AN OPERATOR CALCULUS

Kenneth E. lverson
|.P. Sharp Associates
Suite 1900, 2 First Canadian Place
Toronto, Ontario
Canada M5X 1E3

This paper extends a line of APL development
presented in a sequence of papers [1-7] over the
past six years. The main topics addressed are the
interactions of operators such as rank,
composition, derivative, and inverse (i.e., the
beginnings of a calculus of operators), a
simplification in the complement of attributes
tentatively presented in [6], and a treatment of
the shapes of individual results (as defined in [7])
in the case of empty frames.

Brief treatments are also given to a number of
smaller matters: a transliteration or token
substitution facility, the treatment of niladic
functions, a custom (variant) operator, the
obsolescence of certain system variables, and some
changes in the function definition operator and in
the treatment of supernumerary axes.

THE STRUCTURE OF FUNCTIONS

The term "attribute", used in earlier papers,
led to some misunderstanding because it improperly
suggested two conclusions:

1) That a function, like most entities, is

something more than a collection of its.
attributes.

2) That Tattribute” means the same as
"property” in discussing mathematical

functions. An attribute merely determines what
the result of a particular operator is. To be
useful, this attribute will approximate some
mathematical property, but in principle it need
not.

For example, the inverse operator applied to
the sine function (1°°0) will yield the arcsine
(T1°0), although these functions are proper
inverses only over a sub-domain of "principal”
values, and even on that sub-domain there any
implementation provides only an approximation.
Moreover, such approximations have long been
incorporated in APL, as in the result 0 given
for the identity element of < (resulting from
</10) although it is a left identity only, and
only over the boolean sub-domain.

We will therefore adopt the more neutral term

"part” instead of "attribute”.

A function comprises one or more parts: a
core, and zero or more ancillary parts that extend
the domain of, or otherwise modify, the function
defined by the core.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

© 1984 ACM 0-89791-137-7/84/006/0213 $00.75

Roland Pesch
|.P. Sharp Associates
Suite 201, 220 California Ave.
Palo Alto, California
U.S.A. 94306-1638

213

J. Henri Schueler
|.P. Sharp Associates
Suite 1900, 2 First Canadian Place
"Toronto, Ontario
Canada M5X 1E3

For example, if the core of f is the function B
as defined in APL\360, and if f possesses no other

parts, then the right domain of £ includes
arguments of rank 2, but none of higher rank.
However, if f also contains a rank part that

specifies how an argument of higher rank is to be
split into cells of rank 2 for application of the core
function, then the domain of f is extended to right
arguments of higher rank. Finally, the domain of
the derived function f# will include an array of
shape 3 4 4 but will exclude one of shape 0 4 u;
the addition of an identity function part to £ will
extend the domain of £# to include arguments with
a shape such as 0 4 4 in which the split along the
leading axis induced by the reduction produces an
empty collection of slices.

The core itself has five parts, two kernels
(monadic and dyadic), and three parameters,
referred to in the APL expressions that comprise
the kernels by the distinguished names 04, 0B,
and OC. The first two of these were formerly
referred to as underscored F and G [5 6], and are
specified by the arguments of most operators.

For example, if ¢ is the composition [3] of
functions a and b (that is, c<a®b), then the
kernels of ¢ are the vectors '04 0B w!' and
'(0B” «) 04 0OB%~ w!, and the parameters 04
and OB are the functions a2 and b. In the case of
the definition operator [4], the kernels of the
function det':w!'V'a+:w' are '3w'! and 'o+:wt,
and the (unused) parameters 04 and 0B have the
same values '3w! and 'a+:w?,

The third parameter (OC) is the custom or
variant parameter that can be used to provide
variants of a function in the sense introduced in
[1]. 1t is respecified by the right argument of the
variant operator (assumed here to be the
function-variable case of the dot, as in A. 0 for
O-origin grade, and =.tol for equality comparison
with a specific tolerance tol).

For example, if the function sin has a monadic
kernel *10wx0:2x0C' and OC set to 0.5, then
sin w yields the sine of an argument expressed in
radians, sin. 90 w yields the sine of an argument
in degrees, and sin.(0.5) is equivalent to sin.

In principle, a function may incorporate any
number of ancillary parts, but the present
treatment is limited to seven: rank, coherence,
shape surrogate, inverse, dyad, derivative, and
identity.

If a part referred to by some operator is not
present, the operator does not produce a domain
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

error, but does produce a derived function with a
restricted (perhaps empty) domain. For example,

the "dual" operator in the expression h<¢"|
does not produce a domain error, but any
subsequent application of A does, since the

operator requires the inverse of its right argument
[3], and the magnitude function does not possess
an inverse part.

Absence of the rank part is equivalent to the
presence of an infinite rank, and the same is true
of coherence.

RANK

The rank part is a three-element vector whose
elements limit the ranks of the argument cells
presented to the function defined by the core; the
successive elements apply to the monadic, left
dyadic, and right dyadic arguments.

The rank operator is the function-variable case
of ¥, and %k is equivalent to £ with its rank part
specified by ¢3pbk.

COHERENCE

The following definition is adapted from [7]
with the arguments of the corresponding operator
reversed and with the term “coherence” used
instead of "conformance".

In the application of a dyadic function £, the
outer shapes ol and or are each split into two sets
of axes (called bound and free) such that
o0lzbl,f1 and orzbr,fr; the shape of the overall
result is b,f1,fr,sir, where b is one of bl and
br, and sir is the shape of the individual results
of applying the function to its cells.

A shape s is said to be single if 1=x/s; if one
of b1 and br is single, then b equals the other; if
both are, then b equals the one of greater length;
if neither is single, then bl and br must agree,
and b is chosen as either one.

The lengths of bl and br (that determine the
number of bound axes) are each limited by the

coherence part of a function; all primitive
functions have infinite coherence. The coherence
operator (denoted by k.f, where % is a

non-negative integer), produces a derived
function equivalent to £, but having coherence k.
For example:

P(a<€2 3 upr2u)0 .x(be2 3 5p130)
234235
pa 1
23435
pPa 2
23445
pPa 3 .x b
length error
pa 1 .x(1 4p9)
2 34y
P(1 1 1p8)+(1 1p9)
111
P2 341 1 1 1pu

X b

.x b

2

The case of zero coherence (0 .f) s
equivalent to outer product (o.f). The reason for
reversing the arguments of the earlier conformance
operator [7] is to leave the case f.k free for the
variant operator, with no inhibition on the use of

Iverson, Pesch, Schueler

214

ke<'! or k<o that would have been required in
using the form k.f.

SURROGATE ARGUMENTS

In applying a monadic function £ of
(non-negative) rank %k to an argument a, the
shape of the overall result is os«(-k)+vpa suffixed
by sir, the (necessarily common) shape of the
individual results obtained in applying £ to each of
the x/os cells of shape cs<(-kLppad+pa.

If there are no cells (i.e., 0=x/o0s), the value
of sir cannot be determined by applying £, and
must be determined from the cell shape ¢s alone.
it will be defined as the shape of the value of
lowest rank and smallest shape that could be
produced by applying £ to any argument of shape
cs. For example:

£: pYkx .8k TSk

<k §¥k

sir: Ppcs x/cs 10 dcs cs

The dyadic case is treated similarly (in terms
of the left cell shape l1s and the right cell shape
rs), but is complicated by the cases of "scalar
extension”, that is, a left cell value 1v will be
present if the left outer shape is single (i.e., the
product over it is unity), and a right value rv will

be present if the right outer shape is single.

For example, if f is the dyadic function
pP%(1,%) and a left value 1Iv is present, then sir
is 1Iv; if only lIs is available, the value of sir is
1sp0, since the value that serves as Iv must be
1sp0, that is, something of shape Is that
produces a result of minimum shape.

The entire situation can be handled by
providing surrogate argument functions that, in
each case of an empty frame, apply to the cell
shape and function argument to produce a
surrogate argument (whose shape equals the cell
shape). This surrogate is submitted to the original
function to produce a result whose shape properly
determines the "individual result shape” required.
Table 1 specifies surrogate argument functions for
existing primitives.

As examples of the use of Table 1, consider the
following cases:

893(0 1 2 3 4p0O)

2

1 0 2891 3(0 1 2 3 4p0)
Y

(0 1 3p0)RY1 3(2 3 up0O)

TDNDWD

24%1(0 3p0)

o

p (0 2p0)pPO
000

P 1 2p¥1(0 2p0)
012

P 1 2p¥1(0 0PO)
length error

INVERSE

The result of the inverse operator c applied to
f is the inverse part of £, except that its inverse
part is respecified as f.

An Operator Calculus

DERIVATIVE

Consider a dyadic operator DOP such that
f DOP k vyields the kth derivative of £ if the
scalar k20, and the (|k)th integral if k<0. In
order to provide all derivatives, the derivative
part of f must have two components, a dyadic
function df and an index k such that k¥ df o
yields the kth derivative of £ evaluated at w.

More generally, we will assume that df is
defined to apply to a vector index v that specifies
successive derivatives. For example, 2 "3 4 df w
yields the second derivative of the third integral
of the fourth derivative of £.

The derivative part of £, and the action of the
derivative operator, may now be defined as
follows. The derivative part of £ has the monadic
kernel '08 04 w!', a null dyadic kernel, and the
parameters df and v. Both the core and the
derivative part of £ DOP k become the derivative
part of £ with the parameter OB replaced by k,0B.
Moreover, the dyads of £ DOP k become null
(because the derivative has no dyadic definition),
but all remaining attributes are inherited from £.

As pointed out in [2], the derivative of a
function £ having a "result rank" of r and an
argument rank a must have a result rank of r+a.
This behaviour must be incorporated in the
definition of the function df referred to in the
preceding paragraphs. Moreover, integration must
produce an indefinite integral, and f DOP (-k)
therefore incorporates a supernumerary axis of
length 1+k such that (c,1)+.xf DOP (-k)w
yields the value for any specified constants of
integration c.

IDENTITY FUNCTION

In extending the notion of an identity element,
first introduced to give meaning to expressions
such as +/10 and A/10, it is clear that the result
for a non-scalar function must depend upon the
shape of the cell to which it is applied. For
example, in +.x£0 4 up?9, the identity element
must be the 4 by 4 identity matrix (14)e.=14,

The notion of an identity element must
therefore be replaced by adding a new part that is
an identity function (that applies to the cell
shape), and by adding an operator that assigns a
value to the part.

DYADS

Monadic functions such as 10°°® (the base-10
logarithm) and *"°2 (the square function) might
appear to be fully defined by the arguments of the
operator °°, and therefore require no special part
in the function to which the operator is applied.
However, each such function may have parts such
as derivative and inverse, and even a dyadic case.

For example, the inverse and derivative of a™"+
are (-a)”+ and the constant function 1,
respectively, and if £ is a selection function, then
i"°f can have a dyadic case that provides a merge
of its arguments, as described in [5 6] for the
case where £ is the indexing function from ({).

We define the monadic cases of the derived
functions a”’f and £*°b as follows:

Iverson, Pesch, Schueler

215

fb a«>» a0 .fb

a’f b <> b 0 .fc a

where ¢ denotes the commute operator [7].
Moreover, the dyads each inherit the appropriate
dyadic rank of £, as well as the appropriate dyadic
surrogate.

Any inverse, derivative, or dyadic case of the
derived functions a’'f and fb are determined

. from the information provided in the dyad parts of

f.

CALCULUS OF OPERATORS

In the case of an operator such as inverse, the
entire derived function is determined by the
inverse part of the original function, and there is
no question of parts of the derived function being
determined from any other parts of the original.
However, in the case of an operator such as
composition, it is clear that certain parts of the
derived function should be inherited from (or at
least derived from) various parts of the original
functions.

For example, if hef%g, then the inverse part
of h should have the monadic kernel
t0Bc¥(JAc) w!', and parameters f and g¢.

The cases of the rank and coherence operators
are the most interesting, since a number of parts
of the function argument might be usefully passed
on to the derived function with little or no change.

The effect that the coherence operator should
have on the parts of the derived function is rather
straightforward, but that of the rank operator is
more problematical. _For example, the proper
inverse of 8¥r is clearly 89r, but since the
inverse of the enclose (<), of infinite rank, is the
disclose (>) of rank 0, what rank should be
assigned to the inverse <¥3¢? Moreover, in the
dual f"g, the inverse of g is applied to an
argument of whatever rank is produced by
applying f to the result produced by g on one of
its cells. What then should be the rank of the
inverse h<g¥%rc to apply properly in £ h?

Composition. The rank part of the function f3%g is
the monadic rank of g, giving "close composition”
as defined in [3]; the kernels are '04 0B~ w!
and (0B~ «)0A4 DB wt,

The reason for using 0B of infinite rank (that
is, 0BY¥”) rather than 0B in the kernel is
illustrated by the following example. If f<«¢ and
g<®8%71, and a<2 3 4 5p1120 then (because the
rank of f9g is ~1), the cells of f¥g a have shape
3 4 5, and the application of g with infinite rank
would transpose each of them to shape 5 4 3
before applying f. However, if g itself were
applied, it, being of rank ~1, would transpose
each of the 4 by 5 cells of each shape 3 4 5 cell
presented to it, providing arguments of shape
3 54 to £. In effect, the proposed definition
prevents a double application of the rank of g.

Operators related to composition.
ranks of the derived functions of three other
operators show marked similarity to those produced
by composition (9).

An Operator Calculus

The kernels and -

Ranks and Kernels

fog mg lg rg
04 0B w 04 o 0B w

g mg mg mg
O0Bc 0A 0B¢” w ([OBc(0B%” «)di 0B¢” w

flg mg mg rf
(0B~ w)0Aw (0B%¥~ w)0As™ «

Intrinsic rank. Although + is the identity function
and is of unbounded rank, the composed function
g<«f9- may differ from £, the difference becoming
apparent only when the rank operator is applied to
the functions.

For example, if f<8%2 (where & itself is of
infinite rank), then £f93 is equivalent to 893, but
g¥3 is equivalent to 892. We will therefore say
that h<g¥3 has extrinsic rank 3, but intrinsic
rank 2.

More generally, if peg9j%+-%%, then p is said
to have intrinsic rank 7 and extrinsic rank k; the
extrinsic rank is immediately respecified by
application of the rank operator, but the intrinsic
rank is unaffected.

Every primitive function will be defined to have
an intrinsic rank that is equal to its extrinsic
rank, and is non-negative.

The results of rank. Except for the derivative,
dyads, and inverse parts, all parts of £
(including, in particular, its coherence) are
inherited by £f9r.

Since a derivative of a function £ must apply to
the same cells as f, the rank must be inherited by
the derivative.

The dyad parts are not inherited by f%r, but
the monadic cases of &' (£f%r) and £3r"b are, of
course, defined as stated earlier.

As remarked earlier, there is no relation
between the rank of a function and the rank of its
inverse that applies for all functions. However, in
the case of a rank-preserving function £, the
inverse function fc would be expected to have the
same rank, and we propose to choose the treatment
of f¥rc to provide behaviour appropriate to such a
function. Moreover, appropriate behaviour of the
dual g (£%r) can be expected only in the case
where g is also rank-preserving.

A necessary condition that fc be a proper
inverse is that fc9f be the identity function; it is
also desirable that £f9(fc) be an identity. The
problems of defining the inverse appropriate to a
function f£%r will first be illustrated by the
function t%r, where ¢t is a self-inverse transpose
of intrinsic rank 3 (i.e., ¢t <> tc <> {¥36),
and the argument a has shape 2 3 4 5 6 7 8.

We will examine two main cases, the direct
inheritance of ¢tc by ¢%r, and the modified
inheritance of £c%r. Within each of these we will
examine the «cases of rank restriction and
expansion.

Iverson, Pesch, Schueler

Case 1: torc <> tc

r PtSrc¥(¢vr) a pPtsre(tdrc) a
2 23458678 2345876
"3 2345678 2346785
y 2345678 2346785

Case 2: torc <+ tcor

2 2345678 2345678
3 23458786 23458176
y 2345678 2345678

From the foregoing it is clear that only case 1
(direct inheritance) gives correct behaviour for all
sub-cases for the more important left-inverse
(¢8rc¥(t%r)) and that neither case can give
correct behaviour for all sub-cases of the
right-inverse. We therefore propose adoption of
the rule of direct adoption of the inverse fc for
the inverse of the derived function £%r.

The results of coherence. Since coherence
determines only which pairs of cells of the two
arguments are submitted to the function, a/l parts
of f save the coherence are passed on to the
derived function k. f.

SUPERNUMERARY AXES

As remarked in [7], certain operators
introduce one or more supernumerary axes in
addition to the axes produced by the particular
function to which the operator is applied. Although
such supernumerary axes should precede the
normal axes, the cited paper proposed an
exception for the case of £\ (scan along the last
axis) as a means of maintaining compatibility with
the present behaviour of scan for primitive scalar
functions.

A more palatable way of retaining compatibility
is to assign rank 1 to the derived function £\ (and
also to £/). Formally, f\«>£f\%1, and f/<>£f#%1.

TRANSLITERATION

The ability to represent letters or words in the
corresponding characters in another alphabet,
known in natural languages as transliteration, can
also be very useful in formal languages. For
example, in APL one might substitute for the word
RHO (entered by someone using a deficient
terminal, or frightened of symbols other than the
Roman alphabet) the symbol P, or conversely
substitute for p (entered by someone who wishes
to exploit the brevity and connotations of that
symbol to refer to a related, but different, defined
function) the word RHFO.

We will consider only substitutions for
individual tokens (that is, those elements of APL
such as abc2, 2.34e6, and +) that serve as
words in APL, and will exclude substitution at a
character level (such as TCH for CH in the word
CHEBYCHEV) as well as substitution for phrases
(such as 1 2 3 for 13).

Substitution for phrases will be avoided
because it would necessarily concern syntax

An Operator Calculus

analysis of the sentence (to avoid, for example,

substituting 1 2 3 for 13 in the expression
2 357 11 13) rather than simple word
substitution. However, there is no difficulty in

allowing the entity that replaces a token to be a
string of tokens as well as a single token. For
example, substituting (01) for PI would allow PI
to be used as a constant, and substituting
(1{0ai) for CPU would allow the use of CPU as a
niladic function to give the computer time used.

We propose the introduction of a transliteration
system variable (to be referred to here as 0Otr)
such that 0Otr is a two-row matrix whose rows
consist of enclosed strings of tokens. Just before
evaluating any token in an APL sentence, a
substitution is made if the token occurs in the first
row of (Otr. Moreover, substituted elements are
treated exactly as if they occurred in the original
sentence and, as a consequence, substitutions may
be chained.

FUNCTION DEFINITION

Because an ambivalent function is evaluated
only in the context of arguments, the three
expressions mpf<+.x and mp<«m+.xn and per<+.xn
can be used to assign names to three distinct
entities, a matrix product function (mpf), a matrix
product of two arguments (mp), and the permanent
of a matrix {per),

Because a niladic function nf requires no
argument, a similar distinction between an
evaluation of the function, and the function itself,
cannot be made. Consequently, f<nf must be used
for one of the possible meanings.

If we choose to mean that £ becomes the niladic
function nf, then there is no mechanism for
indicating evaluation of a niladic function.
However, if we choose to mean that f becomes the
result of executing nf, then niladic functions will
continue to behave as they always have; moreover,

canonical definition provides a means for
associating any desired name with a niladic
function.

We therefore propose that niladic functions
continue to be used and defined in the established
manner.

The most recent statement of the evolving
"direct" definition operator occurs in [7]. We now
introduce a slightly modified statement that 1)
makes explicit the use of a system variable Os for
the sequence contro! vector (making branching and
the re-starting of a halted function possible
through expressions of the form 0Os< rather than
through the introduction of the branch arrow),
and 2) makes indexing of the segments O-origin:

1. mVd produces a function, with m and d being
the representations of the monadic and
dyadic cases.

2. The general form of each representation is a

vector r of enclosed segments, the segments
being executed in an order determined by a
(shared) sequence control vector Os that is
initially set to 1pr. Termination occurs upon
exhaustion of the sequence control vector.

3. A label in element k{r is assigned the value
kvipr.

Iverson, Pesch, Schueler

217

4. The symbols @ and «w denote the left and
right arguments, and A is used for
self-reference to the function itself, being
used in recursive definitions as well as for
defining one of the two cases in terms of the
other.

5. A name is localized if it occurs immediately to
the left of an assignment arrow in any
segment; for example, 3xa<i+b <w localizes
a but not b. Name localizations for the
monadic and dyadic cases are independent.

6. The explicit result of a function is the result
of the Ilast statement executed which
produced an explicit result, where
expressions such as x<3+4 or 3+4 are
assumed to produce explicit results, but ¢!
and -Ha are not. Automatic output is not
produced by an expression such as 3+u;
such output is produced only by expressions
using O«.

1. Every vector v is treated as ,ov, that is, a
simple vector is treated as a single segment.
Single segments may therefore be written in
the form '0lw! ¥ 'alfw?

A function produced by the definition operator
V¥ has unbounded ranks and coherence, and the
custom parameter [OC set to 10.

SYSTEM VARIABLES

As remarked earlier, the variant operator could
be employed to make less cumbersome the use of
functions now dependent upon system variables.
Nevertheless, efforts to remove dependence on
system variables should be continued, especially in
cases where the dependence was inessential, and
therefore ill-considered, and in cases where the
need has been obviated by other developments in
the language.

Index origin is an example of the former,
introduced in [8] (not only for indexing, but for
other functions such as residue) because of
awareness of the convenience of O0-origin in
treating computer hardware, and of the familiarity
of Tl-origin to people not acquainted with
computers.

The situation has changed radically since then:
the convenience of O-origin in all areas has become
more apparent; familiarity with 0O-origin and its
convenience has grown; and the bane of forever
specifying index origin has become apparent to
most APL programmers. We therefore re-iterate the
proposal made in [7] that index origin be
considered obsolescent, that s, maintained
unchanged in existing primitive functions, but
used in no new functions or operators.

Printing width (first controlled by a system
command) is an example of a parameter which,
though essential when introduced (before the
existence of the format function, when there was
no way within the language of controlling the width
of output), is no longer essential, and may, in
fact, impede the full exploitation of scrolling
facilities now available on video terminals.

For example, in the implementation of Sharp
APL on the IBM PC, a long row of a matrix may be
shown "extended" rather than "folded" to fit the
screen width, and the "window" may be scrolled

An Operator Calculus

over the row to view all parts of it. However, a
narrow setting of print width (Opw) will cause each

row to be emitted as a sequence of independent Rank Surrogate
segments. An infinite setting of 0Opw could m I r m 1 r
overcome this difficulty, but may be impossible due
to limitations in an APL system, or to implicit t 8 8 8 ggg ggg ggg
assumptions about UOpw made in applications x 0 0 0 apo apo apo
designed for the system.
[0 0 0 ap0 ap0 apo
L o] 0 0 apo ap0 apo
CATENATION AND RESHAPE OPERATORS | 0 0 0 apo apo apo
Consider a catenation operator COP and a > g 0 0 apo ap0 ap0
reshape operator ROP such that the functions o 0 g g ggg gpg 3281
£«+COP-COPXCOP+ and g<2 2 ROP f would each e
have rank 0, and would produce (for each cell) *« 0 0 0 ap0 apil apo
results of shape 4 and 2 2 respectively. + 0 0 0 ap1 apo ap1
® 0 0 0 apl apo apil
More generally, we define £ COP g as a
function having the (necessarily common) rank of ~ 0 apo
f and g, and producing a leading axis catenation A 0 0 apO apo
of the results of £ and ¢g. For example, if £, g, v 0 0 apo apo
and A all have result shapes 4 5, then the result
shape of £ COP g COP h is 12 5, and (since the f 8 8 :gg ggg
result shape of ,”<8k is 1 4 5) the result shape > o 0 ep0 ap0
of £ COP g COP (,”'<Bh) is 3 4 5.
z 0 0 apo ap0
Finally, we define s ROP f as equivalent to ~ 0 0 apo ap0
spBE. ’ ~ 0 0 ap0 ap0
é 0 1 1 apil apo ap”
2 2 Note apo Note
REFERENCES 4z 2 ot 4 Nt
1. Kenneth E. Iverson, Operators and - 1 - apo ap0 apis,w
Functions (1BM Corporation, RC7091, 1978). g N ag1+,w ago agi+:w
1 ap0 ap0 apo
2. Kenneth E. lverson, The Derivative _ B _
Operator (Proceedings of APL79: ACM > - _ apo apo apo
0-89791-005 2/79/0500 0347), 347. A _ - _ ap0 ap' ! ap!' !
W apo apt ! ap!' !
3. Robert Bernecky and Kenneth E. lverson, - - -
Operators and Enclosed Arrays (1.P. Sharp, g - - - gg}:’z ggg Zgii’:
Proceedings of the User Meeting, 1980). X - apit.w apli,w apls.w
4. Kenneth E. lverson and Peter K. Wooster, A 4 - - - opis,w apls,w apls,w
Function Definition Operator (APL Quote - i - - apls,w apl1t,w apls,w
Quad, Volume 12, Number 1, Proceedings of 3 ap? ! dap0 1 apo
APL81, ACM September 1981). e 0 - ap0 ap0
5. Arthur Whitney and Kenneth E. Iverson, t } - :’gg 2224 w
Practical Uses of a Model of APL (Apl Quote ’
Quad, Volume 13, Number 1, Proceedings of ¥ 1 - ap” apls,w
APL82, ACM, New York 1982). T - - apo ap0
= apo apo
6. Kenneth E. |Iverson, APL Syntax and T)
Semantics (ACM, APL83). Note: apid 241 1,0 where id:{(114w)o =11vw

1. Kenneth E. lverson, Rationalized APL (1.P. Table 1: FUNCTION RANKS AND SURROGATES

Sharp Associates 1983).

8. Kenneth E. Iverson, A Programming
Language, John Wiley and Sons, New York,
N.Y. 1962,

Iverson, Pesch, Schueler 218 An Operator Calculus

