APL Berfin 2000 Proceedings

An APL Compiler

Tilman P. Otto
Paul-Martin-Ufer 13
68163 Mannheim, Germany
Tilman @Otto.com

Abstract

Even if APL is the best-suited programming
language for multi-dimensional data, nowadays
computer applications additionally requite complex
graphical user interfaces, internet and database access.
Combining software written in C, C++ or Java with
interpreted APL programs is difficult. A homogeneous
solution has been found by automatically converting
APL progratns into native C code. A complete APL2
like system including interpretet and session manager
has been implemented in ISO C from scratch based
on the standard C library. It is the property of the
author and not yet commercially available. It has been
successfully compiled on several operating systems.
The built in system call APL2C allows one to
compile any APL function including all referenced
functions ot operators within the workspace into
native C code and completely rtemoves the interpreter
using direct calls to the C coded APL primitives. Only
obvious restricions (ho runtime execution of
character arrays or dynamic creation of functions via

FX) apply. In addition, a2 makefile is created to enable
the simple build of standalone executable files. The C
files, generated by APL2C, can be easily mixed with
othet C/C++ source files and compiled on any
platfortn provided that the required library for the
APL ptimitives is available.

Introduction

In the course of the nearly 40 years of APL[6]
history, one of the main problems was the missing
possibility to create real executable files that could be
easily spread to users. The idea of developing an APL
compiler dates back to the middle 80ies [2,3,4]. The
APEX project [1} aims at an analysis and complete

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without fee
provided that copies arc not made or distributed for profit or
commercial advantage, and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific
permission and/or a fee.

APLO00, 07/00, Berlin, Garmany
® 2001 ACM 1-58113-182-8 / 01/0007 5.00

186

understanding of the APL program data flow to be
able to automatically generate highly optimized native
C code. Given the complex functionality of APL with
its primitive functions, operators and nested artays,
this turns out to be a very difficult task. The approach
presented in this paper is a pragmatic rather than
demanding one. The compiler converts APL functions
into C code, replacing the interpreter by direct calls to
the C coded APL primitives.

The APL2C System

A complete APL system has been developed by
the author since 1991. It comprses an interpreter, a
session manager and a simple function editor to define
functions and operators. It supports all standard APL
ptimitives (functions and operators), nested arrays,
selective and vector assignments, wheteas complex
numbers are not supported. The system was
implemented from scratch in ISO Standard C [4]; sole
basis wete calls to the standard C library. It was
successfully compiled on several operating systems
such as Windows 95/98/NT, Linux, SGI Irx, IBM
AIX and Sun Solaris. Two different user interfaces are
available: A text-based interface using VI'100 terminal
emulation (for unix platforms) and a graphical user
intetface for Windows, written in C++ using the
Microsoft Foundation Classes (MFC), see figure 2. For
the text-based interface it is possible to define
keywords for every APL symbol in an external ASCII
file (see figure 1), wheteas the Windows interface
allows to entet APL symbols using a toolbar or user
definable hot key combinations. The system is able to
store and load wotkspaces and the most important
system vatiables and functions are available (e.g. IO,

cr, LC, FX, CR, NL, etc). Within a
workspace, the user may define niladic, monadic and
dyadic user functions as well as monadic and dyadic
operators. In case of a2 run-time error or a uset
interrupt, the interpreter can be stopped after the
execution of any line of APL source code. An
execution stack was implemented and the system
command “)SI” is used to view pending functions.
With a call to the “)RESET” function, all pending

Tiiman P. Oftto

APL Berlin 2000 Proceedings

functions are cleated fom the stack. With the
specification of an atgument the given number of
pending functions can be removed from the stack, e.g.
“JRESET 3”. In the current implementation, a
wotkspace cannot be saved as long as thete are still
functions pending. With the command “ LC?” the

token("0xE4") char("0x8C") (#)

token("0xE5") char("0x82") Encode
token("0xE6") char("OxBl") Circle
token("0xE7") char("0xBD") Shape
token("0xE8") char("0x97") Max
token("0xES") char("0x87") Drop

execution of a pending function can be continued, or,
with “ 7, the complete list of pending functions for
the last submitted APL command line can be temoved
from the stack

/*
/*
/*
/*
/*
/*

quad

up tack
circle

rho

up stile
down arrow

Figure 1: The APL2C system allows to define keywords in a user definable ASCII file as a
replacement of APL special symbols (e.g. the keyword “Drop” replaces the “down arrow”
character). With the second column, every single character of a special APL font can be
assigned to its corresponding internal token. This allows adapting the system for different APL

fonts.

o= Uhntithed - APLZC M=
el L 8 .
I - el o §
db¥tipeeasm]) “xF@varfLs2agraiol
a+ hi"slipegaaw aFfOr4e0a |
5
...... L ._-I l_ 1 L]
I 1 B4
o
Vicoie : &
o s R

Figure 2: Screen snapshot of the APL2C system for Windows NT. The special APL symbols
can be entered by means of the toolbar or a user definable hotkey combination.

typedef struct
{

long length;
unsigned char type;
unsigned char rank;
unsigned char eltype;
unsigned char reserved;
long number;
long dim[1l];
/7 .

} aplarray;

// total length in bytes
// SIMPLE or NESTED
// Dimension

// INTG, CHAR, REAL,
// unused

// total number of elements
// dimension(s),

// Data (dynamic)

-, PNTR

dep. on rank

Figure 3: The definition of an APL array in C. The field ‘dim[]’ has, in fact, ‘rank’ elements
and the array’s data directly follow the last ‘dim’ element.

An APL Compiler

187

APL Berlin 2000 Proceedings

Implementation

The implementation of a complete APL systern is
not that easy. A powetful low-level programming
language is required to implement the interpreter and
all APL primitives. What is furthetmote needed is a
high pottability of the soutce files, thus being open_for
all computer platforms. ISO Standard C [6], defined by
ISO/IEC 9899:1990, fulfills both requirements. A
compiler for Standard C is available on every operating
system; C is very flexible with regards to data
manipulation and memory handling.

APL data structure

The most important data structure is the
definition of APL arrays, as shown in Figure 3. The
three different examples in figure 4 explain how the
APL atrays are represented in the memory. Simple
arrays are stored continuously in one memory block
Nested artays have one memory block for the root
array and one for every sub-array. The APL2C system
supports the following basic data types: Boolean,
character, integer, short integer and real (float).

X 5
length type rank | eltype | res. | number
16 |SIMPLE) O INTG 1 5
X 'abc'
length type rank | eltype | res. | number | dim[0]
19 | SIMPLE 1 CHAR 0 3 3 ‘a’]|'b'|‘c
X (1 2) (3 4)
length type rank | eltype | res. | number | dim([O]
24 NESTED 1 PNTR 2 2 | Adr. | Adr.
Engh—-——\-yp‘s"‘ rank | eltype | res. er | dim[0]
24 |SIMPLE| 1 1 o 2 2 1]2
pgﬂ'ﬂ,type rank | eitype | res. | number | dim{0]
24 |SIMPLE| 1 INTG o 2 2 314

Figure 4: Examples for the representation of two simple and one nested APL array in
memory according to the type definition shown in figure 3.

aplarray *FnName (

aplarray *axisg,
aplarray *larg,
aplarray *rarg // right argument

)

// Axis
// left argument

Examples: “R rotate (NULL, NULL, R)
L”R rotate (NULL, L, R)
L”[X]IR rotate(X, L, R)

Figure 5: The prototype definition of every APL primitive function in C. For monadic calls or
calls without axis the corresponding parameter is NULL.

188

Titrman P. Ofto

APL Berlin 2000 Proceedings

C Prototypes for APL primitives

All APL primitive ‘functions show identical
prototypes. The prototype definition is displayed in
figure 5. For niladic functions, all parameters are equal
to the null pointer (NULL), and for monadic functions
the argument Targ’ is NULL. The proto-type
definition for operators is shown in figure 6.

Symbol table

For every APL system a so-called spymbo/ zable is
needed; here the meaning and values for each symbol
within the workspace are defined (see figure 7). The
symbol table allows one to define local and pseudo
local variables. When an APL function is entered for
execution, the interpreter saves the actual contents of
the symbol table for all local vatiables. The contents
will be restoted as soon as the interpreter leaves the
executed function. In some APL systems implemen-

aplarray *OpName (
aplarray *axis,
aplarray *larg,

elptr *lop,
aplarray *laxis,
elptr *rop,

aplarray *raxis,
aplarray *rarg
);

Symbal Hame Tyje Addross
L Varable ' e
TEST Fanclon | T 1
L ™ P T F—_- -

Figure 7: For every symbol name within the
workspace the symbol table keeps the object type
and the object’s memory address.

tations, the symbol table is limited in size (e.g. to
32678 symbols).

However, the symbol table of the APL2C system
is only limited by the size of free memory available. To
accelerate the execution speed of an APL function, all
symbol names were replaced by the cortesponding
index to the symbol table within the intetnal
representation of the function.

// Axis for operator

// left data argument

// left functional operand

// axis for left operand
// right funct. operand

// axis for right operand

// right data argument

Figure 6: The prototype definition of any APL primitive operators in C. For monadic calls or
calls without axis the corresponding parameters are NULL. ‘elptr’ is a data structure that can
hold simple or derived functions (i.e. operator together with operands).

I Workspacs I
APL Variahiea + Functions +

Interpretar -System
mnd

APL-Primitives Graphical Imlerface
MFC/ Windows NT

Implamanted In C Motit / Unix,
| ﬁ—
I Standard € Library ANSI 1
¥ 2
| Operaling System 1

Figure 8: API.2C system structure. The
interpreter is based on the Standard C library
and on the graphical interface which,
however, depends on the operating system.

An APL Compiler

The Compiler

An overview of the APL2C system is given in
figure 8. The top level is the APL workspace the basis
of which is the APL intetpreter system. The latter
includes the editor for function definition, the session
manager, the handler for the workspace with all its
system functions as well as the intetpreter for the
execution of the APL code.

The idea behind the compiler is to automatically
convert an APL function into Standard C code and to
replace the interpreter by direct calls to the APL
primitives, coded in Standard C, too. This concept is
shown in Figure 9. Once the C code has been
generated, it can be easily mixed with other C soutce
code files. Figure 10 points out the intepration of
compiled APL code with other C, C++ sources files.

189

APL Berlin 2000 Proceedings

COMPILER:

Variables
APL Functions = C
Operators

1

APL-Primitives

Funclions + Operatores
Implemented in C
{ h 4
| Standard C Library ANSI]
y
| Operating System)

Figure 9: The compiler automatically replaces the interpreter by direct calls to the APL
primitives. The resulting code is only based on the Standard C library, but requires the C coded

primitive functions and operators (e.g. as library).

Syntax Analysis and Symbol Names

Fortunately, APL progtams show a simple syntax,
ie. APL statements do not span over different lines.
This fadilitates the implementation of a syntax analyser
representing an important part of the compiler. Below
the existing syntactical combinations are shown:

D data (e.g. vatiable or literal)

F niladic function F

F[A]D Monadic function F (with optional
axis)

DF[A]D Dyadic function F (with optional
axis)

FI[AIM[A]D Monadic operator M with monadic
function F and optional axes

DF[AIM[A]D | Monadic operator with dyadic
functdon F and optional axes

DF[A]JOF[A]D | Dyadic opetator with dyadic

functions F and optional axes

As a complication, an operator together with its
functonal operands is forming a so-called derived
function, which again may serve as functional argument
for an operator.

To find out which of the above-mentioned
combinations is valid within a line of APL code, the
meaning of every referenced symbol must be known.
At compile time, the different symbols within an APL
instruction pose a2 problem because, even though the
symbol table of the APL2C system may be used, the
meaning of those symbols is not well defined and may
be ambiguous. A function defined as XYZ' can be

190

covered by a local variable named XYZ' in one of the
functions within the execution stack. To solve this
problem, the following restriction is relevant to the
functions to be compiled. It is impossible to cover the
names of defined APL functions with pseudo-global
variables, i.e. local variables defined ih one of the
functions within the execution stack below the curtent
function. We assume, for example, that a function
with name "TEST' was defined. In this context, it is
allowed to define a function as ‘FUNC1T’, which has a
local variable with the same name "TEST. The
problem arises when 'FUNCL!' is calling a second
function '"FUNC?2', and 'FUNC2' tdes to access the
pseudo-global variable "TEST' of the fitst function.
The compilation of function 'FUNC2' will assume,
that "TEST refers to function "TEST" instead of 2 local
vatiable of another function. The result is a compile
time ot run-time errot.

Restrictions

The following restrictions ate applicable to the
compilation of any APL function or operatot:

The first restdction has already been mentioned
above. The names of pseudo-global variables must
differ from any other function or operator name
within the same wotkspace.

Since the compiled code has no interpreter, the
execution of APL character strings is obviously not
possible. For the same reason, it is not allowed to
dynamically create new APL functions using the FX
command.

The last restricdon is based on the compiler
implementation. If the compiled APL functions refer

77iman P. Otto

APL Berlin 2000 Proceedings

Variables
APL Functions = C
Operators

Application (C, C++)
DB, Internet

.

!

APL-Primitives

Graphical Interface

v ¥]
I Standard C Library ANSI]
" v
r Operating System 1

Figure 10: Integration of compiled APL programs into applications written in C, C++,

to global variables within the workspace, the compiler
can generate initialization code for these vatriables. The
global variables will be set to their values at compile

time but the curtent version of the compiler only

allows simple data for initialization. Nested global
arrays cannot be initialized and will cause a compile
time error.

Code Generation

The compiler is part of the APL2C system and
can be started by the system function APL2C. The
name of the APL function to be compiled must be
given as left argument to the function. The name of a
directory for the generated C code files is the right
argument.

The compiler will recussively compile all functions
that have been used by the function given as left
atgument. Every APL function or operator will be
converted into one C code file. The file name is the
name of the APL function to be compiled with an
‘apl_’ prefix. The cotresponding C function will take

on the same name.

Within the APL2C system the C function name
for every APL ptimitive function is automatically
tegistered at start-up. Thus, it is ensured that for every
primitive or system function the corresponding C code
function name is known and can be used by the
compiler.

Figure 11 shows a small APL program TEST’
computing the square root out of the squares’ sum of
the left and right argument. The cortesponding C code
file “apl TEST.c’ is shown in figure 12 (exactly as
automatically created). Line #5 defines the C function
apl TEST. Here, the same prototype definition for
APL primitives is used as described under fipure 5.

An APL Compiler

Line #11 is the tepresentation (as octal string) of the
value 0.5 in the APL array format described in figure 3
and 4. At lines #14 and #15 the actual contents of the
symbol table for symbols A and B is stored in the
array localvars[] and then the values of A and B are set
to the left and right arpument. Lines #16 and #17 save
the current values of symbols E and L and then clear
the contents of these variables. Every APL code line is
implemented in its own switch statement to be able to
make computed gotos’ whete the jump address can
dynamically be computed. An APL jump command
will modify the C variable linenum’ and will determine
the next line of C code to be executed.

Line #25 assigns the value 0.5 to variable L. Lines
#28 to #39 show the C code for the second line of
APL code. The C macro VARIABLE(IDX) is reading
the memoty address of an array out of the symbol
table at index IDX. The functons ‘mul’, ‘add’ and
‘power’ are the registered names of the C functions for
the cotresponding APL primitives. Lines #44 and #45
clear the contents of vatiables A and B and restore
their contents using the localvars[] atray. Line #46 is
preparing the tesult and lines #47 and #48 restore the
vatiables E and L to their initial value when the
function has been entered.

After all referenced APL functions have been
compiled, a makefile will also be cteated allowing an
easy compilation and linkage of the penerated code.

Correctness of the Compiler

To vetify the cotrectness of the compiler, it was
applied to a complex image-processing task developed
with the APL2C system. A total of 106 APL functions
with 1,690 lines of APL code (comments included)
were compiled into 717 kilobytes (mote than 28,000

191

APL Berlin 2000 Proceedings

lines) of C code. For the C code compilation three
different compilers (Gnu-C compiler on Linux,
Watcom C/C++ Version 10.6 and Microsoft Visual
C/C++ Version 5 on Microsoft Windows) were used.
Then, the results of the compiled programs were
checked; no difference to the results of the interpreted
APL propgram could be made out.

E«A TEST B:;L

L«0.5

E«((AuA)+BuB)=L
Figure 11: Small APL program serving as
example for compilation into C code. The
compiled C code is shown in Figure 12.

Performance Measurements

It is the concept of this paper’s compiler to
replace the interpreter by automatically converting
APL code into C code using direct calls to the C
coded APL primitive functions. The question is, if and
how much faster the compiled C code is compated to
the interpreted APL program. Theoretically, the
compiled C code should be at least as fast as the
interpreter should. The maximum amount of time to
be saved is the execution time, used by the interpreter
itself. The bigger the data arrays handled by the APL
progtam, the lesser time is needed for the
interpretation compared to the data processing by the
APL primitive functions.

The two examples below show a comparison
between compiled C code and interpreted APL code.
The fitst example is an APL progtram with a2 maximum
of interpreter load: An empty loop:

LOOP:N

N<«O

LB:
+(100000>N<«N+1)/LB

In the second example the following small program
was used to determnine all prime numbers smaller than
1,000,000 (Eratosthenes’s sieve algorithm):

192

P+«PRIM N:QIO;J:I:S
0ro0«1

P+«1N
S«Nx0.5

Je2

LOOP:
I«Jx1%1 | N+J
PLI]«o0
JeT+14+2|J
+(JsS)/LOOP
P«14(P=0)/P

For both examples, the table below displays the
resulting execution times measuted on a 450 MHz
Pentium II computer:

Program Interpreted | Compiled Saving
LOOP 3,64 sec 1,90 sec 52 %
PRIM 2,10 sec 2,08 sec 1%

These measurements confirm, that the compilation
saves only the execution time of the interpreter itself.

References

[1] BERNECKY R.: An Overview of the APEX
Compiler, University of Toronto, Department of
Computer Science, Technical Report 305/97

[2] BUDD T.: An APL compiler, Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo, ISBN: 0-387-96643-9 (1988)

[3] CHING W.-M.: Program Analysis and Code
Generation in an APL/370 Compiler, IBM
Journal of Research and Development 30(6):
594-602 (1986)

[4] DISCROLL G.C.JR.; ORTH D.L.: Compiling APL:
The Yorktown APL Translator, IBM Joumnal of
Research and Development 30(6): 583-593
(1986)

{51 ISO/IEC 9899:1990: ISO C Standard, ISO
Central Secretariat, Case postale 56, 1211
Geneva 20, SWITZERLAND

{6] IVERSON K.E.: A Programming Language, John
Wiley & Sons, Inc., New York (1962)

Tilman P. Otto

APL Berlin 2000 Proceedings

[11 #include "includes.h"

[2] #include "apl2c.h”

[31 #include "test.h"

[41

[51 aplarray *apl_TEST(aplarray *_axis, aplarray *apl_A, aplarray *apl_B)
[61 (

[71 aplarray *apl E;

[81 symbol localvars([4];

[91 unsigned char typeof_apl_A, typeof_apl_B;

[10 1 long *tlinenum ptr, linenum = 0;

[11] static char constO[] = "\20\0\0\NO\1I\O0\4\0\1\O\O\O\NO\O\O\77";
[12]

[13]

[14] typeof_apl_A = Initarg(localvars+0, apl_A_idx, apl_A);
[15 1] typeof_apl_B = Initarg(localvars+l, apl_B_idx, apl_B);
[16] Initvar (localvars+2, apl_E_idx);

[17] Initvar (localvars+3, apl_L_idx);

[18] tlinenum_ptr = linenum_ptr;

[19] linenum_ptr = &linenum;

[20]

[21] nextline:

[22] switch(++1linenum)

[23] {

[24] case 1:

[25] assign(apl_L_idx, (aplarray *)constO0);

[26] goto nextline;

[27] case 2:

[28] assign/(

[29] apl_E_idx,

[30] power (

[31] NULL,

[32] add (

[33] NULL,

[34] mul (NULL, VARIABLE(apl_A_idx), VARIABLE (apl_A_idx)),
[35] mul (NULL, VARIABLE(apl_B_idx), VARIABLE(apl_B_idx))
[36 1]).,

[37] VARIABLE (apl_L_idx)

[38])

[39]);

[40] goto nextline;

[41] default: goto end;

[42] }

[43] end:

[44] Resumearg (localvars+0, apl_A_idx, typeof_apl_Aa, apl_A);
[45] Resumearg (localvars+l, apl_B_idx, typeof_apl_B, apl_B);
[46] apl_E = return_var(apl_E_idx);

[47] Resumevar (localvars+2, apl_E_idx);

[48] Resumevar (localvars+3, apl_L_idx);

[49] linenum_ptr = tlinenum ptr;

[50] return (apl_E) ;

[511}

Figure 12: Resulting C code after compilation of the APL program shown in figure 11. (Explanation, see text
above). The C code has been created exactly as shown here including the indenting.

An APL Compiler 193

