
An Implementation of Complex APL 

Eugene E. McDonnell 

Once we conceive of the real line as 
embedded in a pIane of complex 
numbers, we have entered a whole new 
domain of mathematics. All our old 
knowledge of real algebra and 
analysis becomes enlarged and 
enriched when reinterpreted in the 
complex domain. In addition, we 
immediately see countless new 
problems and questions which could 
not even have been raised in the 
context of the real numbers alone. 

Philip J. Davis and Reuben Hersh, The 
Mathematical Experience, Birkhausen, 
Boston (1980) 

Complex numbers have been added to Sharp 
APL as an internal data type, and most of 
the primitive functions have been extended, 
where appropriate, to give complex results 
and to accept arrays containing complex 
numbers as arguments. 

Without this extension, writers of APL 
applications requiring complex numbers have 
to simulate them by various devices which 
make them awkward to work with. Generally 
speaking, existing applications are not 
affected by this change. The potential 
differences are relatively minor and are 
local to just a few primitive functions. 
Those functions which would benefit from 
complex numbers now yield complex results 
instead of a Domain Error. 

The extension is not complete. The 
floor, ceiling, residue, representation, 
and dyadic format functions have not been 
extended, because there remain points of 
uncertainty regarding their definitions. 
The way in which complex numbers are 
displayed is provisional and may be 
changed. 

Complex-Value Input and Display 

A complex constant is denoted by the 
letter J connecting two real scalar numeric 
constants. For example, in 3J-4, the 3 is 
the real part and the -4 is the imaginary 
part. Each of the two real numbers can be 
in integer, decimal, or scaled 
representation; for example, 3JIE 20 or 
iEi2J3.14. 

In the default-format display of a column 
of numbers, some of which have nonzero 
imaginary parts, all the numbers in the 
column are right justified. For example, 
if Z is the vector whose elements are the 
fifth roots of -32, a one-column matrix W 
derived from it would be displayed as 
follows (with OPP at 6): 

O÷W÷5 lpZ 
1.61803J1 . 17557 

-0 . 61803J1 . 90211 

-2 

-0.61803J-1.90211 
1.61803J-I.17557 

Each part of a complex number is formatted 
separately. For example, with 0PP÷3, we 
have : 

9 11+.o 1234 0.1234 
1.23E3 J0. 123 

Extensions of the Primitive Functions 

Many of the primitive functions need no 
discussion since their extension to complex 
arguments is well understood. Here we 
shall describe only those functions whose 
extension is not obvious. 

Conjugate: +~ is the conjugate of ~, that 
is, the value obtained by reflecting ~ on 
the real axis. The conjugate of a real 
number ~ is equal to ~. Thus, a test to 
see whether a number is real is ~=+~. 

o I 
Z [ 2 ]  ;I Z [ 1 ]  

I o 
I 

z [ 3 ]  I 
-o . . . . . . . . .  + .... ~ ...... 

I 1 
I z E s ]  
I o 

Z [ 4 ]  I 
o I 

Figure I. Fifth roots of -32 

The elements of the vector Z are shown in 
Figure I. The numbers Z[1] and Z[5] are 
conjugates, as are Z[2] and Z[4]. The 
number Z[3] is equal to its own conjugate, 
since it is real. 

Magnitude: I~ is the magnitude or modulus 
(as it is often called) of ~. It is the 
value obtained by rotating ~ about the 
origin onto the positive axis. It may be 
defined as (~x+~)*0.5. For example: 

I 3J-4 +-~ S 

I O. 6J-O. 8 ÷÷ 1 
ll.61803J-l.17557 ÷+ 2 
I-1J1 ÷÷ 1. 41421 

Direction: x~ is the direction of ~, and 
is an extension to the signum function on 
real numbers. The direction of O is 0. 
For nonzero ~, a ray drawn from the origin 
through ~ intersects the unit circle at x~. 
Thus the magnitude of x~ for nonzero w is 
I, and x~ may be defined as ~÷l~. For 
ex ample : 

, ~pL ~ g ~ @  ~ y ~  ]1 ~ !9 March 1981 



x 3 J - 4  ~ 0 . 6 J - 0 , 8  
x O . O 3 J - O ,  04 ~-+ O. 6 J - O .  8 
x O J l O  ~ OJ1 

New circular-function left arguments: Ten 
new ~ arguments ~ have been provided for 
~o~, primarily for use with complex 
numbers. The correspondence between left 
argument value and function is different 
from that given in [I]. The assignments 
described here preserve, as much as 
possible, the association of odd functions 
(real part, imaginary part) with odd left 
arguments (9 and 11), and even functions 
(magnitude) with even left arguments (10). 
They also eliminate the gap which the 
earlier scheme had left between 8 and 11: 

(-~)o~ I ~ I ~o~ 
. . . . . . .  + . . . .  + . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-8ore I 8 I OJl×mx(l+~*-2)*0.5 
m I 9 ] (m++~)÷2 real part 

+m I 10 I Im magnitude 
OJl×m I 11 I (~-+~)÷OJ2 imaginary part 

* O J l x ~  I 12 I 11o@~ a r c  o r  p h a s e  a n g l e  

Two of these, 8o~ and -8o~, are new 
Pythagorean functio_ns, each a modification 
of the expression ( I-~,2)*0.5. The two 
forms allow for both signs of the square 
root. The value of these functions on real 
numbers is never real, which is why they 
haven't been defined until now. With them, 
the set of Pythagorean functions is 
complete. 

The remaining new left arguments for ~o~ 
are useful in forming and decomposing 
complex numbers, based on the rectangular 
and the polar representations of these 
numbers. A number ~ may be decomposed into 
its real and imaginary parts by 9 11o~. 
For example: 

9 1 lO3J-4 ~-~ 3 -4 

Conversely, a pair of real numbers 
representing the real and imaginary parts 
of a complex number may be formed into that 
number by-9 -ii+.o~. For example: 

9 11+.03 -4 ~-+ 3J-4 

A number ~ may be decomposed into its 
magnitude and arc by i0 12o~. For example: 

10 1 2 0 3 J - 4  ~-+ 5 - 0 . 9 2 7 2 9 5  

Conversely, a pair of real numbers 
representing the magnitude and arc of a 
complex number may be formed into that 
number by -10 -12×.o~. For example: 

-10 - 1 2 × . 0 5  - 0 . 9 2 7 2 9 5  ÷+  3 J  4 

The arc is given in radians and is always 
greater than minus pi radians and less than 
or equal to pi radians. A positive number 
has an arc of O. A negative number has an 
arc of pi. The arc of 0 is defined to be 
O. For example: 

12oW 
0.628319 
1.88496 
3.14159 

-1.88496 
-0.628319 

If we define DEG:(180×m)÷ol ~ RADiTANS TO 
DEGREES, we can display the values of 12oW 
in degrees. For example: 

DEG 120W 
36 

108 
180 

- 1 0 8  
- 3 6  

Equals and not equals: Two complex numbers 
are considered equal if the one smaller in 
magnitude lies on or within a circle whose 
center is at the one with larger magnitude, 
and whose radius is equal to ~CT times the 
larger magnitude. 

Greatest common divisor and least common 
multiple: A complex integer is one w~e 
real and imaginary parts are integers. 

If A and B are complex integers, there 
are four complex integers with the property 
that they are the largest in magnitude of 
all the complex integers which evenly 
divide both A and B. AvB is that one of 
these which is in the first quadrant, or on 
the positive axis. For example, i17J44 and 
-63J-16 have as greatest divisors the 
following numbers: 

3J-4 423 -3J4 4J 3 

Of these, 4J3 is given as the value of 
117J44v-63J-16 since it is the one in the 
first quadrant. 

AvB is defined for noninteger complex 
numbers as well: 

I. 17JO.44v-O.63J-O. 16 
0.04JO. 03 

The least common multiple of two complex 
numbers, ~^~, is defined by (~x~)÷~v~. For 
example: 

-182J-lOTA-7J55 ~ -75J-289 

The least common multiple function is also 
defined on nonintegral complex numbers. 

Functions Not Defined on Complex Numbers 

Because the complex numbers are not 
ordered, those functions which depend on 
ordering are not extended to complex 
numbers. They are the dyadic functions 
~<~, ~-<~, ~>-m, ~>m, ~[~, ~[m, ~m, and ~m, 
and the monadic functions Am and ~. 

APL Quote Quad 11 3 20 March 198] 



Functions with Deferred Extensions 

Because we have not agreed on definitions 
for the functions L~, [~, el~, and eta, 
they have not been extended at this time. 

The formatting function ~ will take a 
complex argument, but its definition has 
not been extended to display imaginary 
parts; it formats only the real part. For 
example: 

0~3J-40J2 0.2 5.2 
3 0 0 5 

Differences Affect Existing Applications 

Users should be aware that some 
differences arise even where complex 
numbers are not used as arguments. This 
section describes these differences in 
detail. 

There are two kinds of differences. The 
first is that some functions which used to 
signal a Domain Error for certain real 
arguments now have a value which is not, in 
general, a real number. The functions in 
this category are ®9 and ~®~ for negative 
arguments, ~,~ for negative ~ and certain 
m, and ~o~ for certain arguments. The 
second is that some functions now have a 
different value for certain arguments. 
There are two cases of this: ~,9 for 
negative ~ and  certain ~, and -4o9. All 
this is covered in detail below. 

In the first case, it seems unlikely that 
a user program would be affected, since one 
doesn't ordinarily write a program to cause 
a Domain Error to be signalled. However, 
with automatic trapping of errors, it is 
possible that someone could have written a 
program in such a way that a Domain Error 
used to be signalled by an expression which 
now has a value. This would, of course, 
cause the program behavior to be different. 

l.P. Sharp monitored usage of their 
system extensively to try to judge the 
impact of those changes where a different 
value is given. Over a one-month period in 
1979 there were 439 evaluations of ~*m with 
~<0 and ~ not an integer. On 
investigation, almost all of these uses 
were tests by Sharp development people. 
There were only 176 uses of 4o~, for all 
arguments. This compares with 6,149,4"~6-- 
uses of Io9, for example. Thus, in both of 
these cases where a change in value occurs, 
very few programs could be affected. 

First case--Domain Error replaced by value: 
h~e are four functions which are 
affected. 

I. The monadic logarithm function used to 
signal a Domain Error for negative 
arguments. With complex numbers available, 
we can use the compatibly extended 
definition of logarithm for all numbers 
except 0: 

®~ ÷+  ( ® 1 ~ ) + 0 J 1 × 1 2 o ~  

This definition is compatible, since for 
positive arguments, which have arcs of O, 
the second term of the sum disappears. We 
can thus provide a logarithm for arbitrary 
nonzero complex numbers, and in particular 
for negative numbers. For a negative 
number, the imaginary part of its logarithm 
will be equal to pi, since the arc of a 
negative number is pi radians. 

2. The dyadic logarithm function ~®~ 
formerly signalled a Domain Error when 
given negative left or right arguments. 
Since dyadic logarithm is defined in terms 
of monadic logarithm (~®~ ÷÷ (®~)÷®~), and 
since we can now give monadic logarithms of 
arbitrary nonzero numbers, we are thus able 
to give dyadic logarithms for arbitrary 
nonzero numbers to arbitrary nonzero bases, 
and in particular to negative numbers 
and/or to negative bases. 

3. The power function e*~ used to signal a 
Domain Error for ~ negative and ~ close or 
equal to a rational number having an even 
denominator. With complex numbers, such 
exponents are now permitted, and the 
result, in general, is not real. For 
example, -•*0.5 is OJl. 

4a. The dyadic circle function ~om has had 
the domain of its left argument extended, 
as described above, to include the new 
values 12 II i0 9 8 8 9 i0 ii 12. An 
attempt to use any of these as a left 
argument used to give a Domain Error. 
These new left arguments are intended 
primarily for use in forming and 
decomposing nonreal complex numbers, but 
they are valid also for real right 
arguments. 

4b. Several of the functions determined by 
particular left arguments of ~o~ have had 
their domains extended to include more real 
arguments, as well as having been extended 
to complex numbers in general. These are 
-7 -6 4 2 -I 0o~: 

-7o~: Formerly m had to be strictly 
between -i and I; now all arguments are 
valid except -i and i. 

-6ore: Formerly m had to be greater than or 
equal to I; now all values are 
permitted . 

4om: Formerly m could not be strictly 
between I and i; now only 0 is 
prohibited. 

2 i 0o~: Formerly m had to be between 
and i; now all numbers are permitted. 

1 

Second case--changes in value: There are 
TDo6--fUnctions in this ~a~gory. 

I. The defining expression for the power 
function ~*~ is: 

*mx@~ (A) 

APL Quote Quad 11 3 21 March 1981 



but this could not be used hitherto for 
negative ~, since logarithms of negative 
numbers were not defined. Nonetheless we 
gave an answer if e was (a close 
approximation to) a rational number P÷Q, 
with Q odd, since this in effect gave us an 
equation of odd degree Q, which we knew had 
one real root. We computed this real root 
by (-l*P)x(l~),~ , and gave this as the 
value of ~*~, even though strict 
application of expression (A) would have 
given a value somewhere in the complex 
plane off the real axis. 

For example, referring to Figure I, the 
elements of Z are approximations to the 
fifth roots of -32. One of these, -2, is a 
real number, and is in fact the value that 
used to be given for the expression 
-32*0.2. However, now that complex numbers 
are available we can use the defining 
expression (A) in every case where ~ is not 
O. This ensures that functions such as 
-32-m are (except for branch cuts) 
continuous over their entire domain. For 
example, the value of -32*0.2 is now given 
as 1.61803Ji.17557. The desired continuity 
can be seen by noting the closeness of 
adjacent values in the following example: 

3 lp-32"0.1999 0.2 0.2001 
1.61784J1. 17465 
1.61803J1. 17557 
1.61823J1. 17649 

2. The definition of the -4o~ function has 
been changed from (-i+~-2)*0.~5 to 
~x(I-~*-2)*0.5. Effectively, this doesn't 
change the function for positive arguments, 
but for negative arguments the value is now 
negative instead of positive. For example, 
the value of -4o2 -2 used to be 1.73205 
1.73205. With the new definition the value 
is 1.73205 - 1 . 7 3 2 0 5 .  

Conversion 

An array whose type is complex can be 
used with a function which requires a 
Boolean, integer, or real value as 
argument, if the complex array values are 
sufficiently close to Boolean, integer, Or 
real values, respectively. The tolerance 
used in making this determination is not 
affected by ~CT. For example, 3JiE-20 may 
be used to index the third element of a 
vector, or as left argument to replicate. 

Acknowledgments 

The complex-number extension to APL has 
been discussed in the APL community for 
many years. Paul Penfield, Jr., of MIT, 
played a leading role in elucidating the 
design problems, and made a comprehensive 
proposal for complex APL in [I]. The Sharp 
complex APL extension follows this proposal 
in all details except for the numbering of 
the new left arguments to ~o~ and in output 
formatting. Professor Penfield also was 

kind enough to criticize our implementation 
in the course of its development. The 
implementation was designed and developed 
by Doug Forkes and Gene McDonnell. 

This description benefitted from comments 
given by Arlene Azzarello, Paul Berry, 
Caroline Colburn, Doug Forkes~ Ken Iverson, 
and Roland Pesch, of I.P. Sharp Associates. 

E.E. McDonnell 
I.P. Sharp Associates 
220 California Avenue, Suite 201 
Palo Alto, California 
USA 94306 

Reference 

[I] Paul Penfield, Jr. Proposal for a 
complex APL, APL79 Conference Proceedings, 
ACM (1979) PP.~-53. 

Bibliography 

Most high-school a lgebra  texts cover the 
definitions of addition, subtraction, 
multiplication, reciprocation, and division 
on complex numbers. A.M. Gleason's 
Fundamentals of Abstract Analysis, Addison 
Wesley (1966) in Chapters 10 and 15 covers 
the construction of the complex number 
system and the definitions of the 
exponential, logarithm, power, and 
trigonometric functions on complex numbers. 
A more elementary discussion of much of the 
same material is given in Chapter 8 of K.E. 
Iverson's Elementary Analysis, APL Press, 
Palo Alto (1976). In Milton Abramowitz and 
Irene Stegun's Handbook of Mathematical 
Tables, Dover, N.Y. (1965~ may be found 
de~itions of many of the analytic 
functions on complex arguments. A detailed 
exposition of the algorithm behind the 
complex factorial and complex binomial 
functions may be found in Hirondo Kuki's 
"Complex Gamma Function with Error 
Control", CACM 15 4 (April 1972). The 
paper by Paul Penfield, Jr., "Principal 
Values and Branch Cuts in Complex APL", to 
appear in the APL 81 Conference 
Proceedings, discusses ~c~o-Tces for 
locations of branch cuts, direction of 
continuity of the branch cuts, and values 
at the end of the branch cuts, for all the 
analytic functions requiring them. We are 
obliged to Professor Penfield for providing 
us with an early draft of this valuable 
paper. 

Those interested in the discussion 
regarding the extension of the floor, 
ceiling, residue, and representation 
functions may read E.E. McDonnell's 
"Complex Floor", APL Congress 73, North 
Holland/American Elsevier (1973~ for one 
set of definitions, and D.L. Forkes, 
"Complex Floor Revisited", to appear in the 
APL 81 Conference Proceedings, for a 
counter-proposal. 

APL Quote Quad 11 3 22 March 1981 


