional operand
// axis for left operand

// right funct, operand
// axis for righn operand
// right data argument

Figure 6: The prototype defimtion of any APL primitive operators in C. For monadic calls or
calls without axis the corresponding parameters are NULL. 'elp~r' is a data structure that can
hold simple or derived functions (i.e. opzrator together with operands).

W o r k s g m c a
~ vm'ah~ ÷ Fune~ca + opnmm I

+
i rnmrpremr -Symm l

FumlJmm-IDi~'dUom nml -l~inuMon
W a r y H~dmo. ~ M.~.,lip.r

+ II ' I i i
I Slanda.rd C Ubm~ ANSI

+
I I
Figure 8: APL2C system structure. The
interpreter is based on the Standard C library
and on the graphical interface which,
however, depends on the operating system.

T h e C o m p i l e r
An overview of the APL2C system is given in

figure 8. The top level is the APL workspace the basis
o f which is the APL interpreter system. The latter
includes the editor for function definition, the session
manager, the handier for the workspace with all its
system functions as well as the interpreter for the
execution of the APL code.

The idea behind the compiler is to automatically
convert an APL function into Standard C code and to
replace the interpreter by direct calls to the APL
primitives, coded in Standard C, too. This concept is
shown in Figure 9. Once the C code has been
generated, it can be easily mixed with other C source
code files. Figure 10 points out the integration of
compiled APL code with other C, C + + sources files.

An APL Compiler 189

APL Berlin 2000 Pro~eeo~gs

COMPILER:

Variables
APL Functions ~ C

Ooerators

APL-Primitives
Funcllimm + Opemtoms

Implemantad in C

Standard C ' ANSI

Operating System

Figure 9: The compiler automatically replaces the intexprreter by direct calls to the APL
primitives. The resulting code is only based on the Standard C library, but requires the C coded
primitive functions and operators (e.g. as library).

Syntax Analys/s and Symbol Names
Fortunately, A P L programs show a simple syntax,

i.e. A P L statements do no t span over different lines.
This facilitates r_he implementa t ion o f a syntax analyser
representing an impor tan t paxt o f the compiler. Below
the existing syntactical combinat ions axe shown:

D data (e. 6. v~ri-ble oz literal)

F niladic funct ion F

F[A]D

DF[A]D

F[A]M[A]D

Monadic function F (with optional
ax.is)
Dyadic funct ion F (with opt ional
axis)

Monadic operator M with monad ic
funct ion F and optional axes

D F [A]M[A]D Monadic opezator wi th dyadic
funct ion F and opt ional axes

DF[A] OF[AID Dyadic opetatoz with dyadic
functions F and opt ional axes

As a complication, an operator together with its
functional operands is forming a so-called abr/~d

fi~nction, which again may serve as funct/onal a rgument
£oz an ope ra to r

To find ou t which o f the above-ment ioned
combinat ions is valid within a line o f A P L code, the
mearAng o f every referenced symbol mus t be known.
A t compile time, the different symbols within an A P L
instruct ion pose a pzoblem because, even though the
symbol table o f the A P L 2 C system may be used, the
meaning o f those symbols is n o t wee def ined and may
be ambiguous. A funct ion defined as 'XYZ' can be

coveted by a local vaz£~ble n a m e d 'XYZ' in one o f the
funct ions within the execut ion stack. To solve this
p~oblern, the foHowing zest1:lction is gelevant to the
funct ions to be compiled. I t i s /mposs ib le to cover the
names o f def ined A P L funct ions wi th pseudo-global
variables, i.e. local vaxL~bles def ined in one o f the
functions within the execution stack below the current
function. 'We assume, for example, that a function
"with name 'TEST' was defined. In this context, it is
allowed to define a funct ion as ' F U N C I ' , which has a
local variable with the same name 'TEST'. The
problem arises when 'FUNCI' is c~l|ing a second
funct ion 'FUNC2' , and 'FUNC2 ' U:ies to access the
pseudo-global vax/able 'TEST' o f the Ettst function.
T h e compilat ion o f funct ion 'FUNC2 ' will assume,
that 'TEST' refers to funct ion 'TIgST' instead o f a local
variable o f another funct ion. T h e resuh is a compile
t ime or txm-~me eztor.

Restr ic t ions
T h e folio'wing restrictions axe applicable to the

comp/Iat ion o f any A P L funct ion oz operator:

T h e first restz/ction has already been men t ioned
above. T h e names o f pseudo-global variables mus t
differ ff~om any other funct ion or operator name
within the same workspxce.

Since the compi led code has no £nterpzetez, the
execution o f A P L character strings is obviously no t
possible. For the same reason, it is no t allowed to
dynamically create new A P L funct ions using the F X
command .

T h e last zestt~ction is based on the compiler
implcrnentation. I f the compiled APL functions refer

1.90 771man P. Otto

APL Berlin 2000 Proceeo~gs

Variables
APL Functions =. C

Operators
i

,i
APL-Primitivas
Functions + Operators

Implornontod M C

m m , , , ,~

i

Standard C Library ANSI

Operating System

Application (C, c++)

DB, Internet

Graphical Interface
MFC I Windows NT
u~!! ~Unlx, Unux.

I

Figure 10: Integration of compiled APL programs into applications written in C, C++.

to global va~ables within the workspace, the compiler
can generate initialization code for these wt4=bles. The
global variables will be set to their values at compile
time but the current version of the compiler only
allows simple data for inidMh,.ation. Nested global
arrays cannot be initialized and will cause a compile
time error.

Code Generation
The compiler is part of the APL2C sys tem and

can be started by the system function APL 2C. The
name o f the APL function to be compiled must be
given as left argument to the function. The name of a
directory for the generated C code files is the tight
argument.

The compiler will recursively compile all functions
that have been used by the function given as left
argument. Every APL function or operator will be
converted into one C code file. The file name is the
name of the APL function to be compiled with an
' a p l ' prefix. The corresponding C function will take
on the same name.

Within the APL2C system the C function name
for every APL primitive function is automatically
registered at start-up. Thus, it is ensured that for every
p~imit/ve or system function the corresponding C code
function name is known and can be used by the
compiler.

Figure 11 shows a small APL program 'TEST'
computing the square root out o f the squares" sum of
the left and tight argument. The corresponding C code
file "apI_.TEST.c' is shown in f ig~e 12 (exactly as
automatically created). Line #5 defines the C function
apl TEST. Here, the same prototype definition for
APL primitives is used as described under figure 5.

Line #11 is the representation (as octal sr,4,g) o f the
value 0.5 in the APL array format described in figure 3
and 4. At lines #14 and #15 the actual contents o f the
symbol table for symbols A and B is stored in the
array localvars D and then the values o f A and B are set
to the left and right argument. Lines #16 and #17 save
the cut, rent values o f symbols E and L and then clear
the contents of these variables. Every APL code line is
implemented in its own switch statement to be able to
make computed gotos" where the jump address can
dynarnically be computed. An APL jump command
will modify the C variable 'linenum' and will determine
the next line of C code to be executed.

Line #25 assigns the value 0.5 to variable L. Lines
#28 to #39 show the C code for the second line o f
APL code. The C macro VARLABLE(I.DX~ is reading
the memory address o f an array out o f the symbol
table at index IDX. The fimctions 'mul', "add' and
'power" are the registered names of the C functions for
the corresponding APL primitives. Lines #44 and #45
clear the contents o f variables A and B and restore
their contents using the localvars0 array. Line #46 is
preparing the result and lines #47 and #48 restore the
variables E and L to their initial value when the
function has been entered.

After all referenced A.PL functions have been
compiled, a makefile will also be created allowing an
easy compilation and linkage of the generated code.

Correctness of the Compiler
To verify the correctness of the compiler, it was

applied t o a complex image-processing task developed
with the APL2C system. A total o f 106 A P L functions
with 1,690 lines o f APL code (comments included)
were compiled into 717 kilobytes (more than 28,000

An APL Compiler 191

A P L B e d i n 2 0 0 0 P r o c e e d i n g s

lines) o£ C code. For the C code compilation three
different compilers (Gnu-C compilex on Lmux,
Watcom C/C++ Ve_sion 10.6 and Microsoft Visual
C / C + + Version 5 on M/ctosoft Windows) were used.
Then, the results of the compiled programs were
checked; no difference to the results of the interpreted
APL program could be made out.

E4-A TEST B ; 1",
g~-O. 5
E~-((A = A) + B = B) * L

Figure 11: Small APL program serving as
example for compilation into C code. The
compiled C code is shown in Figure 12.

Performance Measuremen~
It is the concept o f this papeds compiler to

replace the interpreter by automaticaRy converting
APL code into C code using direct calls to the C
coded APL pximitive functions. The question is, ff and
how much faster the compiled C code is compared to
the intexpreted APL program. Theoretically, the
compiled C code should be at least as fast as the
interpreter should. The maximum amount of time to
be saved is the execution time, used by the interpreter
itself. The higgex the data arrays handled by the APL
program, the lesser time is needed for the
interpretation compaxed to the data processing by the
APL ptirrdtive functions.

The two examples below show a comparison
between compiled C code and interpreted APT_, code.
The first example is an APL program with a maximum
of interpreter load: An empty loop:

L O O P ; N
N~-O
L B :
• ~-(1 0 0 0 0 0 > N ~ N + i) / L B

In the second example the folio,wing small program
was used to determine all prime numbers smaller than
1,000,000 ~_Jmtosthenes's sieve algo.fidu:n):

P÷PRZM N ; Q I O ; J ; Z ; ~ S
DIO÷I
P4-tN
S e N * 0 . 5
J~2
£OOP :
I ~ J x Z $ t LN÷J"
P[/]~O
,T~J'+ 1 + 2 [,Y
-*(JsS)/~OOP
P~-t J, (P~o) I P

For both. examples, the
resulting execution times
Pentiurn II computex:

Progxmm 1 In tezpre ted

L O O P [3,64 sec

PRIM [2,10 sec

table he.low displays the
measured on a 450 MHz

C o m p i l e d

1,90 sec

2 ,08 sec

Saving

52 %

These meas~.u:ements confitrn, that the
saves onJ.y the execution time o f the interpreter itse.i£

References
[I] BERNECKY R.: An Overview o f the A P E X

Compiler, Universi ty of Toronto, Depar tment of
Computer Science, Technical Repoxt 305197

[2] BUDD T.: An A P L compiler, Springer-Verlag
New York Berl in Heidelberg London Paris
Tokyo, ISBN: 0-387-96643-9 (1988)

[3] CHING W.-M.: Program Analys is and Code
Generat ion in an A P L / 3 7 0 Compiler, I B M
Journal of Research and Deve lopment 30(6):
594--602 (1986)

[4] DISCROLL G.C.IR.; ORTH D.L.: Compil ing APL:
The York town A P L Translator, IBM Journal of
Research and Development 30(6): 583-593
(1986)

[5] ISO/IEC 9899:1990: ISO C Standard, ISO
Central Secretariat, Case postale 56, 1211
Geneva 20, S W I T Z E R L A N D

[6] IVERSON K.E.: A Programming Language, John
Wiley & Sons, Inc., New York (1962)

1 %

compilation

'1.92 771man P. O t t o

APL Ber#n 2000 ProcsedJng$

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[Is]
[16]
[17]
[18]
[19]
[20]

#include "includes.h"
#include "apl2c.h"
#include "test.h"

aplarray *apl_TEST(aplarray *_axis, aplarray *apl_A, aplarray *apl_B)
[

aplarray *apl E;
symbol localvars[4];
unsigned char typeof_apl_A, typeof_apl_B;

long *tlinenum ptr, linenum = 0;
static char const0[] = "\20\0\0\0\1\0\4\0\1\0\0\0\0\0\0\77";

typeof_apl__A = Initarg(localvars+0. apl_A_idx, apl A} ;
typeof_apl_B = Initarg(localvars+l, apl_B_idx, apl_B);
Initvar (localvars+2, apl_E_idx) ;
Initvar(localvars+3, apl_L idx) ;
tlinenum ptr = linenum__ptr;
linenum_ptr = &linenum;

[21] nextline:
[22] switch(++linenum)
[23] {
[24] case i:
[25] assign(apl_L idx, (aplarray *)const0);
[26] goto nextline;
[27] case 2:
[28] assign(
[29] apl_E_idx,
[30] power(
[31] NULL,
[32] add(
[33] NULL,
[34] mul (NULL. VARIABLE (apl_A_idx), VARIABLE (apl_A__idx)),
[35] mui(NULL, VARIABLE(api_B_idx), VARIABLE(apI_B_idx))
[36]),
[37] VARIABLE(apI_L idx)
[38])
[39]);
[40] goto nextline;
[41] default: goto end;
[42] }
[43] end:
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51] ~

Resumearg(localvars÷0, apl._A idx, typeof_apl_A, apl A) ;
Resumearg(localvars+l, apl_B_idx, typeof_apl_B, apl B) ;
apl_E = return var(apl_E_idx);
Resumevar(localvars+2, apl E_idx) ;
Resumevar(localvars÷3, apl_L idx) ;
linenum_ptr = tlinenum__ptr;
return (apl_E) ;

Figure 12: R ~ u l t i n g C code after compilation o f the APL program shown in figure 11. (I~xplanation, see text
above). The C code has bean created exactly as shown h e ~ including thv indenting.

An APL Compiler 193

