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This paper presents a working model of APL syntax and semantics 
that incorporates explicit representations of functions, operators, and 
syntax, thus providing a basis for the clear and explicit statement of 
extended facilities in the language, as well as a tool for experimenta- 
tion upon them. Use of the model is illustrated in the treatment of 
the syntax of operators, and in the discussion of a number of new 
or recently-proposed facilities including indirect assignment, the oper- 
ators axis, derivative, inverse, and til, and the functions link, and 
from. The entire model is included in an appendix. 

The model is expressed in SHARP APL as extended in [1] but, 
because it uses few special features (endose, disclose, close composi- 
tion, and dual) it should translate easily into other systems (such as 
NARS [2] and APL2 [3]) that provide some form of enclosed arrays. 

We will begin with the overall behaviour of the model as seen in 
the definition and use of the two outer functions APL and ~ (the "stack 
manager" that applies to the left stack ~ of the expression to be 
evaluated, and a fight stack ~ of intermediate results), and continue 
with the tabular definition of syntax, and the representations of func- 
tions and operators. 0-origin indexing is used throughout, and en- 
closed arrays are normally displayed within enclosing vertical bars, 
as determined by the setting lIPS*- 1 1 0 3 (see Reference [4]). 

The function APL accepts literal input and executes the expression 
entered, using definitions of extended functions and operators already 
provided. For example: 

APL 
Q~-3 2 4p'L24 Reduced indent 

within the model. 
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F Q  
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Assign the name F 
to this ravel 

R-+ An expression preceded by n is executed in raw 
APL; this exits 

The function APL and its main supporting function are defined as 
follows: 

A2L; Z ;X;NORE;[]PS 
NORE~-<< 0 2 3 5 7 pOx[]PS÷ 1 
Li:÷(^/' ' =X+{~L[~-' ')/Li 
÷( ,A,~I÷X÷(+/^\, '=dI)~'X)/L2 

÷Li 
~2:i~÷(~+'=.,E ~) ~ ' '  
÷( '÷'=' 'p,>i+(~ }i)l~I)l,~l 
÷L1,0p[>'~ ((0=pp>Z)/' > ' ), ' >Z ' 

- -1 0 -3 

Z÷I,>AEtZ["p~ g] 

The main action is the application of the stack manager ~. to an 
empty right stack and a left stack of enclosed individual tokens 
(names, primitives, constants, etc.) produced by the tokenizing func- 
tion Z/~. The function ~ simply executes one of a set of actions 
represented in the vector ACT, selection from ~ being determined 
by the action and classes function ~ ,  which in turn depends on the 
syntax table $..~. The followingdisplay of ~ appears in enclosing 
bars because of [3PS~-I -I 0 3: 

~,"<ACT 

I(>"pZ)~(I+Z÷L ~ 4=I÷,p2>p">B),~I 
IL ~((>>B[O]) I..$.~[2]),3+B1 
IL ~(2÷B),(B[2],~ ~ [ ,3 ] ) ,4~1  

15 ~(I¢~),(~[2]E,E ~[1 33),4+~1 
I~ ~(I÷~),(g[2]E,E g[ ,1]) ,3+~l  
1 t '~ [1 ] ' , (2<p~) / '~  NOT CLEARo'I 
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In order to peovide convenient tracing of the execution we 
incorporate in ~ three uses of a trace function Z/ /as  follows: 

Z÷~,>ACT["p' ACS' 2// ,a2 'R: ' 22&], 
0p'L: ' 2J~ ~ 

The display produced by Z// consists of its left argument followed by 
its right, except that the number of rows displayed is limited by the 
magnitude of the trace control variable T0; if TO is positive, the 
display is suppressed (except for a blank line) if the left argument 
of Z//begins (as it does in the first occurrence of ~ with a space. 
Finally, the display of a function is limited to its primary part, the 
body and axes. Thus: 

L: 
R: 
L: 
R: 
L: 
R: 
L: 
R: 
L: 
R: 
L: 
R: 
Z: 
R: 

L: 
R: 
L: 
R: 

L: 
.R: 

APL 
AT0~-I 
(÷4)+5 
I ( I  I÷1 Igl I)1 I+1 151 

I ( I  "1÷1 141 I)1 I+1 
11511 
I ( I  I÷1 Igl I)1 
IIIn<<(>>a)+>>~ll IIn<<+>>ulll 1151 
I÷1 Igl 

*1 
1411 

IIn<<(>>a)÷>>~ll IIn<<÷>>=lll 1141 

nl IIIA<<(>>a)÷>>ull IIn<<÷>>=lll 14 
II 

nl 11o.2511 

Io.2511 IIIn<<(>>a)+>>~ll IIn<<+>>=l-I 
111511 

IAI 110.2511 IIl~<<(>>a)+>>=ll IIA<<+ 
>>~111 11511 

L: 
R: Inl 115.2511 
5.25 

The five segments of this example beginning with L: I÷1 141 
illustrate the recursive use of ~ to handle parenthesized expressions. 
The details of the representatibns of the functions ÷ and + (whose 
first lines appear in the displays of the right stack) may be ignored 
for the moment. 

The "left evaluation" function . ~  handles the transfer of successive 
tokens from the input text to the righthand stack of intermediate 
results. Because the evaluated result in the right stack has no 
connection with the original names, the treatment of "fide-effects" in 
expressions such as (,4*-3)(`44-+ )`4+.g is dearly defined. For example: 

AT04-0 
(`4~-3) (A+÷) A~-~t 

0.75  
,4 

3 

The example may be repeated with TO set to 1. 

The func t ion /~  normally evaluates each token and transfers the 
evaluated result to the right stack, but if the first element on the right 
stack is an assignment arrow, the evaluation is suppressed. For 
example: 

L: 
R: 
L: 
R: 
L: 
R: 

L: 
R: 

L: 
R: 

L: 
R: 
L: 
R: 
L: 
R: 
I: 
R: 

A~-'BOD' 
AT0~-I 
`4÷A,A 
I`4J I÷I IAI I,l I`41 

IAI I÷1 IAI I , I  
IIBCDII 
IAI I+1 IAt 
I I IA<<(>>a),>>=ll  

I IIBCDII 
IAI I÷1 
I I ~ D I I  l l ln<<(>>a),>>=ll  

I I lIaCOll 
IAI 
I÷1 IIBCDII II IA<<(>>a),>>=l 

>>=11 I IlBCDII 
1̀ 41 
I÷1 IIBCDBCDrl 

I In<<.>>=ll 

Aggj>>W I 

I1"<<. 

I IA I I  I+1 IIBCDBCDII 

IAI IIBCDBCDII 

ATo~-o 
A 

BCDBCD 

A. SYNTAX 

APL syntax questions may be characterized as old or new, the 
latter referring to the new questions raised by the general treatment 
of operators, and the former to old problems introduced by anomalies 
such as the treatment of brackets and semicolons in indexing, in axis 
operators, and in mixed output. 

The old questions will here be treated as obsolescent, that is, 
nothing will be done to disturb existing definitions, either to invalidate 
their use in existing programs, or to extend them and encourage their 
use. The use of semicolons and brackets is therefore ignored in the 
model; in an actual implementation they could either be treated by 
established ad hoc mechanisms, or they could be eliminated by a 
"preprocessing" translation to equivalent normal expressions. 

The new questions are addressed in the model by the action and 
classes function ~ ,  which examines the stack of intermediate results 
to determine what action is to be taken next. In the syntax proposed 
here, this function depends only on the first four elements of the 
intermediate results, and depends only on the class of each of these 
elements. 

The classes and their numeric encodings are as follows: 

0 Variable 
1 Monadic operator 
2 Dyadic operator 
3 Function 
4 Assignment arrow 
5 Left filler (exhaustion of the left stack, denoted in a trace by 

~) 
8 Right filler (exhaustion of the right stack) 

The encodings of the first four correspond to the valences of the 
entities represented (allowing 3 as the sum of the potential valences 
of a function). They also correspond to the ranks of the arrays whose 
enclosures represent the entities. Consequently the expression p'" 
o>p">u occurring in the function ~2 determines the class of each 
element of the argument w. 
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The syntax rules are, in effect, the manner in which the next action 
is chosen according to the classes of the intermediate result. This 
choice is made by the function dI2 (Action and Classes) in two steps: 

1. The classes of the first four elements of//(completed by the filler 
code 6) are matched with the rows of the first four columns of the 
symbol table ~.,~, each individual comparison being negated if the 
element of ~ is negative; thus an entry 2 designates anything 
except a dyadic operator. 

2. The first matching row selects the corresponding element of the 
last column of ~ to be used (in ~) as an index to the table of actions 
,dE..~. The classes are included in the result of the function At2 only 
for use in tracing. 

The proposed syntax table is defined as follows: 

7 4 7 6 1  
1 3 0 - 7 3  
3 3 0 7 3  
5 3 0 ? 3  
4 3 0 7 3  
2 0 3 0 2  
2 0 3 0 4  
2 1 2 7 4  
2 1 1 7 5  
5 5 7 7 6  
7 7 7 7 0  

However, it can be studied more easily in a display (produced by the 
function SYNTAX) which substitutes for each numeric code a more 
mnemonic representation, and appends the corresponding action 
chosen from the table A~_.~. Thus: 

I~-AR 
MPVA 
F IWC A 
LIWA 
÷FVA 
DVFV 
12~I'¢ 
Z~DA 
~A 
Z~AA 
AAAA 

[3PS÷-1 I 00 
I÷((-75321),17)t0 -I+~Y~ 
C÷117{'ALFDMVMDF÷LR'[I] 
c,vg2.2[~_2[;,433 

L ~((>>~[03) ,[.~.~.~[23),3~ 
~ ( 1 ÷ ~ ) , ( ~ [ 1 ] ~  ~ [ , 2 ] ) , 3 ~  

L ~(1~) , (~ [1 ] ,~ .~  ~ [ , 2 ] ) , 3 ~  
L ~(1÷~),(~[i]~ ~ [ , 2 ] ) , 3 ~  

~(l÷~),(~[1],Ld~ ~ [ , 2 ] ) , 3 + ~  
L ~(2÷~),(~C2],1~ ~ [ , 3 ] ) , 4 ~  

~(I÷~),(~/2]~ ~[133),4~ 
L ~(~) , (~ [2] ,B.~  ~ [ , 1 ] ) , 3 ~  
~ [ 1 ] ' , ( 2 < p ~ ) / ' ~  NOT CLEARo' 
(>''pZ)~(l+Z÷~ I~ 4=l÷,po>p">~),~ 

The action and class codes produced by , ~  are displayed if the trace 
control is set to a negative value. For example: 

TO+-1 
APL 

A÷3x4 
L: IAI I÷1 131 Ixl 141 
R: 
ACSlol 161 161 161 161 

L: IAI I÷1 131 Ixl 
R: 11411 
ACSlOI 101 161 161 161 

L: IAI I÷1 131 
R: I I In<<(>>a)x>>~l l  I In<<x>>~l l l  11411 

ACSl01 131 101 161 161 
L: IAI I÷1 
R: 11311 IIIA<<(>>a)x>>~ll IIA<<x>>-III II 

411 
ACSl01 101 131 101 161 

L: IAI 
R: I÷1 311 IIIA<<(>>a)x>>~ll Iln<<x>>~ll 

I 1411 
ACSI41 41 101 131 101 

L: IAI 
R: I÷1 1211 

ACSlOl 141 I01 151 151 
L:, 
R: I IAI I  I÷1 111211 
ACSlll 101 141 101 ISl 

L: 
R: 111211 

Acslol Iol Isl lel 161 
L: 
R: IAI 111211 

ACSl61 151 101 161 tel 
~T0-*-0 
R +  

The proposed syntax is that embodied in the table S~, the selection 
function d~2, and the list of actions ACT. Experiments with different 
syntax rules can be made by changes in any or all of these. Such 
changes can affect the number of elements B examined, or can even 
affect the classes and number of elements produced by the actions. 
Thus, an action could produce 0 or 2 or 3 results rather than 1 as 
proposed here, and the results could be operators as well as functions 
and variables. The table ~_Z may be compared with the syntax table 
of [5], which covers the obsolescent syntax, but not the syntax of 
operators. 

As stated in the introduction, parentheses are handled by an 
immediate reeursive application of the model to the enclosed sub- 
expression. With this premise, the remaining detailed syntax rules can 
be read directly from the display produced by the function 
SYNTAX. However, the new features that extend the syntax to 
operators can be summarized as follows: 

Operators take precedence over functions and have long left 
scope; that is, an operator applies to the result produced by 
the entire operator sequence to the left of it. 

B. REPRESENTATION OF FUNCTIONS AND OPERATORS 

The primary definition of a function concerns the specification of 
what result it produces when applied to an individual array of the 
lowest rank upon which it is properly defined. However, the complete 
definition of a function also concerns certain attributes which 
determine the effects of applying various operators to the function. 
For example, the axis (or axes) of application is an attribute of a 
function which determines how the function applies to a higher-rank 
array, an attribute which is modified by an axis operator, as in 
¢[I]A; the identity element of a function is an attribute that 
determines the result of the reduction operator in certain cases, as in 
+110 or x/10.  
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The representation of functions adopted in the present model 
accommodates thirty attributes (of which 25 are actually used). The 
cases used are apparent from the following display of .~.E, the enclosed 
array (of shape 5 2 3) representing the prototype function: 

[ ] P S ÷ - 1  i 0 3 
>P_E 

IDBODYI IMBODYI 
117.237E751[ 117.237E7511 

ILOPAR81 IROPAnGI 
II1~111 Illmlll 

I I I I  I I I I  
[IDF A"A[ IlDF A"AI 

IDCASE A"A[ [DCASE A"AI 

In"~ ~1 I~"A~I 

IrAnIAN201 IVAnlANTll 
IA"A*- i l  I E ~ * - l l  

ol 
17.237E751 [ 

ol 
I1~o111 

Iol 
IlDF al 

Iol 
Izx~l 

Iol 
IA* - l l  

The significance of each of the positions in ~ will be made clear 
in the discussion of the corresponding attribute. 

The first plane of >PF is the primary definition, that is, the bodies 
of the dyadic and monadic cases, and the application axes. Bodies are 
represented in the direct definition form defined in [6], with three 
modifications: 

1. A leading A indicates that what follows is to be executed 
in raw (i.e., conventional) APL rather than in the APL of 
the model. Comments are normally allowed in any segment 
of a direct definition, but because of the special use of the 
symbol A they are excluded from use in the model. 

2. A label is assigned a vector value consisting of the indices 
of all segments from the location of the label to the end of 
the definition. 

3. A name is localized only if it is immediately adjacent to 
an assignment arrow (and the mechanism for declaring 
globals is therefore not used). 

The three axes accommodated are in the order left dyadic axis, 
right dyadic axis, and right monadic axis. The specification of axes 
is extended to include negative indexing (in which -1  denotes the 
ultimate axis, - 2  the penultimate, etc.) and complementary indexing, 
in which a leading infinite value (denoted by the constant - )  designa- 
tes all a_xes except those in the vector following it. Thus, 

2 4 i denotes all axes except 2,4, and the final axis, and - 
alone denotes all axes. It may be noted that the axes specified in the 
prototype function are all of the latter type, making the standard, or 
default axes of application unbounded. 

The operator ~ (which will be discussed further in Section C), 
applied in the form h'~o, produces a function that selects any desired 
section of the representation of a function E. 

APL 
D~o 
DO 

I I A<<(>>a)+>>~ 
I I I I  

D O i  
I I I I  I I I I  I I I I  

+~o 0 0 0 
I IA<<(>>a)+>>~l 

I IA<<+>>~II  I °1  
I I I I  I I I I  

As seen in the foregoing, a single index selects a plane (the bodies 
and axes), two select a plane and a row, and three select a given 
element. Since a variable is represented by a double enclosure, the 
last display above shows that the dyadic definition of a function + is 
the (raw) double endosure of + applied to the double disclosure of 
the arguments. 

A monadic operator must be defined for two cases, a valence 0 
argument (variable) and a valence 3 argument (function); a dyadic 
operator must be defined for four cases, two for each of its arguments. 
A monadie operator is therefore represented by an enclosed two- 
element vector, and a dyadic operator by an enclosed 2-by-2 matrix. 
For example: 

I A cLCONST~ I J I 
I AaAXISoK>w~-~ I I AaCO__~_~ I 

/ 
]1 I AS.~P_~ I 

7 

Iol Iol 

An example of the detailed definition of an operator may be seen 
in the function ~ used in the direct definition operator 7 above. 
Thus: 

R÷A ~ g 
E÷>PF 
~ [ 0 ; 0 ;  0 i ]÷A,W 
8 [ 2 ; 0 ;  0 i]÷(<</~2~>>A),<</X2C,>>~ 

Briefly, the result of V is the prototype function with the bodies 
replaced by the arguments of 7 ,  and with the local names (in row 
0 of plane 2) replaced by the names to be localized, as determined 
by applying the function /A2~ to each of the arguments of 7.  For 
example: 

APL 
F÷' BxB÷A ÷a+aJ ' 7 ' C*C÷D ÷.'-aJ ' 
2F5 

1,9 

A 
7 

F2 
0. 7071 

D 
0.5 

F~o0 0 

IIBx~A +a+~ll IIc*c÷D÷÷~II Io( 
F~o2 0 

IIIBIII lllclll Ioi 
B 

VALUE ERROR 
~[2]i B 

A 

The details of other operators may be examined in a similar 
manner by displaying the supporting functions AX/S, ~O_~, etc. It 
may be noted that, although some of the definitions of operators must 
resort to functions in raw APL, some of the definitions may also be 
expressed in terms of operators defined only in the model. For 
example, the inverse operator con (denoted by c) is defined as follows: 

APL 
C 

[ i ]o~I~oJ~(¢I÷' '~4 I 2) I 

Iverson 
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C. AN AUXILIARY DEFINITION OPERATOR 

An auxiliary definition operator, denoted by • and used earlier in 
the form F'~oI to display position I of the representation of a function 
F ,  is introduced for the purpose of modelling, and is not proposed 
as an operator to be incorporated in the language in its present form. 
Two further eases of it will be used in subsequent sections: 

a) If F and G are functions, then FOG produces a function whose 
representation (of shape 10 2 3) is the catenation of the 
representations of F .and G, as shown by the function _Dll that 
produces it: 

D l l  0 <(>a) , [O ]>~  

b) If I is a vector whose two elements are enclosed indices (full 
or abbreviated), and if H ÷ F ~ ,  then H~I is the function defined 
by replacing the element (or sub-array) of the representation of 
F selected by the index > I [03 .  Thus b " ~ ( 2 p < 0  1) is the 
function F with its axes replaced by the axes of G. If H is a simple 
function (whose representation has shape 5 2 3), then H~I is 
equivalent to H~tt~I. 

D. OPERATOR ARGUMENTS 

Derived functions (resulting from the application of an operator) 
are represented in the general form presented in Section B; thus, the 
body and axes of ,71 2 (ravel along axes 1 and 2) would appear 
as in the last two lines of the following example: 

APr. 
F÷,'g I 2 
0~,,-2 3 40 t24  
F Q  

0 1 2 3 4 5 6 7 8 9 10 11 
12 13 14 3.5 16 17 18 19 20 21 22 23 

F~o 0 
I1~£~011 11£~11 I l o l l  
111 211 II1 211 I I 1  211 

The definition of a derived function depends upon the arguments 
of the operator which produced it, as well as upon the arguments to 
which it is applied; the arguments of the operator are referred to in 
the body by the names F and G, and are stored in locations 1 
0 0 and 1 0 1,  that is, in the locations denoted by LOPARG and 
ROPARG in the prototype function PF. In the function F ,  the location 
1 0 0 (that is, b'~l 0 0) is the ravel function itself. Thus, 

17~ F~ 1 o o Q 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

The following example illustrates the important fact that the 
arguments of an operator are bound at the time of its execution, and 
that subsequent reassignments to the names to which it applied do 
not affect the derived function produced: 

R ÷ ,  

~-Ri; 1 2 
R÷p 
G Q  

0 1 2 3 4 5 6 7 8 9 10 11 
12 13 14 15 16 17 18 19 20 21 22 23 

R~i 2 Q 
3 4 
3 4 

Because of the binding at execution time, the inverse function (in 
location 4 1 2, and denoted by A*-I  in P~) must also appear explicitly 
in the representation of a function and cannot, in general, consist of 
a reference to the name of the inverse function. Since this inverse 
function must likewise contain (in its location 4 1 2) an explicit 

inverse function, the scheme seems to imply an infinite regression of 
explicit functions. However, because the inverse of the inverse is the 
original function, this implied difficulty can be handled in the simple 
manner shown in the following definition of an inverse operator: 

C 

I I  l~vIVoJv(~I÷(<"),<4 1 2) t  

The definition may be read as follows: ~ I  produces a function in 
which the whole of the argument function ~ (as selected by the empty 
first element of I )  is replaced by element 4 1 2 of the same function, 
thus yielding the function inverse to oJ. The further expression 
~o~I~ therefore "eatenates" the inverse of oJ with oJ itself, and the 
final application of qbI therefore inserts in location 4 1 2 of the 
inverse function ~,  the original function. For example: 

.~-- *r C 

P÷L c 
L3 

1.099 
pro 0 0 1 

I IA<<*>>~I I 

The analogous problem of explicitly representing successive 
derivatives of a function does not yield to the method applied for 
inverses, but can be handled by using the derivative location (3 1 2) 
to represent a dyadic function whose left argument g determines the 
order of the index; the index K will appear as the right operator 
argument (in location 1 0 1, and referred to by G) and will be 
incremented on successive applications of the derivative operator. 

E. SOME NEW FUNCTIONS 

The convenience of the function representation employed will be 
illustrated by showing the formal definitions of some new functions: 

[7.237E75 

Dex (~) - monadic is the identity function. 
I1~11 Iol 
[[7.237E7511 1[7.237E751[ 

-~'o0 
l a l l  
[7.237E75[ 

Lev (4) - monadic has no explicit result. 
I I I I  Iol 
I[7.237E75[[ [17.237E75[I 

Z÷~-'ABC' 
Z 

ABC 
Z÷-~'ABC' 

SYNTAX ERROR 
IS[ 1]i NO RESULT° 

A 

In the case of more complex functions, the axes of application may 
be seen even though the detailed definition of the body is subordinated 
in raw APL functions: 

APL 
{9°0 

I IA<<(>>a)ER2>>ool I I IR<<E2_i>>oJII Io l  
I1-111 117.237E7Sl I I1-111 

In what follows we will use ~ to denote a form of the link function 
that encloses its left argument and catenates i t  to the right, first 
enclosing the right argument if it is simple. 

The foregoing function (called from) is defined briefly as follows: 
I { A  is equivalent to inserting > I [ J ]  before the J th  semicolon of an 
expression of the form AF ; ; ; . . .  ] .  For example: 
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/~4 4pt16 
(21=3) {M 

117  
(<2 1){M 

8 9 iO 11 
4 5 6 7  

I ~ 3 2 p l  0 2 1 3 0  
I 

1 0  
2 1  
3 0  

I{M 
4 9 1 2  

The final case of a simple array to provide "scattered" indexing 
results from the definition of the left axis of application. 

The 

{ 
2 4 6  
2 4 7  

1 4 6  
1 4 7  

The 
{ may 

monadic case of { is the cartesian product. For example: 

2 1~4m6 7 

relation between the monadic and dyadic cases of the function 
be seen in the definition of the function E./~2. 

F. SOME NEW OPERATORS 

We will discuss only two operators, the first (to be denoted by 
}) because it is both powerful and relatively tmknown, and the second 
(denoted by ") because it motivates a number of attributes provided 
for in the representation of functions. 

The first operator was introduced in [7] under the name til. It is 
defined as follows: 

} 
Iol Iol 
101 l'(~)Ec~'v'~omo'vav(1 o 0='t0)V~o'~(1 0 i= 

~o)1 

The main function is seen in the expression ' (~m)Ea ' V ' ~A~o ' ; 
the rest simply inserts the function arguments a and w in the 
"operator argument" locations 1 0 0 and 1 0 1. 

The utility of til is discussed in [7]; the main point is that 
ct F}G}H ~o *-~ (Gc~) F (H~). 

As defined in [1], the operator "" applied to one function and one 
array produces a monadic function resulting from providing the array 
as one argument to the dyadic function. For example, 10"'® is the 
base 10 logarithm function, and *" .  5 is the square root function. As 
remarked in [7], two interesting points arise: 

1. Each of the monadic functions A"E and F"A may themselves 
possess inverses and derivatives; l~rovision is made for these 
attributes in the locations labelled A "/~*-1, A"A*-I,  A"A , and 
A"A in the prototype function E E. 

2. Because a derived function is ambivalent, provision is made (in 
locations 3 0 0 and 3 0 1 of the representation of a function E) 
for representing the dyadic cases of the functions A"F and F"A. 
The dyadic case of the selection function I "{  is particularly 
important, being defined as follows: 

The result of B I"{A is the array A with B merged into the 
portion selected by I .  This function obviates indexed 

assignment. In order to obtain the effect of indexed 
assignment of A, one would write A÷B i "{A .  Other dyadic 
selection functions may be treated analogously. 

G. INDIRECT ADDRESSING 

In the normal execution of an APL expression, each of the vector 
of tokens of the expression (placed in the left stack ~ in the model) 
is "evaluated" and the result of the evaluation is transferred to the 
stack of intermediate results ~ in the model). However, a token 
which immediately precedes an assignment arrow must be exempted 
from this rule, and must be transferred "without evaluation". For 
example: 

CBA 

A÷'ABC' 
~A 

A÷5 
A 

ABC 
VALUE ERROR 

Parentheses, however, imply that the enclosed expression is to be 
evaluated, and the result transferred to the stack of intermediate 
results. In an expression such as (.4)÷5 this rule conflicts with the 
stated rule for assignment and, in conventional APL, such an 
expression is treated as a syntax error. 

The conflict can be resolved by prescribing an order for the 
application of the two rules. In the present model, the rule for 
parentheses is applied first, with the obvious and convenient 
consequences illustrated by the following sequence: 

Ai~L 
A÷'ABC' 
(A)÷5 
A 

ABC 
ABC 

5 

Since the result of evaluating an APL expression may be an array 
of enclosed names, the notion can be extended as shown by the 
following example: 

N÷<~>'ABCD' 
N 

IAI Inl ICl IDI 
3pt12 

(N)q4 
A 

0 1 2  
D 

9 1 0 1 1  
R~ 

The detailed definition of this indirect assignment may be seen in 
the function ,~.: 

I(NORE=W)/'NO RESULTo' 

÷O,Op~ ,,,[~1 E 
~O:~÷( ,~ ) , [ 0 .5 ] , (>>E)  ~L~I(pp4)~lpp>>E 
L l :÷ (O= l *p~) /O 
~÷A[o;] 
A÷ 1 o +A 
~(leEle<~>E1÷>E[o])/52 
÷~i,0pE1 /~1 ~ [1 ]  
52:÷~1,opE1 /~  EEl] 
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The auxiliary function ~i is simple assignment, except for the fact 
that it handles assignments to graphic symbols as well as to names 
that are legitimate in raw APL. The function NUC1 encloses the 
"nuclei" determined by the axes specified by its right argument. 

Some interesting consequences of the definition of ~ are" illustrated 
by the following sequence in which d is assumed to be predefined (as 
shown): 

APL 
B~-<4 5 6 
B 

[4 5 61 
(< 'C' )÷B 
C 

4 5 6  
A~:~.,,-- 211 3 
d 

I I I---I 
II---I I-II IBCDI 
I I~Cl IBII I~I 
I~I I_II 

I 
I-I I-II 
ICl IDII 
I_I I_II 

I 

(d)+J 
ABC 

ABC 
D 

D 

Since expressions of the form used for indirect addressing proposed 
here are invalid in conventional APL, their introduction would 
produce no conflict. Their use would, however, conflict with a 
different proposed use of parentheses to the left of assignment to 
extend the use of indexed assignment to selection functions other than 
"bracket" indexing [3]. It should be noted that the dyadic "merge" 
function I "{  discussed in Section F illustrates a general scheme for 
using the operator together with any selection function to provide 
the effect of indexed assignment. It should also be noted that the 
explicit result of the expression B I "}  A is the entire merged entity, 
whereas the explidt result of AEI]÷B (or of corresponding extensions 
to other functions) is simply B. 

H. INDEX ORIGIN 

A number of people (among whom Professor Penfield is perhaps 
the most persuasive) have long maintained that any benefits provided 
by the choice of index origin in APL are outweighed by the burden 
of controlling its effects. It is, of course, futile to propose that the 
present use of index origin be changed in any way; however, in the 
design of any new functions and operators one may choose to exclude 
dependence upon index origin, just as the choice was made in the 
design of APL\360 [8] to exclude dependence on index origin in the 
definition of the residue function, even though the earlier definition 
in [9] included it. 

Problems due to index origin appear to be magnified in the case 
of operators. For example, in C-c-FoI, are the axes used in the 
application of G to depend upon the origin in effect at the time of 
specifying G or at the time of applying G? Or should it perhaps 
depend upon the index origins localized within the definitions of F 
and G as well? 

In any case, the present proposal is to adopt a fixed index origin 
for all new functions and operators and to make this origin zero. 

I. IDIOSYNCRACIES OF THE MODEL 

For practical reasons the model has not been made as general as 
it could be, and any person using or modifying it should perhaps be 
aware of some of the limitations and peculiarities, and some of the 
reasons for them. Thus: 

1. Except for the name APL, the names used within the model all 
incorporate underscored letters or digits; the names that a user may 
safely employ should be formed from the simple alphabet only. 

2. Some of the definitions of functions and operators are couched 
in expressions in raw APL, some in the extended APL provided 
by the model, and some in a mixture of the two. The choice of 
one or the other is rather arbitrary, except for the application of 
the following criteria: 

a) Some of the underlying functions had to be expressed in raw 
APL in order to obtain a working model. 

b) Illustrations of both uses were included as guides for anyone 
attempting to add further definitions. 

c) Use of raw APL leads to more efficient execution of the 
model. 

d) Use of the extended functions was very helpful in exercising 
the model and ensuring its correct behaviour. 

3. The main criteria applied in the design of the model were 
clarity and flexibility; increased efficiency can, if required, be 
attained by rewriting a number of the auxiliary functions. 

4. The definitions of the primitive functions provided in the model 
are incomplete in the sense that many of the meaningful attributes 
are left unspecified. However, the discussion and the examples 
(such as the inverse specified for the function *) should provide 
sufficient guidance for completing the definitions as desired. 

5. The prototype function ~ showff in Section B Shows some 
attributes which have not been discussed. They should be 
considered as tentative. 

For example, positions 1 0 show the argument names used, and 
an operator for changing them would allow a choice of the 
argument names to be used in the direct definitions. Similarly, 
positions 2 0 0 and 2 0 1 may be used to directly specify the 
names local to the dyadic and monadic cases. 

Positions 2 1 provide for the specification of identity functions (as 
a generalization of identity elements) for the monadic function 
itself (/X) and for each of the "derived monadic eases A"A and 
A"A. Positions 4 0 0 and 4 0 i provide for possible inclusion of 
variants of the type discussed in [10]. 

In specifying the inverse of any function it should be remembered 
that the specification is formal in the sense that it merely 
determines the function that results from the application of the 
inverse operator; the function may in fact be only a partial inverse 
(as in - l o ~  and lO~0) or it could even be a function that is not 
inverse at all. Similar remarks apply m derivatives. 
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A P P E N D I X  

See the body of the paper for functions APL, ~, D2L, ~11 ,  and 
/.~, for variables $~Z, ACT, and P__F_, for operators~, +, and 7, 
and for descriptions of variables ~ and TO. 

VARIABLES 

Z l ÷ t ~ .  P_T_X ~;__CZ;.&C;K.2;C;~;A2;I]TRAP 
[]TRAP÷'? 8 C +L0',0pZ÷>~__~[2] 
t(>>''pCAR÷>DE[l]),'÷''''p¢~',(p~) ~/~ 
~ ( l ~ p ~ ) / ( > > ' ' p ~ ) , ' ÷ ' ' ' ' p ~ '  
_S_(Z÷-I¢~pSG*->"pDE 
~0:~(0:p5.C)I~4 
_S_C÷I+$_~,0p.,7_$_÷>S~["p_$.([] 
~(^/' '=ES)/~O 
+('~'=I÷LS÷(J÷'~'=i+FS)4FS)/LI 
• -~+52,53,0pZ~(.~_...~,..7.._$_) ~ ' '  
LI:÷J~L2,L3,0p~+~I~...7_S_ 
~2:~O,OpZI÷Z 
53:~L0,_S~C÷,>>~ 
L~:[]TRAP÷'7 6 C ~O,OpZi÷NORE' 
ZC÷Zi 

ABCDEFGHIJKLMNOPQRSTUVWXYZ~CDEFG 
HIJKLMNOPORSTUVWXYZoI23456789~-.A 

F U N C T I O N S  

~/~ZO(I÷(^/(0>Z)=(IZ)=(p~-0 -14.$_Z)pX)I~.$.,~[;4] 
),~÷4÷(,p~>p">~),4p6 

Z÷F AXIS I;J 
Z÷>,,p~_,0pJ÷(<<,a~'),(<<,~'),(<<'o') 
Z[0;;]+ 2 3 pJ,<">3p>>l 
Z[I;0;0]÷F 
Z÷<Z 

~QOZp~,0p[]PS÷lO"O(i(e/'<,¥'),',>l÷~'),( ~ 
a)~_~ I+~ 

Z÷A ~_.~ B;Q;J 
<~->''pB,0pZ÷>~ 
Q[0;l;]÷3p<L/0pJ÷(<<'(Ca)~ C~'),(<<'~ C~') 
Z[i;0; 0 1]÷A,<Q 
Z[0;;]÷ 2 3 pJ,(<<'o'),(>B)[O;1;] 
Z÷<Z 

Z÷A Di0 B;I;J;P;SA;SP;U 
~((,o,¢B),~IEB~<~>Bw->>B)/L4,L5,0pSA÷pA÷>A 
I÷SP~.21>,,pB,OpU÷,(-SP~-p>~_~)÷A 
~((iEJe<~J÷>,,p¢B),v/SA~SP)/L2,LO 
L2:U÷,(-SP)÷A÷A,[O] A 
LO:P÷,(-SP)÷(-I÷SP)¢[O] A 
J÷U[J÷SP ~ J] 
~l~,JJ÷',l÷(x(x/pI)-x/pJ)~' ><' 
P[I]+J 
~0,0pZ÷<((- 2 0 0 xSP)~A),[O] SPpP 
L4:Z÷>~_~ 
Z[0;0;I]÷<<'~{~' 
Z[I;0;0]÷<<A 
~O,OpZ÷<Z 
L5:Z÷(,A)[(p>~_~)±-3÷B] 

EIXOO_p_~(¢l,x\¢14a)x">(<~>~),(p,~)+~">e 

_~_CZO(0~pa)O"OC<~÷~),CK4a).~..~_~C~÷lF+/̂ \(a~l 
)Aa=l÷e)4~ 

FIX X;~PS;~;~ 
X÷~>,<(O~,p~>,">X)IX÷(>X[O]),(>X[1]),>X[2] 
~÷(l+p~)Fp~÷(~[O;]),,~(,(<';'),X),Op[]PS÷l 
o 0 pE]EX(~÷g),[0] ~ 0 4((X÷p~),~)÷~ 

.,L~20(,~)[~(pw)±~,~,..4~l(<~>a)~.jT, L~] 

/_Q<>Zv~\Z÷~=''" 

~(v/,A~'a~A',56÷,CA~)/L0 
*O,Op£÷((<4),E),[O](4=,>R[;O])~R 
~0:0  0 pld,'÷f_i' 

X÷,">>">i÷">~÷'<ZA~' Q2A ~KC ~,'O',0p[~PS÷I 
~÷(0~l±~>X~"><52÷,~)A0=li~>~">X~"><62#,~ 
X÷X,[O.5]<Op~'41^(<,':')~o>, >> >I÷ >14"'>4 
Z÷(<,">v">(2x~)+">4),&,<, 0 I +~¢X 
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Z÷X,,/,Z:Z;E;E;~ 
÷( (^I ' ) '=>~) ,Z,^/ , (E+"p(¢X) ,<, '  ' ) (£[ ;o])  

/~0+~3 
÷O,Op~÷(<-l~),~(2xle~<~>~)~'<<~',0p~÷~>~ 
~O:÷O,OpZ÷(<~/~),(-I~I~E) ~ " ' ' " , ( ' ( ' ~ > '  

'p~+(~~+4~¢~)/X)/'UNMATED()' 
÷0,Op~÷(<-l~),<''p-1÷~ 
÷0,Op~÷(<-l~X),(~[;l])[~[;0]~] 

/T32CO((I¢Ie<,'÷')A~I((<,'B'),<,' ')/I-,-~.A 

~4,;COo=p,o~O"O(F/o,,>,'p~),~.,4,~,C 1 ~  

~(~<\~)A~,[~+V\O=+\-~'()'o.=,l+;>,">~ 

~R/CIO(LI~O)=I÷~,~-(~e(O,-Z)o.+~)I~,Op~÷po 
=OaE2 ZIX'Oo.E2 (~(~£)(ZI~)I~Z 

~2¢OAp(<.IA)p">~÷Z÷">((~x/.Q_~,÷~p=)xZ÷x/IA÷( 
~÷-p,~)÷pe)~"><,=÷(~((~~(~)/~÷Ippe),~)~ 

~(O=l÷,O=p~)/3 
+0,0pZ÷'' 
~÷(~e,Op(a(->''p~),e Q.~ 1@~ 

QQ.._,L~O~p,~Ooo(>"p~)o.+Q_,,,_,~ I~ 

Z2÷A ~ ~;E;G;t;~I;~2;N.Q;.$.~;Z1;P..~;D,,,.2~;SAL 
• (NORE=Y[O])/'NO RESULT°' 
÷(v/ 0 3 ep~>p">A)/~O,Z2÷Oppp~÷"p2=p[ 
FIX(i~_AI~'(<(~I)~<~>'~ ') Ida ~),<~Q_C ~.~+, 

>(,>A)[210=p~>p">Z] 

~0:~"~-"pl+G,0p~÷"p~"(>A)[1;0; 0 1] 
FIX(I+~-.(<>">(>A)[1;1;(~= 1 1 0)/~3])  

>>(>A)[0;0;~~]),>(>A)[2;0;~~] 
Z2~-Op~.~-x/_~,~p~2÷(>>~[~]) ~_~l>>(>A)[O;1;2 

- t ]  

÷(~~)/~1÷~1 
~1~(>>~[0]) ~,..~Z1>>(>~)[0;1;0] 
~(~V/(~--p~I),(O=pp~i),O=p~r~)/',-'CNFP~IABLo' 
,l~_(~-x/_$.~÷,>((<$.,~),<p~l)[(pp~l)>p~_~] 
~1÷,~I 
LI:~(O>L~+'~_~-I)/L2 
~1÷~,,~ D,,,.~f(~/<"p~l),<"p~2 
÷~l,0p~2÷l¢~2,0p~l+1@~l,Op~2÷~2,~1 
~2:Z2"*-<<>>~./~O~2 

Z+i~DX;Y 
Z+>''p,~.,~,0pY÷'.CAQ 1 2a,~Z÷>(E÷~O)pAO-*Sp3' 
I÷I,'OZ÷(>EpA÷I+A)C ZO'+,>(-I*O>S÷-I+p,A' 
~[O;O;l]<-<Y÷Y,'w-¢<~- 0 ~)÷I 2=0' 
Z[I 2 ;O;l]÷X,<<~O_~ Y 
Z+<Z 

SECW>I=p~,'O'O"O(<~÷~),$~_~(I+~-F/^\(~'O') 
v ~ \ ~ = ' ' ' ' ) ~  

.~.0=p~..,,T,~.~ -i~,0p~(0~pZ)~'~',(~÷,>"p¢ 
~),'÷(-1+p~)~I~'O" 

,,~,ZO((~><,'-')¢(<'gEgg'),((p~),1)p~)[;1] 

~,~_L~'~I">(p~)~I [÷~,(~÷pX÷pu)p<L/~0 

~l'O0~p,,c,~O"O(<(>"pe)~2>"p~),(l~e)~l 1+~ 

~2O(I÷~)=LI~OO~X>(~~=II~)IX÷~ 

2.,E'0(~:Q ~.,.:IZ'((~:".")A(~/T.Q~)^~(ILo[]YI~)÷[]VI~ 

.~.~O,'(2x~(...Q ~)V~e~),.~..~ ~'(2~(I_Q~)ENCm 

i~-A 2~R;K;L;Z 
÷(O=K÷II~->>TO)/O 
Z~(-2÷l,pZ)pZ÷¥(T÷, 0 1 +M<-(Seo">~)¢(<I,( 

2LK),2),[0.5] S÷p">R)÷">R 
((0>L)v' '=I÷A)/((K,p,A)pA),((K+KLi÷pZ),-I 

÷pZ)+Z 

Z~A UPON B;Q 
Z÷>F.~ 
C~-(B~>B)[0;I;] 
B[O;1;]÷3p<<L/~O 
Z[I;O; 0 1]÷A,<B 
Z[0;;]÷ 2 3 p(<'~G~'),(<'~ G~'),(<<'o'),Q 
Z~Z 

OPERATORS 

I IA~01~ I  
noq~lo~l ln~D11~l 

6 
oi Ioi 
o I I RoJJPON~ I 
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