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ABSTRACT

A prototype APL to C compiler (ACORN,: APL 1o C On Real Numbers) was produced while investigating improved tools for
solving numerically intensive problems on supercomputers. ACOXA currently produces code which runs slower than hand-coded Cray
FORTRAN, but we have identified the major performance bottlenecks, and believe we know how to remove them. Although created in a
short time on a limited budget, and intended only as a proof of the feasibility of compiling APL for numerically intensive environments,
ACORN has shown that straightforward compiled APL will be able to compete with hand-optimized FORTRAN in many common
supercomputer applications.

BACKGROUND

Supercomputers are an expensive resource: they are costly, and require highly trained expert programmers to make effective use of
them. In a research environment, this can be deadly — today, researchers with expertise in disciplines such as geophysics are dependent
on those experts to solve their problems. In many environments, this can lead 1o bottlenecks and delays ~ a researcher wishing to model
behavior of some system may have to wait months before an expert is available; alternately, he or she may be forced o write a model in
ignorance, perhaps suffering one or more orders of magnitude performance degradation. When studying large problems, whose solutions
may take at best hours, the spectre of days or weeks of processor time is daunting.

A language such as APL offers a possible solution. APL is an abstract language, in which you describe what you want done, not
how 1o do it. The “how” decision is left to the computer or compiler writer. For example, the sum of a list of numbers, », is written
in APL as +/n, whereas scalar-oriented languages require the programmer to write a loop. As well, the performance of semantically
deficient languages such as FORTRAN and C have traditionally been sensitive to the way expressions are written — interchanging two
loops might make a dramatic difference in the performance of a program.

Because APL tends to bury loops within primitive expressions, loop interchange and other performance-related transformations can
be made automatically and dynamically beneath the level of user visibility. This can simplify the user’s program - detailed concerns
about machine dependencies need not appear as explicit source code. This increases the portability of the program, when measured in
terms of program efficiency on a number of machine architectures.

Architectural dependencies also affect performance, making one construct of loop faster on one system and slower on another.
These dependencies hinder code portability. By hiding loops and other superfluous details, APL allows the programmer o rise above
these concerns and concentrate on the essence of the problem at hand. The compiler writer can create optimal code for the specific
target architecture, producing more efficient code than the average programmer is capable of providing.

The advanced semantics of APL offer another benefit. By providing primitive capabilitics such as set membership, the programmer
is freed from the problem of writing an efficient set membership function for a particular machine — the job is already done, and done
well by a professional programmer. This may seem a trivial matter, but efficient methods for performing commonly required operations
such as sorting, matrix product, and set membership differ dramatically from one machine architecture to another. Failure to describe
these operations in an abstract manner cripples attempts to write portable, efficient applications.
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Discussions with Stephen Jaffe and George Moeckel of the Dallas Research Laboratory of Mobil Research and Development
Corporation (MRDC) led to a joint research project between MRDC and LP. Sharp Associates Limited (IPSA), to study the use of APL
as a delivery vehicle for parailel computation.

The basic question we have tried to answer in this project is:

Can a naive APL compiler produce code of sufficient performance and reliability to qualify it as a practical tool for solving
numerically intensive problems?

We chose APL because of its outstanding track record as a prototyping and modelling tool [Be86, Yo86], and its effectiveness in
conceptualizing and formulating logic. In addition, APL’s advanced semantics allow it to take advantage of state of the art SIMD and
MIMD computers now appearing on the scene, without requiring programmers to change their programming styles.

We felt that a naive APL compiler that performed little or no classical optimizations might, because of the powerful semantics of
APL, provide adequate performance for a number of applications. There were two ways in which we thought this might occur; these
are outlined below.

e A compiler performs syntax analysis once, rather than continuously, as an APL interpreter must do. Since syntax analysis often
represents 10-30% of the entire processor time associated with an interpreted APL application, there are gains to be made here.
The applications which suffer most from syntax analyzer overhead are those which are highly iterative or recursive, and in which
the arrays being processed are very small.

e Large, numerically intensive computations of the type which are common in supercomputer applications often spend a large amount
of time executing what in APL are single primitives, such as inner product, outer product, and matrix inversion. A compiler which
merely optimized the run-time library for these primitives would obtain many of the speedups available in a highly optimized
compiler for a language with more primitive semantics, such as FORTRAN, where the code for commonly used functions such as
matrix problems are spread across a large number of primitive operations.

The original project specified hand-compilation of a few seismic applications into Cray FORTRAN or assembler code. We quickly
abandoned assembler as being non-portable and non-productive. When we heard about the availability of the C language on the Cray,
we decided to compile to C instead.

C, often considered a generic assembler code, offers a number of desirable facilities such as portability, simplicity, and relatively
good performance. In addition, C is a more functional language than FORTRAN, so the mapping from APL to C was a fairly obvious
and straightforward design problem.

Early in the study, we obtained a copy of Timothy Budd’s APL to C compiler [Bu83). This university-developed compiler is
available without license fee, and we thought it might be a quick solution to our problem. Jiri Dvorak, of the IPSA APL Systems
Development Department, spent some time attempling (0 make the compiler work, but found that the compiler was not robust enough
for our use, and we dropped it.

One of us (Bernecky) started to hand-code the translated APL, but the tedium of the job quickly convinced us that writing a
translator was less effort. We therefore decided to write our own compiler. Bernecky and Charles Brenner (an independent consultant
under contract to IPSA) then developed a prototype compiler, dubbed 2CORN : APL to C on Real Numbers, which we feel demonstrates
both the feasibility of, and problems associated with, compiling a subset of ISO APL [ISO84] for supercomputers. Bernecky wrote the
tokenizer, syntax analyzer, and code generator in SHARP APL/PC. Brenner wrote the initial run-time library in C. Jaffe and Moeckel
provided a suite of seismic applications, written in APL, which served as our benchmarks.

OTHER APL COMPILERS

A number of attempts have been made to produce APL compilers. Stephen Crouch, of the I.P. Sharp Network Development
Department, developed a compiler [Cr84] in 1981-1984 with restrictions similar to those of ACORA, which was used to produce code
for the Computer Automation Alpha/LS] minicomputers then in use as IPSANET node computers.

The Budd and Sofremi [Gu85] compilers generate C code as their output. STSC's APL compiler [Wi79] compiles APL to
370 machine code. Two IBM compilers [Dr85, Ch88] are research projects; however, detailed information about their performance or
intemnals, beyond that described in the above-cited papers, is currently unavailable. The Driscoll and Orth compiler generates FORTRAN
as its output; Ching's compiler generates 370 machine code.

One underlying assumption is that these problems are computationally dominated by non-linear computations such as matrix divide,
inner product, and outer product on large arrays. Such problems lend themselves well to APL, and a compiler that doesn’t perform
classical optimizations should perform at an adequate level. Of course, an optimizing APL compiler (OAX ?) might make things even
better, but that was beyond the scope of this research project.
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COMPILER OVERVIEW

ACORN's input is the canonical representation of an APL function, or the name of an APL function in the acorn workspace. Its
character matrix result is a C function corresponding to the input function. The cover function comp<te performs the additional work
required to place the resulting C source code on a DOS file, in ASCII format.

The C functions created by ACORA  have the following characteristics.

e APL labels and constants become static constants in the C code.
e Functions called by the APL function are presumed to be C functions created by ACORN .

e APL locals become C locals, represented as C structures which point into the C heap where the actual array data is stored. The C
structure which represents APL arrays is described in the C TYPEDEF VAR, contained in file APL.H.

o APL globals become C static globals, represented in the same way as APL locals.

o Each primitive function or user-defined function is compiled into a C function call to a run-time library function, or to a compiled
user-defined function.

In the interest of simplicity, storage management is left, as much as possible, to C. The inability to compact the heap is a potential
problems for certain applications, although we have not yet had any problems in this area. If such problems do arise, then a more
sophisticated storage manager, which supports compaction, may be required. This might also provide improved performance over C
storage management functions.

ACORN maintains a reference count and an element count ( x/pw) for arrays. Reference counts allow several objects to refer to the
same array without physically copying the array. Element count is frequently required by APL primitives; for example, multiplication
needs to know how many elements are in the arrays to be multiplied.

Compile times on a 3090 class mainframe running SHARP APL are under a second. On a PC/AT class machine, under SHARP
APL/PC, compile times are roughly one minute per line of code. Because of the prototypical nature of the work, no effort whatsoever

was made to improve compilation performance. However, an order of magnitude speedup is probably achievable with a day or so of
work.

COMPILER INTERNALS

The compiler consists of several phases, outlined below,
o Tokenization: This determines the class of each character in the function being compiled, and produces a character matrix of the
same shape as the function’s display form, with a class type for each character of the function. Failures during tokenization usually

indicate use of numerics in names, use of quad (0), or use of character constants in a function.

e Header analysis: This analyzes the function header, and produces a C function header, locals declarations, and function prolog and
epilog code.

e Syntax analysis: This is performed by a reduction analyzer, implemented as a finite state machine. Each action of the analyzer is
performed by a function named femXY, where X is the current state of the analyzer, and Y is the signal, or token class, of the
next character on the function line being compiled.

e Label analysis: This extracts all labels defined in the function, and produces code to define the labels in the resulting C program.

e Constant analysis: This extracts all constants from the function, generates C constants for them, and replaces occumrences of all
constants with identified references to those constants.

e The compiler generates code for each line of APL, rather than trying to compile the entire function body in parallel. This was
done 1o avoid workspace full errors, as well as for simplicity.

ACORN FEATURES

ACORN offers a number of features not normally found in other compiled languages.

e Function arguments and results have no fixed limits on rank, shape, or number of elements. This preserves the generality of APL
behavior, although it does have a performance impact, particularly in areas such as arithmetic on scalars.
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o Because ACORA produces C source code as its output, programs written in ACORA(and C can be integrated with relative ease.

ACORN RESTRICTIONS

Because the original scope of the project was to perform a feasibility study for compiled APL, funding and time were limited.
Therefore, in the interest of simplicity and rapid implementation, & number of restrictions were placed on the subset of ISO APL which
may be compiled.

Furthermore, the set of primitives which were implemented, and the extent to which they were implemented, were only those
required for the suite of seismic applications we were using as benchmarks. Some of the primitives were only partially implemented,
because the applications didn’t require the full function of the primitive.

The syntax analyzer is incomplete, which means that a number of uncommon but legal APL expressions (such as z+(y)) cause
the compiler to fail.

e The only data type is floating point. This eliminates the requirement to perform semantic analysis, data flow analysis, and also
handily sidesteps the issue of declarations. For many numerically intensive problems, this restriction appears to be a reasonable
limitation, at least initially. For workstation applications and more general applications, it is clearly a showstopper. It also causes
performance problems, as noted below.

® No character constants may be used. This is a reflection of floating point being the only data type.

e Sysiem variables and system functions are not supported.

e Octis 0.

e Oppiss.

e Diois 1.

The tables on the next few pages summarize the facilities and limitations discussed above.
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SCALAR FUNCTIONS

NOTES

B+C
B
BxC
B+C
B|C
BoC
BIiC
BLC

BxC
B=C

B<C

B<C

B>C

B>C

BLC

Lc

re

a,[0folw

Scalar extension is supported
Scalar extension is supported
Scalar extension is supported
Scalar extension is supported
Divide by zero is not supported
Scalar extension is supported
Doesn’t comply with ISO APL for negative numbers
Scalar extension is supported
Left argument must be 4
Scalar extension is supported
Scalar extension is supported
Scalar extension is supported
Scalar extension is supported
Dct assumed zero

Scalar extension is supported
Oct assumed zero

Scalar extension is supported
(et assumed zero

Scalar extension is supported
Oct assumed zero

Scalar extension is supported
Oct assumed zero

Scalar extension is supported
Oct assumed zero

Scalar extension is supported

L71.2is 71, not "2 as in ISO APL

Dect assumed zero

Correct results, but slower than floor

Oct assumed zero

Bracket axis operator not supported for any function
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MIXED and DERIVED FUNCTIONS NOTES

B+.xC No other inner products supported
No scalar extension
Be.xC
Bo . +C No other outer products supported
r/e Last axis only
+4C First axis only
No other reductions supported
\C No error checking
,»C
B,C No scalar extension
B/C Scalars and vectors only
No error checking. Scalar extension supported
¢C Last axis only
&C Rank 2 only
BYC Last axis only
No emror checking. No scalar extension
B:C No error checking. Maximum rank 2
BtC No error checking. Maximum rank 2
Error on attempted negative overtake
B[C) B rank 2 or less. Elided argument supported

Subscript may be of arbtrary rank
Indexed assignment supported
B+C Must be first function in line
a«b+c is forbidden
+(0#{+L-1)P1Ibl is forbidden

¥C Maximum rank 2 or less
Print value on STDOUT
Abbreviates with “..."” for large array
B¥C Print entire array. Left argument ignored
vecin Kk Get k element vector from input file “APLIN"

File assumed to be ASCH string of numbers,
delimited by one or more blanks

FINDINGS

This section presents the most notable findings of the project.

o The SHARP APL rank adverb (©) and from verb ({) proved to be effective tools in circumventing some performance problems
present in ISO APL. In particular, the NMO benchmark originally used a defined function, index, to perform scatter indexing of
points from a matrix. 1SO APL is not very effective at such scatter indexing, and a large amount of the NMO CPU time was spent
in index. Rewriting the {ndex function as the SHARP APL expression £{%1 g made a dramatic improvement in performance.
Additional improvements could be made in NMO by using the rank adverb with multiplication and catenation. These changes
would simplify the APL code as well as reduce the amount of superfluous data movement required.

e Use of static, rather than dynamic scoping, dramatically simplified the problem, without severely impacting practical applications.
It allowed independent compilation of each function, without requiring knowledge of the calling tree.

e Although the Cray hardware supports compress and compress-iota, Cray C does not appear to provide any way of accessing those
facilities. It is possible that performance gains could be made by writing Cray assembler code routines to support these functions,
once ACORA supports Boolean data as bits. Furthermore, in contrast to languages such as FORTRAN, APL’s powerful semantics
open an effective window into the Cray hardware, without impacting application portability.

e Use of reference count techniques for array storage management produced significant performance improvements, and reduced

storage requirements dramatically. These effects are observable in interpreted APL, but are of greater importance on the Cray
XMP, because of the Cray’s relatively slow main storage access times.
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o Use of the compiler across three machines is a clerical nuisance: The compiler runs on a PC/AT. The C source file it produces
has to be uploaded from the PC/AT to the VAX front-end, and then transferred to the Cray for compilation and execution. Cray
job control and link-edit statements for compiling and linking the C programs on the Cray must be manually maintained. If the
APL functions to be compiled reside on the VAX, they must be downloaded to the PC/AT. A seamless, pleasant (“screamless™)
development environment is a priority item for effective use of this technology. Adapting the compiler to run on the VAX front
end would be a considerable improvement.

¢ Treatment of the niladic *main” function required by C programs is somewhat clumsy, because of C’s inability to accept a direct
argument to the “main’ program.

e Since ACORN produces code which consists almost entirely of function calls to the run-time library, we were initially concerned
about the overhead of C function calls. We found that on the Cray, function call overhead was small, less than one percent of the
entire benchmark time, and hence was not a serious problem.

e Another concern was whether or not C storage management functions would perform well enough to let us avoid having to develop
a sophisticated storage manager based on storage pooling. Our chief worry was that storage fragmentation would cause allocation
of a large array to fail, even though such space was available, but non-contiguous. In the interest of empiricism and simplicity,
we adopted C storage management functions without storage pooling. This works adequately, as we have not yet observed any
storage management problems which could be attributed to fragmentation.

e Introduction of “traditional” control structures, such as DO, WHILE, IF/THEN/ELSE, would improve the quality of code which
could be generated in a more sophisticated compiler. In ACORN, the main observable effect of this omission is generation of
clumsier code to support branching than other control structures would require.

AcoxN. PERFORMANCE ON WORKSTATIONS

We initially used SUN 386i workstations and IBM PCs as development and test platforms. Several benchmarks were used to
measure the performance of the resuiting compiled code on the SUN against interpreted APL on the same machine. These are described
below.

e BENCHLOOP: A simple, scalar-oriented loop. This is a typical example of code on which interpreted APL usually performs
poorly.

o ACK: Ackerman’s function, with arguments of 3 and 4. This heavily recursive function is a good measure of the performance of
defined function call and scalar performance.

o NMO: This function is a seismic “normal move out™ application. It is numerically intensive, using outer products, reductions and
interpolations, on large arrays.

e CONV: This function performs convolution on vectors, using a reduction of an outer product between the seismic trace and the
rotated filter. Although we had two versions of convolution, one using reduction of outer product, and one using inner product,
we only timed the outer product version. The APL function used for convolution was:

V r«wz conv trinpad;h

1] hvwze.xtr,(npade(pwz)-1)e0
[2] r~(ptr)t+#(0,-\npad)dh

v

The following table displays the relative performance, in CPU seconds, of some of the compiled code on a SUN 386i, running
SUN OS, compared to the SAX APL interpreter on the same platform.

APPLICATION SAX/386i ACORN/386i
BENCHLOOP 10 56 11
3ACK 4 34 10

NMO 33 16.5

CONV n/a n/a
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AcorN.PERFORMANCE ON CRAY XMP

ACORN performance varies depending on the host and the application. For the particular cases of CONV and NMO on the Cray,
ACORN produced code which executed four and seven times slower than hand-optimized FORTRAN on the Cray XMP, respectively.
In the timings below, the CONV timings are per element of the right argument, for the filter size given.

APPLICATION Cray FORTRAN Cray ACORN
(102 filter) comv 16000rtrace 1.2 pusec/element | 4.6 usec/element
nmo 60 1000rtrace 26 msec 187 msec

We attribute the performance difference to several factors, which are discussed in more detail below.

® Cray C compiler inadequacy: The Cray C4.0 compiler does not optimize as well as the FORTRAN compiler — a simple matrix
product algorithm written in C and FORTRAN took 40% longer in C than in FORTRAN. Cray claims that the next release (C5.0)
of their C compiler will share a common back-end with FORTRAN, and hence should be able to generate code which performs
at least as well as FORTRAN.

o Lack of vectorized run-time library routines: The C4.0 run-time library did not contain vectorized versions of square root (required
by 4O w), floor, and residue. Cray claims that C5.0 will contain vectorized versions of these functions.

o Lack of proper data type support: ACORN supports only double-precision floating point data. This has the highly undesirable effect
of requiring type coercion of all values used for indexing. Our budget and time frame did not permit us to snccessfully vectorize
this coercion. This resulted in severe degradation of NMO performance.

e APL dialect: The APL dialect used in CONV and NMO reflects APL language design as of 1970. Since then, a number of
new capabilities, such as the rank adverb, have come into the language. These capabilities aliow significant reduction in program
complexity, and reduce the amount of main store accesses required to perform many common operations, without sacrificing
portability. However, even with these improvements, APL tends to require additional operations in order to set up arguments to
allow direct use of inner product, and so on. In CONV these contributed to a 19% overhead which would not be required in
FORTRAN.

o Unfamiliarity: Neither Bemecky nor Brenner had any previous experience with Cray hardware. It is likely that we were ignorant
of machine characteristics which, had we exploited (or avoided) them, may have resulted in improved performance.

We believe that C compiler improvements and improved vectorization should allow ACORN to perform comparably to FORTRAN.
A properly designed APL compiler, including data type support, generaling C code instead of run-time library calls, should, because
of APL’s advanced semantics, be able to match or outperform FORTRAN in almost any application. Particularly, these performance
improvements should be apparent when the application must be run on a variety of machine architectures, which would forbid architecture-
specific optimizations in the FORTRAN source program.

Performance Analysis of Convolution

The performance of ACORA on convolution was about one fourth as fast as hand-optimized, unrolled FORTRAN on the Cray
XMP. Although we did not analyze the performance difference in detail, we attribute much of the performance loss to extra storage
operations required by ACORA_, compared to FORTRAN. This is characteristic of a non-optimizing APL interpreter or compiler, and is
not likely 1o be easily corrected in a compiler as naive as ACORN .

o The SHARP APL UNIX (SAX) tesselation adverb could be used in conjunction with other adverbs to describe the convolution
algorithm in a more terse fashion as:

(1,,wz) 39(+.x"wz) tr.
The APL Dictionary [Iv87] describes these facilities. Making effective use of this expression would require significant redesign
of ACORA., but might fall out of a more sophisticated compiler.

Performance Analysis of NMO

The performance of NMO was limited by C compiler restrictions, as well as by ACORA’s inability to generate integer data types.
In 2cORA_, NMO ran about one seventh the speed of hand-coded FORTRAN.

C4.0 run-time library’s lack of vectorized functions for square root, coercion, floor, and residue caused this performance problem,
but we believe that the next release of the Cray C compiler will resolve this.
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SUMMARY

We believe that a production-quality APL compiler will:

e provide researchers with a better tool of thought

o perform as well as FORTRAN and other more traditional languages

o provide researchers with a programming tool which is portable without any changes among disparate machine architectures

o allow researchers and software developers to develop applications and models for supercomputers in a far shorter time frame than
is possible with more primitive languages. This time advantage offers a key market edge to those who are designing new products

with the aid of supercomputers.

These characteristics will combine synergistically to allow researchers whose major discipline may not be computing to make far
more effective use of computers and their own time than they are able to do today.

ACORN has opened the door into a realm of more intelligent and effective use of supercomputers and workstations, and has planted

the seeds of further development in that fertile area. Our next task is to enter that realm, and cultivate its land, so that we may 1eap the
benefits of deeper understanding of our world and universe.
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