An Implementation of Complex APL

Eugene E. McDonnell

Once we conceive of the real line as
embedded .in a plane of complex
numbers, we have entered a whole new
domain of mathematics. All our old
knowledge of real algebra and
analysis becomes enlarged and
enriched when reinterpreted in the
complex domain. In addition, we
immediately see countless new
problems and questions which could
not even have been raised in the
context of the real numbers alone.
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Complex numbers have been added to Sharp
APL as an internal data type, and most of
the primitive functions have been extended,
where appropriate, to give complex results
and to accept arrays containing complex
numbers as arguments.

Without this extension, writers of APL
applications requiring complex numbers have
to simulate them by various devices which
make them awkward to work with. Generally
speaking, existing applications are not
affected by this change. The potential
differences are relatively minor and are
local to just a few primitive functions.
Those functions which would benefit from
complex numbers now yield complex results
instead of a Domain Error.

The extension is not complete. The
floor, ceiling, residue, representation,
and dyadic format functions have not been
extended, because there remain points of
uncertainty regarding their definitions.
The way in which complex numbers are
displayed is provisional and may be
changed.

Complex~Value Input and Display

A complex constant is denoted by the
letter J connecting two real scalar numeric
constants. For example, in 3J 4, the 3 is
the real part and the "4 1is the imaginary
part. Fach of the two real numbers can be
in integer, decimal, or scaled
representation; for example,
1£12J3 .14 .

3J1E 20 or

In the default-format display of a column
of numbers, some of which have nonzero
imaginary parts, all the numbers in the
column are right justified. For example,
if 7z is the vector whose elements are the
fifth roots of 732, a one-column matrix W
derived from it would be displayed as
follows (with Opp at 6):

APL Quote Cuad 11 3 19

O«W«5 1p2Z
1,61803J1.17557
70.61803J1.90211
2
“0.61803J 1.,90211
1.61803J 1.17557

Each part of a complex number is formatted
separately. For example, with [PP+3, we
have:

"9 T11+.0 1234 0.123%
1.23F3J0.123

Extensions of the Primitive Functions

Many of the primitive functions need no
discussion since their extension to complex
arguments is well understood. Here we
shall describe only those functions whose
extension is not obvious.

Conjugate: +w is the conjugate of w, that
is, the value obtained by reflecting o on
the real axis. The conjugate of a real
number w is equal to w. Thus, a test to
see whether a number is real is w=+w.

o |
z[21 | z{11]
| o
I
z[3] !
D - N
| 1
| z[s]
| o]
zlul |
o |
Figure 1. Fifth roots of "32

of the vector Z are shown in
numbers zZ[1] and zZ[5] are
conjugates, as are 2[2] and Z[4]. The
number 2z[3] is equal to its own conjugate,
since it is real.

The elements
Figure 1. The

Magnitude: |w is the magnitude or modulus
(as 1t 1is often called) of w. It is the
value obtained by rotating « about the
origin onto the positive axis. It may be
defined as (wx+w)*0.5. For example:

|3J-4_ «> 5

{0.6J 0.8_ > 1

[1.61803dJ 1.17557 «> 2

[T1J1 > 1.41421
Direction: xw is the direction of w, and

is an extension to the signum function on
real numbers. The direction of 0 is 0.

For nonzero w, a ray drawn from the origin
through w intersects the unit circle at xw.
Thus the magnitude of xu for nonzero w is
1, and xw may be defined as wtlw. For
example:
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New circular-~function left arguments: Ten
new left arguments o have been provided for
aOw, primarily for use with complex
numbers. The correspondence between left
argument value and function is different
from that given in [1]. The assignments
described here preserve, as much as
possible, the association of odd functions
(real part, imaginary part) with odd left
arguments (9 and 11), and even functions
(magnitude) with even left arguments (10).
They also eliminate the gap which the
earlier scheme had left between 8 and 11:

(~a)ow | o | aOw
_______ o m e e e 2
-80w | 8 | OJlxwx(l+w* 2)%x0.5
w | 9 | (wt+w):2 real part
+w | 10 | Jaw magnitude
0J1xw | 11 | (w-+w)$0J2 1imaginary part
*0J1xw | 12 | 1108w arc or phase angle

Two of these, 8ow and 8ow, are new
Pythagorean functions, each a modification
of the expression (T1-w*2)*0.5. The two
forms allow for both signs of the square
root. The value of these functions on real
numbers is never real, which is why they
haven't been defined until now. With them,
the set of Pythagorean functions is
complete.

The remaining new left arguments for aOw
are useful in forming and decomposing
complex numbers, based on the rectangular
and the polar representations of these
numbers. A number o may be decomposed into
its real and imaginary parts by 9 1iow.

For example:

9 1103J 4 <+ 3 4
Conversely, a pair of real numbers w
representing the real and imaginary parts
of a complex number may be formed into that
number by 9 "11+.0w. For example:

“9 T11+.03 Ty e 3J 4

A number w may be decomposed into its
magnitude and arc by 10 120w. . For example:

10 1203J 4 <> 5 0.927295

Conversely, a pair of real numbers w
representing the magnitude and arc of a
complex number may be formed into that
number by 10 “12x.0w. For example:
T0.927295 3J 4

“10 T12x,05 -
The arc is given in radians and is always
greater than minus pi radians and less than
or equal to pi radians. A positive number
has an are of 0. A negative number has an
arc of pi. The arc of 0 is defined to be
0. For example:

APL Quote Quad 11 3 20

120
.628319
. 88496
L14159
.88496
.628319

O WO

If we define DEG:(180xw)+01 A RADIANS TO
DEGREES, we can display the values of 120¥
in degrees. For example:

DEG 120W
36

108

180

T108

736

Equals and not equals: Two complex numbers
are considered equal if the one smaller in
magnitude lies on or within a circle whose
center is at the one with larger magnitude,
and whose radius is equal to [J¢7 times the
larger magnitude.

Greatest common divisor and least common
multiple: A complex integer is one whose
real and imaginary parts are integers.

If 4 and B are complex integers, there
are four complex integers with the property
that they are the largest in magnitude of
all the complex integers which evenly
divide both 4 and B. 4vB is that one of
these which is in the first quadrant, or on
the positive axis. For example, 117J44 and
"63J 16 have as greatest divisors the
following numbers:

37w 43 T3J4 Tud 3
Of these, 4J3 is given as the value of
117J44v763J 16 since it is the one in the
first quadrant.

AvB is defined for noninteger complex
numbers as well:

1.17J0.44v 0,634 0.16
0.04J0.03

The least common multiple of two complex
numbers, aAw, is defined by (axw)iaVw.
example:

For

T75J7289

>

T182J7107AT7J55

The least common multiple function is also
defined on nonintegral complex numbers.

Functions Not Defined on Complex Numbers

Because the complex numbers are not
ordered, those functions which depend on
ordering are not extended to complex
numbers. They are the dyadic functions
o<w, ofw, e2w, o>w, olw, alw, ade, and afuw,
and the monadic functions bw and Vw.
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FunotngE with Deferred Extensions

Because we have not agreed on definitions
for the functions lw, Tw, ale, and aTw,
they have not been extended at this time.

The formatting function a¥w will take a
complex argument, but its definition has
not been extended to display imaginary
parts; 1t formats only the real part.
example:

For

0v3J 4 0J2 0.2 5.2
3005

Differences Affect Existing Applications

Users should be aware that some
differences arise even where complex
numbers are not used as arguments. This
section describes these differences in
detail.

There are two kinds of differences. The
first is that some functions which used to
signal a Domain Error for certain real
arguments now have a value which is not, in
general, a real number. The functions in
this category are ew and a®w for negative
arguments, o*w for negative o and certain
w, and gow for certain arguments. The
second is that some functions now have a
different value for certain arguments.
There are two cases of this: a%w for
negative a and certain w, and ~4ow.
this is covered in detail below.

All

In the first case, it seems unlikely that
a user program would be affected, since one
doesn't ordinarily write a program to cause
a Domain Error to be signalled. However,
with automatic trapping of errors, it is
possible that someone could have written a
program in such a way that a Domain Error
used to be signalled by an expression which
now has a value. This would, of course,
cause the program behavior to be different.

I.P. Sharp monitored usage of their
system extensively to try to judge the
impact of those changes where a different
value 1s given. Over a one-month period in
1679 there were 439 evaluations of a*w with
a<0 and w not an integer. On
investigation, almost all of these uses
were tests by Sharp development people.
There were only 176 uses of “4ow, for all
arguments. This compares with 6,149,426
uses of 10w, for example. Thus, in both of
these cases where a change in value occurs,
very few programs could be affected.

First case--Domain Error replaced by value:
There are four functions which are
affected.

1. The monadic logarithm function used to
signal a Domain Error for negative
arguments. With complex numbers available,
we can use the compatibly extended
definition of logarithm for all numbers
except 0:

APL Quote Quad 11 3 21

>

Quw (8|lw)+0J1x120w

This definition is compatible, since for
positive arguments, which have arcs of 0,
the second term of the sum disappears. We
can thus provide a logarithm for arbitrary
nonzero complex numbers, and in particular
for negative numbers. For a negative
number, the imaginary part of its logarithm
will be equal to pi, since the arc of a
negative number is pi radians.

2. The dyadic logarithm function a®w
formerly signalled a Domain Error when
given negative left or right arguments.
Since dyadic logarithm is defined in terms
of monadic logarithm (a®w +«> (#w)i@a), and
since we can now give monadic logarithms of
arbitrary nonzero numbers, we are thus able
to give dyadic logarithms for arbitrary
nonzero numbers to arbitrary nonzero bases,
and in particular to negative numbers
and/or to negative bases.

3. The power function a*w used to signal a
Domain Error for o negative and w close or
equal to a rational number having an even
denominator. With complex numbers, such
exponents are now permitted, and the
result, in general, is not real. For
example, ~1%0,5 is 0J1.

4a. The dyadic circle function oOw has had
the domain of its left argument extended,
as described above, to include the new
values "12 "11 10 "9 "8 8 9 10 11 12. An
attempt to use any of these as a left
argument used to give a Domain Error.
These new left arguments are intended
primarily for use in forming and
decomposing nonreal complex numbers, but
they are valid also for real right
arguments.

4b, Several of the functions determined by
particular left arguments of aOw have had
their domains extended to include more real
arguments, as well as having been extended
to complex numbers in general. These are
"7 76 4 "2 "1 Qow:
“7ow: Formerly w had to be strictly
between "1 and 1; now all arguments are
valid except "1 and 1.

Formerly w had to be greater than or
now all values are

“60w:
equal to 1;
permitted.

“4ow: Formerly w could not be strictly
between 1 and 1; now only 0 is
prohibited.

- Formerly w had to be between 1

now all numbers are permitted.

2 "1 00w:
and 1;

Second case--changes in value: There are

two functions in this category.

7. The defining expression for the power
function a*w is:

(A)

*wX@a
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but this could not be used hitherto for
negative a, since logarithms of negative
numbers were not defined. Nonetheless we
gave an answer if @ was (a close
approximation to) a rational number p:g,
with g odd, since this in effect gave us an
equation of odd degree @, which we knew had
one real root. We computed this real root
by (T1xP)x(|a)*w, and gave this as the
value of a*w, even though strict
application of expression (A) would have
given a value somewhere in the complex
plane off the real axis.

For example, referring to Figure 1, the
elements of Z are approximations to the
fifth roots of "32. One of these, "2, is a
real number, and is in fact the value that
used to be given for the expression
"32%0.2. However, now that complex numbers
are available we can use the defining
expression (A) in every case where a 1is not
0. This ensures that functicns such as
“32%w are (except for branch cuts)
continuous over their entire domain. For
example, the value of 732%0.2 is now given
as 1.61803J1.17557. The desired continuity
can be seen by noting the closeness of
ad jacent values in the following example:

3 1p 32%0,1999 0.2 0,2001
1.61784J1,17465
1.61803J1.17557
1.61823J1.17649

2. The definition of the "u4ow function has
been changed from ( 1+w*2)*0.5 to

wx(1-w* 2)%0.5. Effectively, this doesn't
change the function for positive arguments,
but for negative arguments the value is now
negative instead of positive. For example,
the value of 402 "2 used to be 1.73205
1.73205. With the new definition the value
is 1.73205 T1.73205.

Conversion

An array whose type is complex can be
used with a function which requires a
Boolean, integer, or real value as
argument, if the complex array values are
sufficiently close to Boolean, integer, or
real values, respectively. The tolerance
used in making this determination is not
affected by JCT. For example, 3J1E 20 may
be used to index the third element of a
vector, or as left argument to replicate.
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