
~cc%?(!!: APL to C on Real Numbers 

Rcben Bemecky 
18 Fifth Street 
Ward’s Island 
Torcmto, Ontario MU 2B9 
Cuudr 
(416) 368-6944 

Charles Brenner Stephen B. Jlffe George P. Moeckel 
2300 Grand Canal Mobil Research and Developneat Corp. Mobil Resurcll and Dcvclopmcnt Corp. 
Venice, California Paulsborc Reaeuch Laboratory Dallas Research Moratcry 
90291 Paulsboro. New Jersey 08066 13777 Midway Road 
USA USA Dallas. Texas 75234 
(213) 827-7009 (609) 423-1040 USA 

014) 851-8702 

ABSTRACT 

A prototype APL to C compiler (Km: APL to C On Real Numbers) was produced while investigating improved tools for 
solving numerically intensive problems on supercomputers. -currently produces code which N~S slower than hand-coded Cray 
FORTRAN, but we have identified the major performance bottlenecks, and believe we know how to remove them. Although created in a 
short time on a limited budget and intended only as a proof of the feasibility of compiling APL for numerically intensive environments, 
aC0!Q( has shown that straightforward compiled APL will be able to compete with hand-optimized FORTRAN in many common 
supercomputer applications. 

BACKGROUND 

Supercomputers are an expensive resource: they are costly, and require highly trained expert programmers to make effective use of 
them. In a research environment, this can be deadly - today, researchers with expertise in disciplines such as geophysics are dependent 
on those experts to solve their problems. In many environments, this can lead to bottlenecks and delays - a researcher wishing to model 
behavior of some system may have to wait months before an expert is available; alternately, he or she may be forced to write a model in 
ignorance, perhaps suffering one or more orders of magnitude performance degradation. When studying large problems, whose solutions 
may take at best hours, the spectre of days or weeks of processor time is daunting. 

A language such as APL offers a possible solution. APL is an abstract language, in which you describe what you want done, not 
how to do it. The “how” decision is left to the computer or compiler writer. For example, the sum of a list of numbers, n, ia written 
in APL as +/n, whereas scalar-oriented languages require the programmer to write a loop. As well, the performance of semantically 
deficient languages such as FORTRAN and C have traditionally been sensitive to the way expressions are written - interchanging two 
loops might make a dramatic difference in the performance of a program. 

Because APL tends to bury loops within primitive expressions, loop interchange and other performance-related transformations can 
be made automatically and dynamically beneath the level of user visibility. This can simplify the user’s program - detailed concerns 
about machine dependencies need not appear as explicit source code. This increases the portability of the program, when measured in 
terms of program efficiency on a number of machine architectures. 

Architectural dependencies also affect performance, making one construct of loop faster on one system and slower on another. 
These dependencies hinder code portability. By hiding loops and other superfluous details, APL allows the programmer to rise above 
these concerns and concentrate on the essence of the problem at hand. The compiler writer can create optimal code for the specilic 
target architecture, producing more efficient code than the average programmer is capable of providing. 

The advanced semantics of APL offer another benefit By providing primitive capabilities such as set membership, the programmer 
is freed from the problem of writing an efficient set membership function for a particular machine - the job is already done, and done 
well by a professional programmer. This may seem a trivial matter, but efficient methods for performing commonly required operations 
such as sorting, matrix product. and set membership differ dramatically from one machine architecture to another. Failure to describe 
these operations in an abstract manner cripples attempts to write portable, efficient applications. 
Permission to copy without fee all or part of this material is granted provided that 

the copies are not made or distributed for direct commercial advantage, the ACM 

copyright notice and the title of the publication end its date appear, and nOtiCe 
is given that copying is by permission of the Association for Computing 

Machinery. To copy otherwise, or to republish, requires a fee and/or Specific 

permission. 
. 1990 ACM 089791-371-x/90/0008/M140...91.50 

ACO!QY: APL to C on Real Numbers 40 APL90 



Discussions with Stephen Jaffe and George Moeckel of the Dallas Research Laboratory of Mobil Research and Development 
Corporation (MRDC) led to a joint research project between MRDC and LP. Sharp Associates Limited @%A), to study rhe use of APL 
as a delivery vehicle for parallel computation. 

The basic question we have tried to answer in this project is: 

Can a naive APL compiler produce code of su&ienl pe$orrnance and reliability to qualify if as a practical loo1 for S&i.?tg 

numerically irrlenrive problems? 

We chose APL because of its outstanding track record as a prototyping and modelling tool [Be86, Yo861, and its effectiveness in 
conceptualizing and formulating logic. In addition, APL’s advanced semantics allow it to take advantage of state of the art SIMD and 
MIMD computers now appearing on the scene, without requiting programmers mu change their programming styles. 

We felt that a naive APL compiler that performed little or no classical optimizations might, because of the powerful semantics of 
APL. provide adequate performance for a number of applications. There were two ways in which we thought this might occur; these 
are outlined below. 

l A compiler performs syntax analysis once, rather than continuously, as an APL interpreter must do. Since syntax analysis often 
represents lO-30% of the entire processor time associated with an interpreted APL application, there are gains to be made here. 
The applications which suffer most from syntax analyzer overhead are those which are highly iterative or recursive, and in which 
the arrays being processed are very small. 

l Large, numerically intensive computations of the type which are common in supercomputer applications often spend a large amount 
of time executing what in APL are single primitives, such as inner p&duct, outer producL and matrix inversion. A compiler which 
merely optimized the run-time library for these primitives would obtain many of the speedups available in a highly optimized 
compiler for a language with more primitive semantics, such as FORTRAN, where the code for commonly used functions such as 
matrix problems are spread across a large number of primitive operations. 

The original project specified hand-compilation of a few seismic applications into Cray FORTRAN or assembler code. We quickly 
abandoned assembler as being non-portable and non-productive. When we heard about the availability of the C language on the Cray, 
we decided to compile to C instead. 

C. often considered a generic assembler code, offers a number of desirable facilities such as portability, simplicity, and relatively 
good performance. In addition, C is a more functional language than FORTRAN, so the mapping from APL to C was a fairly obvious 
and straightforward design problem. 

Early in the study, we obtained a copy of Timothy Budd’s APL to C compiler [Bu83]. This university-developed compiler is 
available without license fee, and we thought it might be a quick solution to our problem. Jiri Dvorak, of the IPSA APL Systems 
Development Department, spent some time attempting to make the compiler work. but found that the compiler was not robust enough 
for our use, and we dropped it. 

One of us (Bernecky) started to hand-code the translated APL, but the tedium of the job quickly convinced us that writing a 
translator was less effort. We therefore decided to write our own compiler. Bemecky and Charles Brenner (an independent consultant 
under contract to IPSA) then developed a prototype compiler, dubbed /ICmq: APL to C on Red Numbers, which we feel demonstrates 
both the feasibility of, and problems associated with, compiling a subset of IS0 APL [IS0841 for supercomputers. Bernecky wrote the 
token&r, syntax analyzer, and code generator in SHARP APL/PC. Brenner wrote the initial run-time library in C. Jaffe and Moeckel 
provided a suite of seismic applications, written in APL, which served as our benchmarks. 

OTHER APL COMPILERS 

A number of attempts have been made to produce APL compilers. Stephen Crouch, of the I.P. Sharp Network Development 
Department, developed a compiler [Cr84] in 1981-1984 with restrictions similar to those of XXX& which was used to produce code 
for the Computer Automation Alpha/LS1 minicomputers then in use as IPSANET node computers. 

The Budd and Sofremi [Gu85] compilers generate C code as their output. STSC’s APL compiler m79] compiles APL to 
370 machine code. ‘Iwo IBM compilers [Dr85, Ch88] are research projects; however, detailed information about their performance or 
internals, beyond that described in the abovecited papers, is currently unavailable. The Driscoll and Orth compiler generates FORTRAN 
as its output; Ching’s compiler generates 370 machine code. 

One underlying assumption is that these problems are computationally dominated by non-linear computations such as matrix divide, 
inner producf and outer product on large arrays. Such problems lend themselves well to APL, and a compiler that doesn’t perform 
classical optimizations should perform at an adequate level. Of course, an optimizing APL compiler (OAK?) might make things even 
better. but that was beyond the scope of this research project. 

APL QUOTE QUAD 41 Bernecky, Brenner,Jaffe, Moeckel 



COMPILER OVERVIEW 

i(CUT&‘s input is the canonical representation of an APL function, or the name of an APL function in the TOM workspace. Its 
character matrix result is a C function corresponding to the input function. The cover function comp$te Performs the additional work 
required to place the resulting C source code on a DOS file, in ASCII format. 

The C functions created by Kahave the following characteristics. 

l APL labels and constants become static constants in the C code. 

l Functions called by the APL function are presumed to be C functions created by x0%&. 

l APL kds become C locals, represented as C structures which point into the C heap where the actual array data is stored. The C 
SIructure which represents APL arrays is described in me C TYPEDEF VAR. contained in file APL.H. 

l APL globals become C static globals, represented in the same way as APL locals. 

l Each primitive function or userdefined function is compiled into a C function call to a run-time library function, or to a compiled 
user-defined function. 

In the interest of simplicity, storage management is lefk as much as possible, to C. ?he inability to compact the heap is a potential 
problems for certain applications, although we have not yet had any problems in this area. If such problems do arise, then a more 
sophisticated storage manager, which supports compaction, may be required. This might also provide improved performance over C 
storage management functions. 

54COmmaintains a reference count and an element count ( X/PW) for arrays. Reference counts allow several objects to refer to the 
same array without physically copying the array. Element count is frequently required by APL primitives; for example, multiplication 
needs to know how many elements are in the arrays to be multiplied. 

Compile times on a 3090 class mainframe running SHARP APL are under a second. On a PC/AT class machine, under SHARP 
APL/PC, compile times are roughly one minute per line of code. Because of the prototypical nature of the work, no effort whatsoever 
was made to improve compilation performance. However, an order of magnitude speedup is probably achievable with a day or so of 
work. 

COMPILER INTERNALS 

The compiler consists of several phases, outlined below. 

l Tokenization: This determines the class of each character in the function being compiled, and produces a character matrix of the 
same shape as the function’s display form, with a class type for each character of the function. Failures during tokenization usually 
indicate use of numerics in names, use of quad (0). or use of character constants in a function. 

. Header analysis: This analyzes the function header, and produces a C function header, locals declarations, and function prolog and 
epilog code. 

. Syntax analysis: This is performed by a reduction analyzer, implemented as a finite state machine. Each action of the analyzer is 
perform& by a function named fsmXY, where X is the current state of the analyzer, and X is the signal, or token class, of the 
next character on the function line being compiled. 

. Label analysis: This extracts all labels defined in the function, and produces code to &fine the labels in the resulting C program. 

. Constant analysis: This extracts all constants from the function, generates C constants for them, and replaces occurrences of all 
constants with identified references to those ~~n.starttS. 

. The compiler generates code for each line of APL, rather than trying to compile the entire function body in parallel. This was 
done to avoid workspace full errors, as well as for Shpli+‘. 

xo!q+!FEATURES 

ACOHoffers a number of features not normally found in other compiled languages. 

l Function arguments and results have no fixed limits on rank, shape, or number of elements. This preserves the generality of APL 
behavior, &ough it does have a performance impact, particularly in areas such as arithmetic on scalars. 

XO!Qf: APL to C on Real Numbers 42 APL90 



l Because X~produces C source code as its output, programs written in KDg&‘and C can be integrated with relative ease. 

Because the original scope of the project was to perform a feasibility study for compiled APL, funding and time were limited 
Therefore, in the interest of simplicity and rapid implementation, a number of restrictions were placed on the subset of IS0 APL which 
may be compiled. 

Furthermore, the set of primitives which were implemented, and the extent to which they were implemented, were only those 
required for the suite of seismic applications we were using as benchmarks. Some of the primitives were only partially implemented 
because the applications didn’t require the full function of the primitive. 

The syntax analyzer is incomplete, which means that a number of uncommon but legal APL expressions (such as z+( y)) cause 
the compiler to fail. 

0 The only data type is floating point. This eliminates the requirement to perform semantic analysis. data flow analysis, and also 
handily sidesteps the issue of declarations. For many numerically intensive problems, this restriction appears to be a reasonable 
limitation, at least initially. For workstation applications and more general applications, it is clearly a showstopper. It also causes 
performance problems, as noted below. 

l No character constants may be used. This is a reflection of floating point being the only data type. 

l System variables and system functions are not supported. 

0 Dct is 0. 

0 Dpp is 5. 

0 Oio is 1. 

The tables on the next few pages summarize the facilities and limitations discussed above. 

APL QUOTE QUAD 43 Bernecky, Brenner,Jaffe, Moeckel 



SCALAR FUNCTIONS 

B+C 

B-C 
BxC 

BK 

BIG 

Bee 

Brc 
BLC 
B*C 

8--c 

B<C 

BsC 

BZC 

BX 

BLC 

-c 
LC 

rc 

a, COiol~ 

NOTES 

Scalar extension is supported 
Scalar extension is supported 
Scalar extension is supported 
Scalar extension is supported 
Divide by zero is not supported 
Scalar extension is supported 
Doesn’t comply with IS0 APL for negative numbers 
Scalar extension is supported 
Left argument must be 4 
Scalar extension is supported 
Scalar extension is supported 
Scalar extension is supported 
Scalar extension is supported 
lkt assumed zero 
Scalar extension is supported 
Cl& assumed zero 
Scalar extension is supported 
Ott assumed zero 
SC&V extension is supported 
Ott assumed zero 
Scalar extension is supported 
Ott assumed zero 
Scalar extension is supported 
Uct assumed zero 
Scalar extension is supported 

L-1.2 is -1, not -2 as in IS0 APL 
q ct assumed zero 
Correct results, but slower than floor 

Dct assumed zero 
Bracket axis operator not supported for any function 

aCO!Qq;: APL to C on Real Numbers 44 APL90 



MD(ED and DERIVED FUNCTIONS 

B+.xC 

Bo.xC 
Bo .+C 

r/c 

LC 

PC 
B,C 
B/C 

B+C 
BtC 

BCCI 

B+C 

ic 

BW 
oecin k 

NOTES 

No other inner products supported 
No scalar extension 

No other outer products supported 
Last axis only 
First axis only 
No other reductions supported 
No error checking 

No scalar extension 
Scalars and vectors only 
No error checking. Scalar extension supported 
Last axis only 
Rank 2 only 
Last axis only 
No error checking. No scalar extension 
No error checking. Maximum rank 2 
No error checking. Maximum rank 2 
Error on attempted negative overtake 
B rank 2 or less. Elided argument supported 
Subscript may be of arbtrary rank 
Indexed assignment supported 
Must be first function in line 
a+b+c is forbidden 
+( O#i+i-1) P lb1 is forbidden 
Maximum rank 2 or less 
Print value on STDOUT 
Abbreviates with ‘I...” for large array 
Print entire array. Left argument ignored 
Get k element vector from input file “APLIN” 
File assumed to be ASCIJ sting of numbers, 
delimited by one or more blanks 

FINDINGS 

This section presents the most notable findings of the project. 

l The SHARP APL rank adverb (y) and from verb (4) proved to be effective tools in circumventing some performance problems 
present in IS0 APL In particular, the NM0 benchmark originally used a defined function, <n&z, to perform scatter indexing of 
points from a matrix. IS0 APL is not very effective at such scatter indexing. and a large amount of the NM0 CPU time was spent 
in in&z. Rewriting the index function as the SHARP APL expression o< yl u made a dramatic improvement in performance. 
Additional improvements could be made in NM0 by using the rank adverb with multiplication and catenation. These changes 
would simplify the APL code as well as reduce the amount of superfluous data movement required. 

l Use of static, rather than dynamic scoping, dramatically simplified the problem, without severely impacting practical applications. 
It allowed independent compilation of each function, without requiring knowledge of the calling tree. 

l Although the Cray hardware supports compress and compress-iota, Gray C does not appear to provide any way of accessing those 
facilities. It is possible that performance gains could be made by writing Cray assembler code routines to support these functions, 
once ~~~supports Boolean data as bits. Funhermore, in contrast to languages such as FORTRAN. APL’s powaful semantics 
open an effective window into the Cray hardware, without impacting application portability. 

l Use of reference count techniques for array storage management produced significant performance improvements, and reduced 
storage requirements dramatically. These effects are observable in interpreted APL, but are of greater importance on the Cray 
XMP, because of the Cray’s relatively slow main storage access times. 

APL QUOTE QUAD 45 Bernecky, Brenner, Jaff e, Moeckel 



l Use of the compiler across three machines is a clerical nuisance: The compiler runs on a PC/AT. The C source file it produces 
has to be uploaded from the PC/AT to the VAX front-end, and then transferred to the Cray for compilation and execution. Cray 
job control and link-edit statements for compiling and linking the C programs on the Cray must be manually maintained. If the 
APL functions to be compiled reside on the VAX, they must be downloaded to the PC/AT. A seamless. pleasant (“screamless”) 
development environment is a priority item for effective use of this technology. Adapting the compiler to run on the VAX front 
end would be a considerable improvement. 

l Treatment of the niladic “main” function required by C programs is somewhat clumsy. because of C’s inability to accept a direct 
argument to the “main’ program 

l Since %O~produces code which consists almost entirely of function calls to the run-time library, we were initially concerned 
about the overhead of C function calls. We found that on the Gray, function call overhead was small, less than one percent of the 
entire benchmark time, and hence was not a serious problem. 

l Another concern was whether or not C storage management functions would perform well enough to let US avoid having to develop 
a sophisticated storage manager based on storage pooling. Our chief worry was that storage fragmentation would cause allocation 
of a large array to fail. even though such space was available, but non-contiguous. In the interest of empiricism and simplicity, 
we adopted C storage management functions without storage pooling. This works adequately, as we have not yet observed any 
storage management problems which could be attributed to fragmentation. 

l Introduction of “traditional” control structures, such as DO, WHILE, IF/lIlEN/ELSB, would improve the quality of code which 
could be generated in a more sophisticated compiler. In Km, the main observable effect of this omission is generation of 
clumsier code to support branching than other control structures would require. 

acolllr( PERFORMANCE ON WORKSTAVONS 

We initially used SUN 3863 workstations and IBM PCs as development and test platforms. Several benchmarks were used to 

measure the performance of the resulting compiled code on the SUN against interpreted APL on the same machine. These are described 
below. 

l BENCHLOOP: A simple, scalar-oriented loop. This is a typical example of code on which interpreted APL usually performs 
poorly. 

l ACK: Ackerman’s function, with arguments of 3 and 4. This heavily recursive function is a good measure of the performance of 
defined function call and scalar performance. 

l NMO: This function is a seismic “normal move out” application. It is numerically intensive, using outer products, reductions and 
interpolations, on large arrays. 

l CONV: This function performs convolution on vectors, using a reduction of an outer product between the seismic trace and the 
rotated filter. Although we had two versions of convolution, one using reduction of outer produG and one using inner product, 
we only timed the outer product version. The APL function used for convolution was: 

P rcwz conv tr;npad;h 
C11 h+mO. xtr,(npa&(P~zI-1)PO 
L23 z-4 ptr) t+f( 0, -~npad)@h 
V 

The following table displays the relative performance, in CPU seconds, of some of the compiled oode on a SUN 386i. running 
SUN OS, compared to the SAX APL interpreter on the same platform. 

APPLICATION SAXI386i ACORN/386i 

BENCHLOOP 10 56 11 
3ACK4 34 10 

NM0 33 16.5 
CONV n/a n/a 

aco&?(: APL to C on Real Numbers 46 APL90 



xo~PERFORMANCE ON CRAY XMP 

KOzQ&zrformance varies depending on the host and the application. For the particular cses of CONV and NM0 on the Gay, 
KOwproduced code which executed four and seven times slower than hand-optimized FORTRAN on the Cray XMP. respectively. 
In the timings below, the CONV timings are per element of the right argument, for the filter size given. 

APPLICATION Cray FORTRAN Cray ACORN 

(102PfiZter) conv 16000Ptrace 1.2 pseclelement 4.6 pseclelement 
nmo 60 1OOOPtrace 26 msec 187 msec 

We attribute the performance difference to several factors, which are &cussed in more detail below. 

l Cray C compiler inadequacy: The Cray C4.0 compiler does not optimize as well as the F0RTRAN compiler - a simple matrix 
product algorithm written in C and FORTRAN took 40% longer in C than in FORTRAN. Cray claims that the next release (C5.0) 
of their C compiler will share a common backend with FORTRAN, and hence should be able to generate code which performs 
at least as well as FORTRAN. 

l Lack of vector&d run-time library routines: The C4.0 run-time library did not contain vectorized versions of square root (required 
by 40 w), floor, and residue. Cray claims that C5.0 will contain vector&d versions of these functions, 

l Lack of proper data type support: 3l&7(@.upports only double-precision floating point data. This has the highly undesirable effect 
of requiring type coercion of all values used for indexing. Our budget and time frame did not permit us to successfully vectorize 
this coercion. This resulted in severe degradation of NM0 performance. 

a APL dialect: The APL dialect used in CONV and NM0 reflects APL language design as of 1970. Since then. a number of 
new capabilities, such as the rank adverb, have come into the language. These capabilities allow significant reduction in program 
complexity, and reduce the amount of main store accesses required to perform many common operations, without sacrificing 
portability. However, even with these improvements, APL tends to require additional operations in order to set up arguments to 
allow direct use of inner product, and so on. In CONV these contributed to a 19% overhead which would not be required in 
FORTRAN. 

l Unfamiliarity: Neither Bemecky nor Brenner had any previous experience with Cray hardware. It is likely that we were ignorant 
of machine characteristics which. had we exploited (or avoided) them, may have resulted in improved performance. 

We believe that C compiler improvements and improved vectorization should allow ~JCmto perform comparably to FORTRAN. 
A properly designed APL compiler, including data type support, generating C code instead of run-time library calls, should, because 
of APL’s advanced semantics, be able to match or outperform FORTRAN in almost any application. Particularly, these performance 
improvements should be apparent when the application must be run on a variety of machine architectures. which would forbid architecture- 
specific optimizations in the FORTRAN source program. 

Performance Analysis of Convolution 

The performance of &3I$‘(on convolution was about one fourth as fast as handoptimized. unrolled FORTRAN on the Cray 
XMP. Although we did not analyze the performance difference in detail, we attribute much of the parformance loss to extra storage 
operations required by Z4COm. compared to FORTRAN. This is characteristic of a nonoptimizing APL interpreter or compiler, and is 
not likely to be easily corrected in a compiler as naive as xm. 

a The SHARP APL UNIX (SAX) tesselation adverb could be used in conjunction with other adverbs to describe the convolution 
algorithm in a more terse fashion as: 

(1, PIJZ> 3~(+.x”wz) tr. 

The APL Dictionary [Iv871 describes these facilities. Making ~ffdve use of this expression would require significant redesign 
of Km, but might fall out of a more sophisticated qmpiler. 

Performance Analysis of NM0 

The performance of NM0 was limited by C compiler restrictions, as well as by mm’s inability to generate integer data types. 
In Km%, NM0 ran about one seventh the speed of hand-coded FORTRAN. 

C4.0 run-time library’s lack of vectorized functions for square root, coercion, floor, and residue caused this performance problem, 
but we believe that the next release of the Cray C compiler will resolve this. 

APL QUOTE QUAD Bernecky, Brenner,Jaffe, Moeckel 



We believe that a productionquality APL compiler will: 

l provide researchers with a better tool of thought 

l perform as well as FORTRAN and other more traditional languages 

l provide researchers with a programming tool which is portable without uny changes among disparate machine architectures 

l allow researchers and software developers to develop applications and models for supercomputers in a far shorter time frame than 
is possible with more primitive languages. This time advantage offers a key market edge to those who are designing new products 
with the aid of supercomputers. 

These characteristics will combine synergistically to allow researchers whose ma$r discipline may not be computing to make far 
more effective use of computers and their own time than they are able to do today. 

AC’Omhas opened the door into a realm of more intelligent and effective use of supercomputers and workstations. and has planted 
the seeds of further development in that fertile area. Our next task is to enter that realm, and cultivate its land, so that we may reap the 
benefits of deeper understanding of our world and universe. 

ACKNOWLEDGMENTS 

We received considerable assistance in the use of SUN workstations and UNIX 6om Mark Czerwinski, Walter Schwarz, and 
Heather Bowen. Gordon Ross provided valuable assistance in the installation and use of IBM/370 C compilers. Don Isgitt and Dale 
Mihalyi assisted us in the generation of seismic test data and educated us in the use of the Gray. Elena Anzalone edited the report, 
improving its readability and organization. Any problems with layout, formatting, and content are Bernecky’s doing. 

BIBLIOGRAPHY 

This bibliography contains a number of entries for documents which are not cited in the report, but which are relevant to the 
problem. 

Ab70 Abrams. P.. An APL Machine. SLAC report #114, Stanford University, 1970. 

Be86 Bemecky, R., APL: A Prototyping Language. APL86 Conference Proceedings, 1986. 

Bu81 Budd, T. and TreaL J., Extensions to Grid Selector Composition. University of Arizona Technical Report 81-17, 1981. 

Bu83 Budd, T. A., An APL Compiler for the UNIX Timesharing System. APL83 Conference Rocedings. 1983. 

Ch88 Ching. W. and Xu. A., A Vector Back End of the APL370 Compiler on IBM3090 and Some Performance Comparisons. APL88 
Conference Proceedings, 1988. 

Cr84 Crouch, S.. Real-time APL Compiler. Version 0.0. I.P. Sharp Associates Internal Document, 1984. 

Dr85 Driscoll. G.C. and Orth, D.L.. APL - Compilation - Where does the time come from? APL85 Conference Roceedings, 1985, 

Gu78 Guibas, L. and Wyatt, D.. Compilation and Delayed Evaluation in APL. Conference Record of the Fifth ACM Symposium on 
Principles of Programming Languages, 1978. 

Gu85 Guillon. A., An APL Compiler: ‘Ibe SOFREMI-AGL Compiler, A Tool ta Roducc LOW- cost Efficient Software. APL85 
Conference Proceedings, 1985. 

IS084 IS084853 Standard for Rogramming Language APL. 

Iv87 Iverson. K.E., A Dickmary of APL, APL Quote Quad, Vol. 18, No. 1. September 1989. 

Ka78 Kaplan, M. and Ullman, J.D., A General Scheme for the Automatic Inference of Variable Types. Conference Record of the Fifth 
ACM Symposium on the Principles of Rogramming Languages, 1978. 

Ko85 Koster, A., Compiling APL for Parallel Execution on an FFP Machine. APL85 Conference Pmceedings, 1985. Thk pclper contui~ 
a fairly enensive bibliography on other relevatu publications. 

aco~@(: APL to C on Heal Numbers APL90 



Mi79 Miller, T., Type Checking in an Imprefect World. Conference Proceedings of the Sixth ACM Symposium on the Principles of 
Programming Languages, 1979. 

Mu81 Muchnick. S.S. and Jones, N.D. (eds), Program Plow Analysis: Theory and Applications. Prentice Hall, 1981. 

Ru85 Rudd, J. and Klementis, E.M., APL to ADA Translator. APL85 Conference Proceedings, 1985. 

S177 Strawn, G.O., Does APL Really Need Run-time Parsing. Software - Practice and Experience, 7:193-200. 1977. 

We81 Weiss, Z., and Saal, H.J., Compile Time Syntax Analysis of APL Programs. APL81 Confaence Proce&ngs, 1981. 

We85 Weigang. J., An Introduction to STSC’s APL Compila. APL85 Conference Roceedings 1985. 

Wi79 Wmdman, C.. Steps Toward an APL Compiler. APL79 Conference Proceedings, 1979. 

Y&6 Yoshino, M., APL as a Prototyping Language: Case Study of Compiler Development Reject APL86 Conference Proceedings, 
1986. 

APL QUOTE QUAD 49 Bernecky, Brenner,Jafi e, Moeckel 


