
1

Abstract

Even if APL is the best-suited programming language for multi-dimensional data, nowadays
computer applications additionally require complex graphical user interfaces, internet and database
access. Combining software written in C, C++ or Java with interpreted APL programs is difficult. A
homogeneous solution has been found by automatically converting APL programs into native C code.
A complete APL2 like system including interpreter and session manager has been implemented in
ISO C from scratch only based on the standard C library. The system is the property of the author and
not commercially available yet. It has been successfully compiled on several operating systems. The
built in system call � ����� allows one to compile any APL function including all referenced
functions or operators within the workspace into native C code and completely removes the
interpreter using direct calls to the C coded APL primitives. Only obvious restrictions (no runtime
execution of character arrays or dynamic creation of functions via � ��) apply. In addition, a makefile
is created to enable the simple build of standalone executable files. The C files, generated by
� �����, can be easily mixed with other C/C++ source files and compiled on any platform provided
that the required library for the APL primitives is available.

Introduction

In the course of the nearly 40 years of APL[1] history, one of the main problems was the missing
possibility to create real executable files that could be easily spread to users. The idea of developing
an APL compiler dates back to the middle 80ies [2,3,4]. The APEX project [5] aims at an analysis and
complete understanding of the APL program data flow to be able to automatically generate highly
optimized native C code. Given the complex functionality of APL with its primitive functions,
operators and nested arrays, this turns out to be a very difficult task. The approach presented in this
paper is a pragmatic rather than demanding one. The compiler converts APL functions into C code,
replacing the interpreter by direct calls to the C coded APL primitives.

The APL2C System

A complete APL system has been developed by the author since 1991. It comprises an interpreter,
a session manager and a simple function editor to define functions and operators. It supports all
standard APL primitives (functions and operators), nested arrays, selective and vector assignments,
whereas complex numbers are not supported. The system was implemented from scratch in ISO

An APL Compiler

Tilman P. Otto
Paul-Martin-Ufer 13

68163 Mannheim, Germany

Tilman@Otto.com

2

Standard C [6]; sole basis were calls to the standard C library. It was successfully compiled on several
operating systems such as Windows 95/98/NT, Linux, SGI Irix, IBM AIX and Sun Solaris. Two
different user interfaces are available: A text-based interface using VT100 terminal emulation (for
unix platforms) and a graphical user interface for Windows, written in C++ using the Microsoft
Foundation Classes (MFC), see figure 2. For the text-based interface it is possible to define keywords
for every APL symbol in an external ASCII file (see figure 1), whereas the Windows interface allows
to enter APL symbols using a toolbar or user definable hot key combinations. The system is able to
store and load workspaces and the most important system variables and functions are available (e.g.
� �	, � �
, � ��, � ��, � ��, � ��, etc.). Within a workspace, the user may define niladic, monadic and
dyadic user functions as well as monadic and dyadic operators. In case of a run-time error or a user
interrupt, the interpreter can be stopped after the execution of any line of APL source code. An
execution stack was implemented and the system command “
��” is used to view pending functions.
With a call to the “
����
” function, all pending functions are cleared from the stack. With the
specification of an argument the given number of pending functions can be removed from the stack,
e.g. “
����
��”. In the current implementation, a workspace cannot be saved as long as there are
still functions pending. With the command “� � ��” the execution of a pending function can be
continued, or, with “� ”, the complete list of pending functions for the last submitted APL command
line can be removed from the stack.

Figure 2: Screen snapshot of the APL2C system for Windows NT. The special APL symbols
can be entered by means of the toolbar or a user definable hotkey combination.

token("0xE4") char("0x8C") (#) /* quad
token("0xE5") char("0x82") Encode /* up tack
token("0xE6") char("0xB1") Circle /* circle
token("0xE7") char("0xBD") Shape /* rho
token("0xE8") char("0x97") Max /* up stile
token("0xE9") char("0x87") Drop /* down arrow

Figure 1: The APL2C system allows to define keywords in a user definable ASCII file as a
replacement of APL special symbols (e.g. the keyword “Drop” replaces the “down arrow”
character). With the second column, every single character of a special APL font can be
assigned to its corresponding internal token. This allows adapting the system for different APL
fonts.

3

Implementation

The implementation of a complete APL system is not that easy. A powerful low-level
programming language is required to implement the interpreter and all APL primitives. What is
furthermore needed is a high portability of the source files, thus being open for all computer
platforms. ISO Standard C [6], defined by ISO/IEC 9899:1990, fulfills both requirements. A compiler
for Standard C is available on every operating system; C is very flexible with regards to data
manipulation and memory handling.

APL Data Structure

The most important data structure is the definition of APL arrays, as shown in figure 3. The three

typedef struct
{

long length; // total length in bytes
unsigned char type; // SIMPLE or NESTED
unsigned char rank; // Dimension
unsigned char eltype; // INTG, CHAR, REAL, …,PNTR
unsigned char reserved; // unused
long number; // total number of elements
long dim[1]; // dimension(s), dep. on rank
// ... // Data (dynamic)

} aplarray;

Figure 3: The definition of an APL array in C. The field ‘dim[]’ has, in fact, ‘rank’ elements
and the array’s data directly follow the last ‘dim’ element.

length type eltype res. number

16 SIMPLE INTG 0 1 5

rank

0

length type eltype res. number

19 SIMPLE CHAR 0 3 ‘a’

rank

1 ‘b’ ‘c’

dim[0]

3

X� 5€

X� 'abc' €

length type eltype res. number

24 NESTED PNTR 0 2

rank

1

dim[0]

2

length type eltype res. number

24 SIMPLE INTG 0 2 1

rank

1 2

dim[0]

2

length type eltype res. number

24 SIMPLE INTG 0 2 3

rank

1 4

dim[0]

2

Adr. Adr.

X� (1 2) (3 4) €

Figure 4: Examples for the representation of two simple and one nested APL array in
memory according to the type definition shown in figure 3.

4

different examples in figure 4 explain how the APL arrays are represented in the memory. Simple
arrays are stored continuously in one memory block. Nested arrays have one memory block for the
root array and one for every sub-array. The APL2C system supports the following basic data types:
Boolean, character, integer, short integer and real (float).

C Prototypes for APL primitives

All APL primitive functions show identical prototypes. The prototype definition is displayed in
figure 5. For niladic functions, all parameters are equal to the null pointer (NULL), and for monadic
functions the argument ‘larg’ is NULL. The proto-type definition for operators is shown in figure 6.

Symbol table

For every APL system a so-called symbol table is
needed; here the meaning and values for each symbol
within the workspace are defined (see figure 7). The
symbol table allows one to define local and pseudo
local variables. When an APL function is entered for
execution, the interpreter saves the actual contents of
the symbol table for all local variables. The contents
will be restored as soon as the interpreter leaves the
executed function. In some APL systems
implementations, the symbol table is limited in size
(e.g. to 32678 symbols).

aplarray *FnName(
 aplarray *axis, // Axis
 aplarray *larg, // left argument

 aplarray *rarg // right argument
);

Examples: ″� rotate(NULL, NULL, R)

L″� rotate(NULL, L, R)

�″���� rotate(X, L, R)

Figure 5: The prototype definition of every APL primitive function in C. For monadic calls or
calls without axis the corresponding parameter is NULL.

typedef struct
{

long length; // total length in bytes
unsigned char type; // SIMPLE or NESTED
unsigned char rank; // Dimension
unsigned char eltype; // INTG, CHAR, REAL, …,PNTR
unsigned char reserved; // unused
long number; // total number of elements
long dim[1]; // dimension(s), dep. on rank
// ... // Data (dynamic)

} aplarray;

Figure 3: The definition of an APL array in C. The field ‘dim[]’ has, in fact, ‘rank’ elements
and the array’s data directly follow the last ‘dim’ element.

Symbol Name Address

‘M’

‘TEST’

‘MYOP’

‘DX’

Type

Variable

Function

Operator

Variable

Figure 7: For every symbol name within the
workspace the symbol table keeps the object type
and the object’s memory address.

5

However, the symbol table of the APL2C system is only limited by the size of free memory
available. To accelerate the execution speed of an APL function, all symbol names were replaced by
the corresponding index to the symbol table within the internal representation of the function.

The Compiler

An overview of the APL2C system is given in figure 8. The top level is the APL workspace the
basis of which is the APL interpreter system. The latter includes the editor for function definition, the
session manager, the handler for the workspace with all its system functions as well as the interpreter
for the execution of the APL code.

The idea behind the compiler is to automatically convert an APL function into Standard C code
and to replace the interpreter by direct calls to the APL primitives, coded in Standard C, too. This

aplarray *OpName(
 aplarray *axis, // Axis for operator
 aplarray *larg, // left data argument
 elptr *lop, // left functional operand
 aplarray *laxis, // axis for left operand

 elptr *rop, // right funct. operand
 aplarray *raxis, // axis for right operand

 aplarray *rarg // right data argument
);

Figure 6: The prototype definition of any APL primitive operators in C. For monadic calls or
calls without axis the corresponding parameters are NULL. ‘elptr’ is a data structure that can
hold simple or derived functions (i.e. operator together with operands).

Workspace
APL Variables + Functions + Operators

Interpreter -System
Functions-Definition and -Execution

 Workspace Handling, Session Manager

APL-Primitives
Functions + Operators

Implemented in C

Graphical Interface
 MFC / Windows NT

Motif / Unix, Linux

Standard C Library ANSI

Operating System

Figure 8: APL2C system structure. The interpreter is based on the Standard C library and on
the graphical interface which, however, depends on the operating system.

APL-Primitives
Functions + Operatores

Implemented in C

Standard C Library ANSI

Operating System

COMPILER:

 Variables
 APL Functions ⇒ C

 Operators

Figure 9: The compiler automatically replaces the interpreter by direct calls to the APL
primitives. The resulting code is only based on the Standard C library, but requires the C coded
primitive functions and operators (e.g. as library).

6

concept is shown in Figure 9. Once the C code has been generated, it can be easily mixed with other C
source code files. Figure 10 points out the integration of compiled APL code with other C, C++
sources files.

7

Syntax Analysis and Symbol Names

Fortunately, APL programs show a simple syntax, i.e. APL statements do not span over different
lines. This facilitates the implementation of a syntax analyser representing an important part of the
compiler. Below the existing syntactical combinations are shown:

D data (e.g. variable or literal)

F niladic function F

F[A]D Monadic function F (with optional axis)

DF[A]D Dyadic function F (with optional axis)

F[A]M[A]D Monadic operator M with monadic function F and optional axes

DF[A]M[A]D Monadic operator with dyadic function F and optional axes

DF[A]OF[A]D Dyadic operator with dyadic functions F and optional axes

As a complication, an operator together with its functional operands is forming a so-called derived
function, which again may serve as functional argument for an operator.

To find out which of the above-mentioned combinations is valid within a line of APL code, the
meaning of every referenced symbol must be known. At compile time, the different symbols within an
APL instruction pose a problem because, even though the symbol table of the APL2C system may be
used, the meaning of those symbols is not well defined and may be ambiguous. A function defined as
'XYZ' can be covered by a local variable named 'XYZ' in one of the functions within the execution
stack. To solve this problem, the following restriction is relevant to the functions to be compiled. It is
impossible to cover the names of defined APL functions with pseudo-global variables, i.e. local
variables defined in one of the functions within the execution stack below the current function. We
assume, for example, that a function with name 'TEST' was defined. In this context, it is allowed to
define a function as ‘FUNC1’, which has a local variable with the same name 'TEST'. The problem
arises when 'FUNC1' is calling a second function 'FUNC2', and 'FUNC2' tries to access the pseudo-
global variable 'TEST' of the first function. The compilation of function 'FUNC2' will assume, that

 Variables
 APL Functions ⇒ C

 Operators

APL-Primitives
Functions + Operators

Implemented in C

Standard C Library ANSI

Operating System

Graphical Interface
 MFC / Windows NT

Motif / Unix, Linux

Application (C, C++)

DB, Internet

Figure 10: Integration of compiled APL programs into applications written in C, C++.

8

'TEST' refers to function 'TEST' instead of a local variable of another function. The result is a compile
time or run-time error.

Restrictions

The following restrictions are applicable to the compilation of any APL function or operator:

The first restriction has already been mentioned above. The names of pseudo-global variables
must differ from any other function or operator name within the same workspace.

Since the compiled code has no interpreter, the execution of APL character strings is obviously
not possible. For the same reason, it is not allowed to dynamically create new APL functions using the
� �� command.

The last restriction is based on the compiler implementation. If the compiled APL functions refer
to global variables within the workspace, the compiler can generate initialization code for these
variables. The global variables will be set to their values at compile time but the current version of the
compiler only allows simple data for initialization. Nested global arrays cannot be initialized and will
cause a compile time error.

Code Generation

The compiler is part of the APL2C system and can be started by the system function � �����.
The name of the APL function to be compiled must be given as left argument to the function. The
name of a directory for the generated C code files is the right argument.

The compiler will recursively compile all functions that have been used by the function given as
left argument. Every APL function or operator will be converted into one C code file. The file name is
the name of the APL function to be compiled with an ‘apl_’ prefix. The corresponding C function will
take on the same name.

Within the APL2C system the C function name for every APL primitive function is automatically
registered at start-up. Thus, it is ensured that for every primitive or system function the corresponding
C code function name is known and can be used by the compiler.

Figure 11 shows a small APL program ‘TEST’ computing the square root out of the squares’ sum
of the left and right argument. The corresponding C code file ‘apl_TEST.c’ is shown in figure 12
(exactly as automatically created). Line #5 defines the C function apl_TEST. Here, the same
prototype definition for APL primitives is used as described under figure 5. Line #11 is the
representation (as octal string) of the value 0.5 in the APL array format described in figure 3 and 4. At
lines #14 and #15 the actual contents of the symbol table for symbols A and B is stored in the array
localvars[] and then the values of A and B are set to the left and right argument. Lines #16 and #17
save the current values of symbols E and L and then clear the contents of these variables. Every APL
code line is implemented in its own switch statement to be able to make computed gotos’ where the

���	
��
	�
�			���	
��
	�
�			

�����										�����										

������������������������������

Figure 11: Small APL program serving as example for compilation into C code. The
compiled C code is shown in figure 12.

9

jump address can dynamically be computed. An APL jump command will modify the C variable
‘linenum’ and will determine the next line of C code to be executed.

10

[1] #include "includes.h"
[2] #include "apl2c.h"
[3] #include "test.h"
[4]
[5] aplarray *apl_TEST(aplarray *_axis, aplarray *apl_A, aplarray *apl_B)
[6] {
[7] aplarray *apl_E;
[8] symbol localvars[4];
[9] unsigned char typeof_apl_A, typeof_apl_B;
[10] long *tlinenum_ptr, linenum = 0;
[11] static char const0[] = "\20\0\0\0\1\0\4\0\1\0\0\0\0\0\0\77";
[12]
[13]
[14] typeof_apl_A = Initarg(localvars+0, apl_A_idx, apl_A);
[15] typeof_apl_B = Initarg(localvars+1, apl_B_idx, apl_B);
[16] Initvar(localvars+2, apl_E_idx);
[17] Initvar(localvars+3, apl_L_idx);
[18] tlinenum_ptr = linenum_ptr;
[19] linenum_ptr = &linenum;
[20]
[21] nextline:
[22] switch(++linenum)
[23] {
[24] case 1:
[25] assign(apl_L_idx, (aplarray *)const0);
[26] goto nextline;
[27] case 2:
[28] assign(
[29] apl_E_idx,
[30] power(
[31] NULL,
[32] add(
[33] NULL,
[34] mul(NULL, VARIABLE(apl_A_idx), VARIABLE(apl_A_idx)),
[35] mul(NULL, VARIABLE(apl_B_idx), VARIABLE(apl_B_idx))
[36]),
[37] VARIABLE(apl_L_idx)
[38])
[39]);
[40] goto nextline;
[41] default: goto end;
[42] }
[43] end:
[44] Resumearg(localvars+0, apl_A_idx, typeof_apl_A, apl_A);
[45] Resumearg(localvars+1, apl_B_idx, typeof_apl_B, apl_B);
[46] apl_E = return_var(apl_E_idx);
[47] Resumevar(localvars+2, apl_E_idx);
[48] Resumevar(localvars+3, apl_L_idx);
[49] linenum_ptr = tlinenum_ptr;
[50] return(apl_E);
[51] }

Figure 12: Resulting C code after compilation of the APL program shown in figure 11. (Explanation, see text
above). The C code has been created exactly as shown here including the indenting.

11

Line #25 assigns the value 0.5 to variable L. Lines #28 to #39 show the C code for the second line of
APL code. The C macro VARIABLE(IDX) is reading the memory address of an array out of the
symbol table at index IDX. The functions ‘mul’, ‘add’ and ‘power’ are the registered names of the C
functions for the corresponding APL primitives. Lines #44 and #45 clear the contents of variables A
and B and restore their contents using the localvars[] array. Line #46 is preparing the result and lines
#47 and #48 restore the variables E and L to their initial value when the function has been entered.

After all referenced APL functions have been compiled, a makefile will also be created allowing
an easy compilation and linkage of the generated code.

Correctness of the Compiler

To verify the correctness of the compiler, it was applied to a complex image-processing task
developed with the APL2C system. A total of 106 APL functions with 1,690 lines of APL code
(comments included) were compiled into 717 kilobytes (more than 28,000 lines) of C code. For the C
code compilation three different compilers (Gnu-C compiler on Linux, Watcom C/C++ Version 10.6
and Microsoft Visual C/C++ Version 5 on Microsoft Windows) were used. Then, the results of the
compiled programs were checked; no difference to the results of the interpreted APL program could
be made out.

Performance Measurements

It is the concept of this paper’s compiler to replace the interpreter by automatically converting
APL code into C code using direct calls to the C coded APL primitive functions. The question is, if
and how much faster the compiled C code is compared to the interpreted APL program. Theoretically,
the compiled C code should be at least as fast as the interpreter should. The maximum amount of time
to be saved is the execution time, used by the interpreter itself. The bigger the data arrays handled by
the APL program, the lesser time is needed for the interpretation compared to the data processing by
the APL primitive functions.

The two examples below show a comparison between compiled C code and interpreted APL code.
The first example is an APL program with a maximum of interpreter load: An empty loop:

����
�

���

���

������������������

In the second example the following small program was used to determine all prime numbers smaller
than 1,000,000 (Eratosthenes’s sieve algorithm):

������	�
 ��
!
�
�

 ����													

��"�														

�������											

!�#															

�����													

��!��$"%�&!							

������												

!�!���#'!									

��!(�������							

���$��)����

12

For both examples, the table below displays the resulting execution times measured on a 450 MHz
Pentium II computer:

Program Interpreted Compiled Saving

LOOP 3,64 sec 1,90 sec 52 %

PRIM 2,10 sec 2,08 sec 1 %

These measurements confirm, that the compilation saves only the execution time of the interpreter
itself.

References

[1] IVERSON K.E.: A Programming Language, John Wiley & Sons, Inc., New York (1962)

[2] DISCROLL G.C.JR.; ORTH D.L.: Compiling APL: The Yorktown APL Translator, IBM Journal of
Research and Development 30(6): 583-593 (1986)

[3] CHING W.-M.: Program Analysis and Code Generation in an APL/370 Compiler, IBM Journal of
Research and Development 30(6): 594-602 (1986)

[4] BUDD T.: An APL compiler, Springer-Verlag New York Berlin Heidelberg London Paris Tokyo,
ISBN: 0-387-96643-9 (1988)

[5] BERNECKY R.: An Overview of the APEX Compiler, University of Toronto, Department of
Computer Science, Technical Report 305/97

[6] ISO/IEC 9899:1990: ISO C Standard, ISO Central Secretariat, Case postale 56, 1211 Geneva 20,
SWITZERLAND

