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This paper  extends a l ine of APL development 
presented in a sequence of papers [1-7]  over  the 
past  six years.  The main topics addressed are the 
in teract ions of operators such as rank,  
composit ion, de r i va t i ve ,  and inverse ( i . e . ,  the 
be9inn ings of a calculus of ope ra to rs ) ,  a 
s impl i f icat ion in the complement of a t t r i bu tes  
ten ta t i ve l y  presented in [6 ] ,  and a t rea tment  of 
the shapes of ind iv idua l  resul ts (as def ined in [7 ] )  
in the case of empty frames. 

Br ie f  t reatments are also given to a number of 
smaller matters:  a t r a n s l i t e r a t i o n  or  token 
subs t i t u t i on  f ac i l i t y ,  the  t rea tment  of n i ladic 
func t ions ,  a custom (va r ian t )  opera to r ,  the 
obsolescence of certain system var iab les ,  and some 
changes in the funct ion def in i t ion  opera to r  and in 
the t reatment  of supernumerary  axes. 

THE STRUCTURE OF FUNCTIONS 

The term " a t t r i b u t e " ,  used in ear l ie r  papers,  
led to some misunders tand ing because i t  improper ly  
su9gested two conclusions: 

1) That  a funct ion•  l ike most ent i t ies,  is 
something more than a col lection of its. 
a t t r i bu tes .  

2) That  "a t t r i bu te "  means the same as 
" p r o p e r t y "  in d iscussing mathematical 
funct ions.  An a t t r i b u t e  merely determines what  
the resul t  of a pa r t i cu la r  opera to r  is. To be 
useful ,  th is  a t t r i b u t e  wi l l  approx imate some 
mathematical p r o p e r t y ,  but  in p r inc ip le  i t  need 
not. 

For example, the inverse opera to r  appl ied to 
the sine funct ion ( 1 " o )  wi l l  y ie ld  the arcsine 
( - 1 " ' o ) ,  a l though these funct ions are p rope r  
inverses only over  a sub-domain of "p r i nc ipa l "  
values, and even on tha t  sub-domain there  any 
implementat ion prov ides only an approx imat ion .  
Moreover,  such approx imat ions have long been 
incorporated in APL, as in the resu l t  0 g iven 
fo r  the iden t i t y  element of < ( resu l t i ng  f rom 
< / t 0 )  a l though i t  is a le f t  i den t i t y  on ly ,  and 
only over  the boolean sub-domain.  

We wi l l  the re fo re  adopt the more neutra l  term 
"pa r t "  instead of " a t t r i b u t e " .  

A funct ion comprises one or  more par ts :  a 
core,  and zero or  more anc i l la ry  par ts  tha t  ex tend 
the domain of,  or  o therwise modi fy ,  the funct ion 
def ined by the core. 
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For example, if the core of £ is the funct ion B 
as def ined in APL\360, and if  £ possesses no o ther  
par ts ,  then the r i gh t  domain of £ includes 
arguments of rank 2, bu t  none of h igher  rank .  
However,  i f  £ also contains a r ank  par t  tha t  
specif ies how an argument  of h igher  rank is to be 
sp l i t  into cells of rank 2 fo r  appl icat ion of the core 
func t ion ,  then the domain of f is extended to r i gh t  
arguments of h igher  rank.  Final ly ,  the domain of 
the de r i ved  funct ion £ /  wi l l  include an a r ray  of 
shape 3 q- u, bu t  wi l l  exc lude one of shape 0 u, q.; 
the addi t ion of an i d e n t i t y  f unc t i on  par t  to £ wi l l  
extend the domain of £ /  to include arguments wi th  
a shape such as 0 q- u~ in which the sp l i t  along the 
leading axis induced by the reduct ion produces an 
empty col lect ion of slices. 

The cope i tsel f  has f ive par ts ,  two kerne ls  
(monadic and dyad ic ) ,  and th ree  parameters ,  
re fe r red  to in the APL expressions tha t  comprise 
the kernels by  the d is t ingu ished names 0.4, 0B, 
and [30. The f i r s t  two of these were f o r m e r l y  
re fe r red  to as underscored F and G [5 6 ] ,  and are 
specif ied by the arguments of most opera tors .  

For example, i f  c is the composit ion [3] of 
funct ions a and b ( tha t  is, c ÷ a ~ b ) ,  then the 
kernels of c are the vectors IDA DB~'- =I  and 
I(13B~'- o.) D.4 QB~'- = t ,  and the parameters BA 
and DB are the funct ions a and b.  In the case of 
the def in i t ion  opera to r  [ 4 ] ,  the kernels of the 
funct ion d÷l÷oJIVl~+÷oJ= are I÷¢01 and Ic~+÷ul 
and the (unused)  parameters 13.4 and 13B have the 
same values =÷=v and i~+÷=1.  

The t h i r d  parameter  ([3C) is the custom or  
va r i an t  parameter  tha t  can be used to p rov ide  
var ian ts  of a funct ion in the sense in t roduced in 
[1 ] .  I t  is respeci f ied by the r i gh t  argument  of the 
va r ian t  opera to r  (assumed here to be the 
f unc t i on -va r i ab le  case of the dot ,  as in 4.  0 fo r  
0 -o r ig in  g rade,  and = . t o ]  fo r  equa l i ty  comparison 
w i th  a speci f ic to lerance C o l ) .  

For example, i f  the funct ion s i n  has a monadic 
kernel I lo=xo÷2xE]CV and OC set to 0 . 5 ,  then 
s i n  = yields the sine of an argument  expressed in 
radians,  s i n .  90 = y ie lds the sine of an argument  
in degrees,  and s i n .  ( o . 5 )  is equ iva lent  to s i n .  

In p r inc ip le ,  a funct ion may incorpora te  any 
number of anc i l la ry  par ts ,  bu t  the present  
t rea tment  is l imited to seven: rank ,  coherence, 
shape sur roga te ,  inverse,  dyad,  de r i va t i ve ,  and 
iden t i t y .  

I f  a par t  re fe r red  to by some opera to r  is not 
p resent ,  the opera to r  does not produce a domain 
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e r ro r ,  bu t  does produce a der ived  funct ion wi th  a 
res t r i c ted  (perhaps empty)  domain. For example, 
the "dua l "  opera to r  "" in the expression h ÷ ¢ " l  
does not produce a domain e r r o r ,  bu t  any 
subsequent  appl icat ion of h does, since the 
opera to r  requi res the inverse of its r i gh t  argument  
[3 ] ,  and the magni tude funct ion does not ~ossess 
an inverse par t .  

Absence of the rank par t  is equ iva lent  to the 
presence of an in f in i te  rank,  and the same is t rue  
of coherence. 

RANK 

The rank par t  is a three-e lement  vec tor  whose 
elements l imit  the ranks of the argument  cells 
presented to the funct ion def ined by the core; the 
successive elements app ly  to the monadic, lef t  
dyad ic ,  and r i gh t  dyad ic  arguments.  

The rank operator is the func t i on -va r i ab le  case 
of ~', and f~ 'k is equ iva lent  to f w i th  its rank par t  
speci f ied by ~3PCk. 

COHERENCE 

The fo l lowing def in i t ion  is adapted from [7] 
wi th  the arguments of the cor respond ing  opera to r  
reversed and wi th  the term "coherence" used 
instead of "conformance".  

In the appl icat ion of a dyad ic  funct ion f ,  the 
ou te r  shapes o1 and oz" are each sp l i t  into two sets 
of axes (cal led bound and free) such tha t  
o l - = b l , f l  and o r ~ b r , f r ;  the shape of the overal l  
resu l t  is b , f ] , £ r , s i r ,  where b is one of b ]  and 
b r ,  and s i r  is the shape of the ind iv idua l  resul ts 
of app ly ing  the funct ion to its cel ls. 

A shape s is said to be single i f  1 : x / s ;  i f  one 
of b l  and b r  is s ingle,  then b equals the o ther ;  i f  
both are, then b equals the one of g rea te r  length;  
i f  ne i ther  is s ingle,  then bE and b r  must agree,  
and b is chosen as e i ther  one. 

The lengths of bE and b r  ( tha t  determine the 
number of bound axes) are each l imited by the 
coherence part  of a func t ion ;  all p r im i t i ve  
funct ions have in f in i te  coherence. The coherence 
operator (denoted by k . £ ,  where k is a 
non-negat ive  i n tege r ) ,  produces a der ived  
funct ion equiva lent  to f ,  bu t  having coherence k .  
For example: 

P ( a ÷ 2 3  ~ p l 2 4 ) 0  
2 3 4 2 3 5  

Pa 1 .x  b 
2 3 4 3 5  

Pa 2 . x b  
2 3 4 5  

pa 3 . x b  
iength error 

Pa 1 . x ( 1 4 p 9 )  
2 3 4 4  

P(1 I l P 8 ) ÷ ( 1  l P 9 )  
1 1 1  

P 2 3 + 1 1  I lP4  
2 

. x ( b ÷ 2  3 5 p t 3 0 )  

The case of zero coherence (0 .£ )  is 
equ iva lent  to ou te r  p roduc t  ( o . f ) .  The reason fo r  
revers ing  the arguments of the ear l i e r  conformance 
opera to r  [7] is to leave the case f . k  f ree fo r  the 
var ian t  opera tor ,  wi th no inh ib i t ion  on the use of 

k÷<'' or  k÷o that  would have been requ i red  ifi 
using the form k.f. 

SURROGATE ARGUMENTS 

In app ly ing  a monadic funct ion f of 
(non-negat ive)  rank k to an argument  a, the 
shape of the overal l  resu l t  is os÷( -k ) , l .pa  suf f i xed 
by s i r ,  the (necessar i ly  common) shape of the 
ind iv idua l  results obtained in app ly ing  f to each of 
the x / o s  cells of shape cs÷( -kLPPa)+Pa.  

If there  are no cells ( i . e . ,  O : x / o s ) ,  the value 
of s i r  cannot be determined by app ly ing  f ,  and 
must be determined from the cell shape cs alone. 
I t  wi l l  be def ined as the shape of the value of 
lowest rank and smallest shape tha t  could be 
produced by  app ly ing  f to any argument  of shape 
cs. For example: 

f: P~k ,~k <~k ~k ~k 

sir: Pcs x/cs 10 ¢cs cs 

The dyadic  case is t rea ted s imi la r ly  (in terms 
of the lef t  cell shape ls and the r i gh t  cell shape 
r s ) ,  but  is complicated by the cases of "scalar  
ex tens ion" ,  tha t  is, a le f t  cell value l v  wil l  be 
present  i f  the lef t  ou te r  shape is single ( i . e . ,  the 
p roduc t  over  i t  is u n i t y ) ,  and a r i gh t  value r v  wi l l  
be present  i f  the r i gh t  ou te r  shape is s ingle.  

For example, i f  f is the dyadic  funct ion 
P ~ ( 1 , k )  and a lef t  value iv is p resent ,  then sir 
is iv; if only ]s is available, the value of sir is 
isPO, since the value that serves as iv must be 
isPO, that is, something of shape ls that 
produces a result of minimum shape. 

The ent i re  s i tuat ion can be handled by 
p rov id ing  surrogate argument functions tha t ,  in 
each case of an empty f rame, app ly  to the cell 
shape and funct ion argument  to produce a 
sur roga te  argument  (whose shape equals the cell 
shape).  This sur rogate  is submit ted to the or ig ina l  
funct ion to produce a resu l t  whose shape p r o p e r l y  
determines the " ind iv idua l  resul t  shape" requ i red .  
Table 1 specif ies sur rogate  argument  funct ions fo r  
ex is t ing  p r im i t i ves .  

As examples of the use of Table 1, consider  the 
fo l lowing cases : 

P ~ b ' 3 ( 0 1 2 3 4 P 0 )  
0 1 4 3 2  

P 1 0 2 ~ b ' 1 3 ( 0 1 2 3 4 p 0 )  
0 1 3 2  q 

p (0 I 3 p 0 ) ~ ' 1 3 ( 2 3 4 p o )  
0 1  

p 2 + b ' 1 ( 0 3 P 0 )  
02 

000 

012 

P (0 2 p o ) p o  

P 1 2 p ~ l ( O  2pO) 

p 1 2 p ~ l ( O  OpO) 
length error 

INVERSE 

The resul t  of the inverse opera to r  c appl ied to 
£ is the inverse pa r t  of f ,  except  tha t  i ts inverse 
pa r t  is respeci f ied as f .  
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DERIVATIVE 

Consider a dyadic  opera to r  DOP such tha t  
f DOP k yields the  k t h  de r i va t i ve  of f i f  the 
scalar k~0 ,  and the ( I k ) t h  integral i f  k<O. In 
o rde r  to p rov ide  all de r i va t i ves ,  the de r i va t i ve  
par t  of f must have two components,  a dyad ic  
funct ion d f  and an index k such tha t  k d f  ~J 
yields the k th  der i va t i ve  of f evaluated at =. 

More genera l ly ,  we wi l l  assume tha t  d f  is 
def ined to apply  to a vector index v tha t  specif ies 
successive der i va t i ves .  For example, 2 -3  q- d f  
yie lds the second de r i va t i ve  of the t h i r d  in tegra l  
of the fou r th  de r i va t i ve  of f .  

The der i va t i ve  par t  of f, and the action of the 
de r i va t i ve  opera to r ,  may now be def ined as 
fo l lows. The der i va t i ve  par t  of f has the rnonadic 
kernel '[3B 13A ¢0., a nul l  dyad ic  kernel ,  and the 
parameters d f  and v.  Both the core and the 
der i va t i ve  pa r t  of f DOP k become the de r i va t i ve  
par t  of f w i th  the parameter  [3B replaced by k,[3B. 
Moreover,  the dyads of f DOP k become null  
(because the der i va t i ve  has no dyadic  de f i n i t i on ) ,  
bu t  all remaining a t t r i bu tes  are inher i ted  f rom f .  

As pointed out  in [2 ] ,  the de r i va t i ve  of a 
funct ion f having a " resu l t  rank"  of r and an 
argument  rank a must have a resu l t  rank of #+a. 
This behav iour  must be incorporated in the 
def in i t ion of the funct ion d f  re fe r red  to in the 
preced ing paragraphs .  Moreover,  in tegra t ion  must 
produce an indef in i te  in tegra l ,  and f DOP ( - k )  
the re fo re  incorporates a supernumerary  axis of 
length l + k  such tha t  ( c , 1 ) + . x f  DOP ( - k ) =  
yie lds the value fo r  any speci f ied constants of 
in tegrat ion c.  

IDENTITY FUNCTION 

In ex tend ing  the notion of an iden t i t y  element, 
f i r s t  in t roduced to g ive meaning to expressions 
such as + / 1 0  and ^ / 1 0 ,  i t  is clear tha t  the resu l t  
fo r  a non-scalar  funct ion must depend upon the 
shape of the cell to which i t  is appl ied.  For 
example, in + .x~O ~ 4p?9, the iden t i t y  element 
must be the 4 by ~ i den t i t y  mat r ix  ( 1 4 ) o . = 1 4 .  

The notion of an iden t i t y  element must 
there fo re  be replaced by  adding a new par t  tha t  is 
an iden t i t y  function ( tha t  appl ies to the cell 
shape),  and by add ing an opera to r  tha t  assigns a 
value to the par t .  

f"b a ÷÷ a 0 .f b 

a"f b ÷÷ b 0 .fc a 

where c denotes the commute opera to r  [ 7 ] .  
Moreover,  the dyads each inher i t  the approp r ia te  
dyad ic  rank of f ,  as well  as the approp r ia te  dyad ic  
sur roga te .  

Any inverse,  de r i va t i ve ,  or  dyad ic  case of the  
der i ved  funct ions a " f  and r ' b  are determined 
f rom the informat ion p rov ided  in the dyad par ts  of 
f .  

CALCULUS OF OPERATORS 

In the case of an opera to r  such as inverse,  the 
en t i re  der i ved  funct ion is determined by the 
inverse pa r t  of the or ig ina l  func t ion ,  and there  is 
no quest ion of par ts  of the der ived  funct ion being 
determined from any o ther  par ts  of the or ig ina l .  
However,  in the case of an opera to r  such as 
composi t ion,  i t  is clear tha t  certa in par ts  of the 
der ived  funct ion should be inher i ted  from (or  at 
least der ived  f rom) var ious par ts  of the or ig ina l  
func t ions .  

For example, i f  h÷f%'g, then the inverse pa r t  
of h should have the monadic kernel  
WBBc~(DAc) w', and parameters f and g. 

The cases of the rank and coherence operators  
are the most i n te res t ing ,  since a number of par ts  
of the funct ion argument  might  be usefu l ly  passed 
on to the der ived  funct ion wi th l i t t le  or  no change. 

The ef fect  tha t  the coherence opera to r  should 
have on the par ts  of the der i ved  funct ion is ra the r  
s t r a i g h t f o r w a r d ,  bu t  tha t  of the rank opera to r  is 
more problemat ica l .  For example, the p rope r  
inverse of I ~ ' r  is c lear ly  t ~ r ,  bu t  since the 
inverse of the enclose (< ) ,  of in f in i te  rank ,  is the 
disclose (>) of rank 0, what  rank should be 
assigned to the inverse <%'3c? Moreover,  in the 
dual f " g ,  the inverse of g '  is appl ied to an 
argument  of whatever  rank is produced by  
app ly ing  f to the resul t  produced by g on one of 
its cel ls. What then should be the rank of the 
inverse h÷g~rc  to apply  p rope r l y  in f " h ?  

Composition. The rank pa r t  of the funct ion f ~ g  is 
the monadic rank of g,  g i v ing  "close composi t ion" 
as def ined in [3 ] ;  the kernels are 'DA OB~'- = '  
and '(DB~'- ¢x)OA OB~- w w. 

DYADS 

Monadic funct ions such as 10"® ( the base-10 
logar i thm) and * - 2  ( the square func t ion)  might  
appear to be fu l l y  def ined by the arguments of the 
opera to r  "', and the re fo re  requ i re  no special par t  
in the funct ion to which the opera to r  is appl ied.  
However,  each such funct ion may have par ts  such 
as de r i va t i ve  and inverse,  and even a dyadic  case. 

For example, the inverse and de r i va t i ve  of a " +  
are ( - a  ) " +  and the constant  funct ion 1, 
respect ive ly ,  and if  f is a selection func t ion ,  then 
i " f  can have a dyad ic  case tha t  prov ides a merge 
of its arguments ,  as descr ibed in [5 6] fo r  the 
case where f is the index ing  funct ion from ( { ) .  

We def ine the monadic cases of the der ived  
funct ions a " f  and f " b  as fo l lows:  

The reason fo r  using DB of in f in i te  rank ( tha t  
is, DB~'-) ra the r  than DB in the kernel  is 
i l lus t ra ted by the fo l lowing example. I f  f ÷ ~  and 
g ÷ ~ ' - l ,  and a÷2 3 q- 5 p l 1 2 0  then (because the 
rank of f%'g is - 1 ) ,  the cells of f%'g a have shape 
3 q. 5, and the appl icat ion of g wi th  in f in i te  rank 
would t ranspose each of them to shape 5 q, 3 
before app ly ing  f .  However,  i f  g i tse l f  were 
appl ied,  i t ,  being of rank - 1 ,  would t ranspose 
each of the q. by 5 cells of each shape 3 4 5 cell 
presented to i t ,  p rov i d i ng  arguments of shape 
3 5 4 to f .  In e f fect ,  the proposed def in i t ion  
prevents  a double appl icat ion of the rank of g.  

Operators related to composition. The kernels and - 
ranks of the der i ved  funct ions of th ree  o ther  
operators  show marked s imi la r i ty  to those produced 
by composit ion (%'). 
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Ranks and Kernels Case I:  tO're ÷÷ t c  

fog mg lg rg 
BA DB~- ~ DA a DB~- 

f"g mg mg mg 
0Be OA DB~- ~ DBc(DB~- e)OA DB~- 

f } g mg mg rf 
(DB%'- ~)DA~ (DB~'- ~)DA~'- u 

Intr insic rank. A l though  ~- is t h e i d e n t i t y  func t ion  
and is of unbounded  rank ,  the  composed func t ion  
g÷f~'~- may d i f f e r  f rom f ,  t he  d i f f e rence  becoming 
appa ren t  on ly  when the  rank  o p e r a t o r  is app l ied  to 
the  func t ions .  

For example,  i f  f÷~'2 (where  ~ i tse l f  is of  
i n f i n i t e  r a n k ) ,  then f%'3 is e q u i v a l e n t  to ~ ' 3 ,  bu t  
g~'3 is equ i va l en t  to e%'2. We wi l l  t h e r e f o r e  say 
t ha t  h÷g~'3 has extrinsic rank  3, bu t  intr insic 
r ank  2. 

More g e n e r a l l y ,  i f  p÷q%'j~'~%'k, then p is said 
to have in t r i ns i c  rank  j and e x t r i n s i c  rank  k ;  the  
e x t r i n s i c  rank  is immediate ly  respec i f ied by  
app l ica t ion of the  rank  ope ra to r ,  bu t  the  i n t r i ns i c  
rank  is una f fec ted .  

E v e r y  p r i m i t i v e  func t ion  wi l l  be de f ined  to have 
an i n t r i ns i c  rank  t ha t  is equal to its e x t r i n s i c  
rank ,  and is n o n - n e g a t i v e .  

The results of rank. Except  f o r  the  d e r i v a t i v e ,  
dyads ,  and i nve rse  pa r t s ,  al l  par ts  of f 
( i n c l u d i n g ,  in p a r t i c u l a r ,  its coherence)  are 
i nhe r i t ed  b y  f~ ' r .  

Since a d e r i v a t i v e  of  a func t ion  f must a p p l y  to 
the  same cells as f ,  the  rank  must be i nhe r i t ed  by  
the  d e r i v a t i v e .  

The dyad  par ts  are  not  i nhe r i t ed  by  f~'r, bu t  
the  monadic cases o f  a"(f~r) and f%'r"b are,  of 
course,  de f ined  as s tated ea r l i e r .  

As remarked ea r l i e r ,  t he re  is no re la t ion 
between the  rank  of a func t ion  and the  rank  of i ts 
i nve rse  t ha t  appl ies fo r  all f unc t i ons .  However ,  in 
the  case of a r a n k - p r e s e r v i n g  func t ion  f ,  the  
i nve rse  func t ion  f c  would be expected to have the  
same rank ,  and we propose to choose the  t r ea tmen t  
of f%'rc to p r o v i d e  b e h a v i o u r  a p p r o p r i a t e  to such a 
f unc t i on .  Moreover ,  a p p r o p r i a t e  behav iou r  of  the  
dual  g " ( f ~ ' r )  can be expected on ly  in the  case 
whe re  g is also r a n k - p r e s e r v i n g .  

A necessary  cond i t ion  tha t  f c  be a p r o p e r  
i nve rse  is t ha t  f c~ ' f  be the  i d e n t i t y  f unc t i on ;  i t  is 
also des i rab le  t ha t  f ~ ' ( f c )  be an i d e n t i t y .  The 
prob lems of de f i n ing  the  i nve rse  a p p r o p r i a t e  to a 
func t i on  f~tr wi l l  f i r s t  be i l l us t ra ted  b y  the  
func t i on  tO'r, where  t is a s e l f - i n v e r s e  t ranspose  
of  i n t r i n s i c  rank  3 ( i . e . ,  t ÷÷  t c  ÷÷  ~3~ '~ - ) ,  
and the  a rgumen t  a has shape 2 3 ~ 5 6 7 8. 

We wi l l  examine two main cases, the  d i rec t  
i nhe r i t ance  of tc  by  tV r ,  and the  modi f ied 
i nhe r i t ance  of tc~'r .  Within each of these we wi l l  
examine the  cases of rank  res t r i c t i on  and 
expans ion .  

r Pth'rc~'(t~r) a pt%'r%'(t~rc) a 

2 2 3 i4- 5 6 7 8 2 3 U, 5 8 7 6 

- 3  2 3 U, 5 6 7 8 2 3 4 6 7 8 5 

I-I. 2 3 4 5 6 7 8 2 3 4 6 7 8 5 

Case 2: tb'rc ÷ ÷  tour 

2 2 3 ~ 5 6 7 8 2 3 L~ 5 6 7 8 

- 3  2 3 4 5 8 7 6 2 3 LI. 5 8 7 6 

I.l. 2 3 4 5 6 7 8 2 3 l-I- 5 6 7 8 

From the  fo rego ing  i t  is c lear  t ha t  on l y  case 1 
( d i r e c t  i nhe r i t ance)  g ives  co r rec t  b e h a v i o u r  f o r  all 
sub-cases fo r  the  more impor tan t  l e f t - i n v e r s e  
( t%' rc~( t~ ' r ) )  and t ha t  ne i t he r  case can g i ve  
co r rec t  b e h a v i o u r  fo r  all sub-cases of  the  
r i g h t - i n v e r s e .  We t h e r e f o r e  p ropose adopt ion  of 
the  ru le of d i r ec t  adopt ion  of the  i nve rse  f c  f o r  
the  inverse  of the d e r i v e d  func t ion  f~ ' r .  

The results of coherence. Since coherence 
determines on ly  which pa i rs  of cells of the  two 
arguments  are  submi t ted  to the  f unc t i on ,  all par t s  
of f save the  coherence are passed on to the  
d e r i v e d  func t ion  k . f .  

SUPERNUMERARY AXES 

As remarked in [ 7 ] ,  cer ta in  ope ra to rs  
i n t roduce  one or  more supernumerary axes in 
add i t ion  to the  axes p roduced  by  the  p a r t i c u l a r  
func t ion  to which the  o p e r a t o r  is app l ied .  A l t hough  
such s u p e r n u m e r a r y  axes should precede t he  
normal axes,  the  c i ted paper  p roposed an 
except ion  fo r  the case of f \  (scan a long the  last 
ax is )  as a means of ma in ta in ing  compa t i b i l i t y  w i th  
the  p resen t  behav iou r  of scan fo r  p r i m i t i v e  sca lar  
func t ions .  

A more pa la tab le  way  of re ta in ing  compa t i b i l i t y  
is to assign rank  3. to the  d e r i v e d  func t ion  f \  (and 
also to f / ) .  Formal ly ,  £ \ ÷ + f ~ ' l ,  and f / ÷ + f t ~ ' l .  

TRANSL ITERAT ION 

The a b i l i t y  to rep resen t  le t te rs  o r  words  in the  
c o r r e s p o n d i n g  charac te rs  in ano the r  a lphabe t ,  
known in na tu ra l  languages as transliteration, can 
also be v e r y  useful  in formal  languages.  For 
example ,  in APL one migh t  subs t i t u t e  f o r  the  word  
RHO ( en te red  b y  someone us ing a de f i c ien t  
t e rm ina l ,  o r  f r i g h t e n e d  of symbols o t h e r  than the  
Roman a lphabe t )  the  symbol p, or  conve rse l y  
subs t i t u t e  f o r  p (en te red  by  someone who wishes 
to  exp lo i t  t he  b r e v i t y  and connota t ions  of t ha t  
symbol to r e fe r  to a re la ted,  bu t  d i f f e r e n t ,  de f ined  
f unc t i on )  the  word  RHO. 

We wi l l  cons ider  on ly  subs t i t u t i ons  f o r  
i nd i v i dua l  tokens ( t ha t  is, those elements of APL 
such as abe2, 2 . 3 4 e 6 ,  and +) t ha t  se rve  as 
words  in APL,  and wi l l  exc lude  subs t i t u t i on  at a 
character level  (such as TCH fo r  CH in the word  
CHEBYCHEV)  as well  as subs t i t u t i on  f o r  phrases 
(such as 1 2 3 f o r  t 3 ) .  

Subs t i t u t i on  f o r  phrases wi l l  be avo ided  
because i t  wou ld  necessar i l y  concern  s y n t a x  
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ana lys is  of t he  sentence ( to  avo id ,  f o r  example,  
s u b s t i t u t i n g  1 2 3 f o r  13 in the  express ion  
2 3 5 7 3.1 13) r a t he r  than simple word  
s u b s t i t u t i o n .  However ,  t h e r e  is no d i f f i c u l t y  in 
a l lowing the  e n t i t y  t ha t  replaces a token  to be a 
s t r i ng  of tokens  as wel l  as a s ing le t oken .  For 
example,  s u b s t i t u t i n g  (03..) f o r  PZ would al low PZ 
to  be used as a cons tan t ,  and s u b s t i t u t i n g  
( l_{E1ai )  f o r  CPU would al low the  use of CPU as a 
n i lad ic  func t ion  to g ive  t he . compu te r  t ime used. 

We propose the i n t r oduc t i on  of a t ransl i terat ion 
system va r i ab l e  ( to  be re fe r red  to here as [St=) 
such t ha t  D t r  is a t w o - r o w  mat r i x  whose rows 
consis t  of enclosed s t r i ngs  of t okens .  Jus t  be fo re  
eva lua t i ng  any  token in an APL sentence,  a 
subs t i t u t i on  is made if the  token occurs in the  f i r s t  
row of [3¢r. Moreover ,  subs t i t u ted  elements are 
t rea ted  e x a c t l y  as if t h e y  occur red  in the  o r ig ina l  
sentence and,  as a consequence,  subs t i t u t i ons  may 
be cha ined.  

FUNCTION DEFINITION 

Because an ambiva len t  func t ion  is eva lua ted  
on ly  in the  con tex t  of a rgumen ts ,  t he  t h ree  
express ions  mpf÷+ .x  and mp÷m+.xn and p e r ÷ + , x n  
can be used to assign names to  t h r e e  d i s t i nc t  
en t i t i es ,  a ma t r i x  p r o d u c t  func t ion  (mpf ) ,  a ma t r i x  
p r o d u c t  of two arguments  (rap), and the  permanent 
of a ma t r i x  ( p e r ) ,  

Because a n i lad ic  func t ion  n f  requ i res  no 
a rgumen t ,  a s imi lar  d i s t i nc t i on  between an 
eva lua t ion  of the f unc t i on ,  and the  func t ion  i tse l f ,  
cannot  be made. Consequen t l y ,  f ÷ n f  must be used 
fo r  one of the  possible meanings.  

I f  we choose to mean t ha t  f becomes the  n i lad ic  
func t ion  n f ,  then t he re  is no mechanism fo r  
ind ica t ing  eva lua t ion  of a n i lad ic  func t i on .  
However ,  i f  we choose to mean tha t  f becomes the  
resu l t  of execu t ing  n f ,  then n i lad ic  func t ions  wi l l  
con t inue  to behave as t h e y  always have;  moreover ,  
canonical  de f in i t i on  p rov ides  a means fo r  
associat ing any  des i red  name wi th  a n i lad ic  
f unc t i on .  

We t he re fo re  propose t ha t  n i lad ic  func t ions  
con t inue  to be used and def ined in the  estab l ished 
manner .  

The most recent  s tatement  of the  evo l v i ng  
" d i r e c t "  de f in i t i on  ope ra to r  occurs in [ 7 ] .  We now 
in t roduce  a s l i gh t l y  modi f ied statement  t ha t  l )  
makes exp l i c i t  the  use of a system va r i ab le  [Ss fo r  
the  sequence cont ro l  vec to r  (mak ing b ranch ing  and 
the  r e - s t a r t i n g  of a hal ted func t ion  possible 
t h r o u g h  express ions of the  form Ds+ ra the r  than 
t h r o u g h  the  i n t roduc t i on  of the  branch a r r o w ) ,  
and 2) makes i ndex ing  of the  segments 0 - o r i g i n :  

1. mVd produces a f unc t i on ,  w i th  m and d be ing 
the  represen ta t ions  of the  monadic and 
dyad ic  cases. 

2. The genera l  form of each represen ta t ion  is a 
vec to r  r of enclosed segments, the  segments 
be ing executed in an o r d e r  de te rmined b y  a 
(shared)  sequence control vec to r  [Ss t ha t  is 
i n i t i a l l y  set to l p r .  Termina t ion  occurs upon 
exhaus t ion  of the  sequence cont ro l  vec to r .  

3. A label in element k { r  is ass igned the  va lue  
k + l p r .  

4. The symbols e and ~ denote  the  le f t  and 
r i g h t  a rguments ,  and A is used fo r  
sel f-reference to the  func t ion  i tse l f ,  be ing 
used in recu rs i ve  de f in i t i ons  as well  as f o r  
de f i n ing  one of the  two cases in terms of the  
o the r .  

5. A name is local ized i f  i t  occurs immediotely to 
the  le f t  of an ass ignment  a r row  in any  
segment;  f o r  example,  3 x a ÷ ~ + b  ÷~ localizes 
a bu t  not b.  Name Iocal izat ions f o r  the  
monadic and dyad ic  cases are i ndependen t .  

6. The exp l i c i t  resu l t  of a func t ion  is the  resu l t  
of the  last s ta tement  executed which 
p roduced  an exp l i c i t  resu l t ,  where  
express ions  such as x ÷ 3 + 4  or  3+4 are 
assumed to p roduce  exp l i c i t  resu l ts ,  bu t  4 ' '  
and -~a are not.  Automat ic  o u t p u t  is not 
produced  by  an express ion  such as 3+~;  
such o u t p u t  is p roduced  on ly  by  express ions  
using B÷. 

7. Eve ry  vec to r  v is t rea ted  as ,=v ,  t ha t  is, a 
simple v e c t o r  is t rea ted  as a s ing le se9ment.  
Single segments may t he re fo re  be w r i t t e n  in 
the form . o r ~ .  v )a, l l  ~,  

A func t ion  p roduced  by  the  de f in i t i on  ope ra to r  
V has unbounded  ranks and coherence,  and the  
custom parameter  [3C set to 10. 

SYSTEM VARIABLES 

As remarked ea r l i e r ,  the  v a r i a n t  ope ra to r  could 
be employed to make less cumbersome the  use of 
func t ions  now dependen t  upon system va r iab les .  
Never the less ,  e f fo r ts  to remove dependence on 
system var iab les  should be con t inued ,  especia l ly  in 
cases where  the  dependence was inessent ia l ,  and 
t he re fo re  i l l - cons ide red ,  and in cases where  the  
need has been obv ia ted  by  o the r  deve lopments  in 
the  language.  

Index  o r ig in  is an example of the  fo rmer ,  
i n t roduced  in [8] (not  on ly  fo r  i ndex ing ,  bu t  f o r  
o t h e r  func t ions  such as res idue)  because of 
awareness of the  conven ience of 0 -o r i g i n  in 
t r ea t i ng  computer  ha rdware ,  and of the f am i l i a r i t y  
of 1 -o r i g i n  to people not  acqua in ted wi th  
computers .  

The situ'at ion has changed rad ica l l y  since then :  
the conven ience of 0 -o r i g i n  in all areas has become 
more appa ren t ;  f am i l i a r i t y  w i th  0 -o r i g i n  and its 
conven ience has g rown ;  and the  bane of f o r e v e r  
spec i f y ing  index o r ig in  has become apparen t  to 
most APL programmers .  We t he re fo re  r e - i t e r a t e  the  
proposal  made in [7]  t ha t  index o r ig in  be 
considered obsolescent ,  t ha t  is, mainta ined 
unchanged in ex i s t i ng  p r im i t i ve  func t ions ,  bu t  
used in no new func t ions  or  ope ra to rs .  

P r in t i ng  w id th  ( f i r s t  con t ro l led  by  a system 
command) is an example of a parameter  wh ich ,  
though  essent ial  when in t roduced  (be fo re  the  
ex is tence of the  fo rmat  f unc t i on ,  when t he re  was 
no way w i th in  the language of con t ro l l i ng  the  w id th  
of o u t p u t ) ,  is no longer  essent ia l ,  and may, in 
fac t ,  impede the  fu l l  exp lo i ta t i on  of sc ro l l ing  
fac i l i t ies  now ava i lab le  on v ideo  te rmina ls .  

For example,  in the  implementat ion of Sharp 
APL on the  IBM PC, a long row of a ma t r i x  may be 
shown " e x t e n d e d "  ra the r  than " fo lded"  to f i t  the  
screen w id th ,  and the "w indow"  may be scro l led 
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over  the row to v iew all par ts  of i t .  However,  a 
nar row set t ing of p r i n t  w id th  (D/::x¢) wi l l  cause each 
row to be emit ted as a sequence of independent  
segments. An in f in i te  set t ing of DF~v could 
overcome th is  d i f f i cu l t y ,  bu t  may be impossible due 
to l imi tat ions in an APL system, or  to impl ic i t  
assumptions about Dpw made in appl icat ions 
designed fo r  the system. 

CATENATION AND RESHAPE OPERATORS 

Consider  a catenation opera to r  COP and a 
reshape opera to r  ROP such tha t  the funct ions 
£++COP-COPxCOP÷ and g÷2 2 ROP £ would each 
have rank 0, and would produce ( fo r  each cel l )  
resul ts of shape ~ and 2 2 respect ive ly .  

More genera l l y ,  we def ine f COP g as a 
funct ion having the (necessar i ly  common) rank of 
[ and g ,  and p roduc ing  a leading axis catenat ion 
of the resul ts of £ and g.  For example,  i f  £, g ,  
and h all have resul t  shapes q. 5, then the resul t  
shape of f COP g COP h is 12 5, and (since the 
resul t  shape of , " < ~ h  is :1 q. 5) the resu l t  shape 
of [ COP g COP ( , " < ~ h )  is 3 ~ 5. 

F inal ly ,  we def ine s ROP f as equ iva lent  to 
s "P  ~ f .  

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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Rank Surrogate 
m 1 r m 1 r 

+ 0 0 0 :PO :PO apo 
0 0 0 apo ~PO ~PO 

x 0 0 0 ~PO apO ~PO 

F 0 0 0 apo apo ~po 
L 0 0 0 ~po ~pO ~po 
I 0 0 0 ~po apo apo 

> 0 0 0 apo apO ~po 
! 0 0 0 apo ~po ~po 
o O 0 0 ap0 ~P0 a p o l  

* 0 0 0 ~PO apl ~PO 
÷ 0 0 0 apl apO ~Pl 
® 0 0 0 ~Pl apO ~Pl 

~ 0 apo 
A 0 0 apo ~PO 
v 0 0 ~P0 ~P0 

0 0 ~PO ~PO 
= 0 0 apo apo 

0 0 ap0 ap0 

= 0 0 ap0 ap0 
0 0 ~P0 ~P0 
0 0 ~po ~PO 

? 0 1 1 a p l  ~ p O  a p -  
2 - 2 Note ~P0 Note 

< 0 0 ~P0 ~p0 ~P0 

P 1 a p o  ~ p O  ~ P l + , ~  
- 1 - ~ P l + , =  apO a p l + , =  

l ~P0 ~P0 ~p0 

ap0 ap0 ap0 
6 - - - apo ap, , ~p, , 

- - - apo ap, , ~p, , 

¢ - - - a p l + , ~  ~P0 a p l + , ~  
e ~ P l + , ~  ~P0 ~ P l + , ~  
• ~ P l + , ~  ~ P l + , ~  ~ p l + , ~  

~ P l + , ~  ~ P l + , ~  ~ p l + , ~  

- - - u p '  ' ¢ ¢ P 0  I apo 

e 0 ~PO ~PO 
I - ~PO ~PO 

+ 1 ~P0 ~ P l + , ~  

+ 1 - ~P-  ~Pl+,~ 
T CP0 ~P0 
s ~P0 ~p0 

N o t e :  a P i d  -2+1  1,~ where i d : ( ~ l + ~ ) o . = ~ l + ~  

Table 1: FUNCTION RANKS AND SURROGATES 
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