Jogging With APL Along The Shortest Path

Moshe Sniedovich and Suzanne Findlay
Department of Mathematics
The University of Melbourne
Parkville, VIC 3052 Australia
E-mail: moshe@mundoe.maths.mu.oz.au
sue@muhdoe.maths.mu.oz.au

Abstract

In this paper we examine the classical shortest path
problem and illustrate the modelling issues involved in
formulating APL codes for a number of generalizations
thereof, including multiobjective problems. We also
comment on APL's ability to cope with algorithms of this

type.

1. Introduction

The shortest path problem is one of the most fundamental
problems in operations research (OR). In its basic
form, which we shall examine first, it involves a network
consisting of nodes and directed arcs such that each arc
has a given length defined as a numeric scalar. The
objective is to determine the shortest path connecting a
given pair of nodes, where the length of a path is equal to
the sum of the arc lengths on the path.

As an example, consider the network depicted in Figure 1
and assume that we are interested in the shortest path from
node 1 to node 7. By inspection, we discover that the
shortest path is (1,3,6,7) and that its length is equal to 10.
We classify such a problem as an additive, single
objective, shortest path problem: additive because the
length of a path is determined by adding the lengths of the
arcs on the path; single objective because there is a single
optimality criterion: a path is optimal if and only if its
Iength is the smallest among all other feasible paths
connecting the given pair of nodes.

In this paper we present APL codes for solving other types
of shortest path problems. As an example of the types of
problems under discussion here, consider the network
depicted in Figure 2. Observe that the length of an arc is a
pair of numbers (c,r). Interpret any such pair as follows: ¢

Permissionto copy without fee all or part of this material is granted provided that the
copies are not made or distributed for direct commercialadvantage, the ACM copyright
notice and the title of the publication and its date appear, and notice is given that
copying is by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission

©1992 ACM 0-89791-478-3 92/0007-0221 $1.50

APL Quote Quad

represents the cost of the arc and r its reliability, where
reliability refers to the probability that the arc will not fail.

Figure 1

(6,0.95)

6,0.96) (7,0.97)

Figure 2

Moshe Sniedovich, Suzanne Findlay

So in this case we are concerned with two objectives: we
attempt to minimize the total cost of a path from
node 1 to node 7, while at the same time we also attempt
to maximize the overall reliability of the path,
observing that whereas the total cost of a path is equal to
the sum of the arc lengths on the path, the overall
reliability of a path is equal to the product of the
reliabilities of the arcs on the path. Of course, in general,
there is no guarantee that there exists a path that optimizes
both objectives simultaneously. For example, in Figure 2,
the path (1,3,6,7) minimizes the cost and the path (1,2,5,7)
maximizes the reliability. There is no single path that
optimizes both. What then is an optimal path?

There are a number of questions with regard to the
treatment of problems of this nature. We shall focus on
the following three:

What optimality criterion should be used in
this case?

What methods can be used to find the best
("shortest™) path?

How well does APL cope with the tasks posed by
algorithms of this type?

These are the three main topics of discussion in this paper.
We begin with an outline of the structure of the additive
single objective problem and the derivation of the
functional equation governing the solution strategies for
this problem. This done, we generalize the model and
examine a number of other shortest path models. First, a
model where the objective function is not additive, and then
two models where there are two or more objectives. In each
case we briefly discuss APL implementations of these
models on the Macintosh using MicroAPL APL68000
Level I1.

2. The Standard Problem

Shortest path problems consist of two interrelated
constructs, namely those pertaining to the structure of the
network underlying the problem and those pertaining to
the structure of the objective function used to assess
the relative desirability of feasible paths in the network.
As far as the structure of the network is concerned, there are
two basic constructs namely nodes and directed arcs.

S0, let N denote the number of nodes in the network, and
for simplicity assume that the nodes are labeled n=1,2,....N
with node 1 being the origin and node N being the
destination. Thus, the task is to find the shortest path
from node 1 to node N.

As far as the structure of the objective function is
concerned, we shall begin with the assumption that the
Iength of a path is equal to the sum of the arc lengths on
the path.

Jogging With APL Along the Shortest Path

222

The idea guiding the solution strategies for problems of
this type is as follows: Instead of asking the question:

[

What is the shortest distance from node 1 to node N?

we examine the more general case:

What is the shortest distance from node 1 to some
arbitrary node n?

In other words, we regard the problem of interest as an
instance of a more general problem. So define

f(n):=the shortest distance from node 1 to node n.

And here is the crucial stage in the formulation of the
solution strategy: Consider an arbitrary node that is not
linked directly to the origin, call this node n. To reach this
node from the origin, we must visit first one of its
immediate predecessor, call it x. The question is then:
what is the best x?

Since our objective is to find the shortest path, the best
choice for x is the one that minimizes the sum of two
quantities, namely the sum of

(1) the length of arc (x,n);

(2) the distance from node 1 to node x.

And so, if we let d(i,j) denote the length of arc (i,j), then
clearly the best choice for x is one that minimizes the
expression d(x,n)+f(x) over all xe P(n), where P(n) denotes
the set of all immediate predecessors of node n.

What emerges then is that the rule for choosing the best
immediate predecessor is as follows: given node n, choose
an immediate predecessor of n that minimizes d(x,n)+f(x)
over P(n). In other words, the following result must be
true:

Theorem

f(n) = min {d(x,n) + f(x)},

xe P(n)

n=234,.N (1)

This is the famous functional equation of dynamic
programming of Bellman [1]. Observe that for node n=1
we have f(1)=0 by definition.

The objective is then to solve this functional equation so
as to determine the value of f(N) as well as to recover an
optimal (shortest) path from node 1 to node N. To explain
how an optimal path can be recovered, assume that we have
already computed the values of f(n) for n=1,2,3,...,.N and let
P*(n) be the set specified as follows:

P¥(n):={ye P(n): d(y,n)+(y)=f(n)} @

APL 92

namely, it is the set comprising all the immediate
predecessors of node n that solve the functional equation for
f(n). The recovery procedure can be formally described as
follows:

Recovery Procedure:
Step 1. Initialization.
Set x=n=N.
Step 2. Stopping Rule.
If n=1, stop.
Step 3. Iteration.
Set x=i,x where i is any element of P*(n). Set
n=1 and go to Step 2.

So the question boils down to this: how do we solve the
functional equation?

It turns out that the question is not as simple as it may
appear to be. There are two potential complications: one
caused by cycles and one by negative arc lengths.
We shall not elaborate on these difficulties here. The
interested reader is referred to Syslo et al [4] for a detailed
discussion of these difficulties and their implications.

Rather, we shall assume that the network that we are
dealing with is acyclic in which case the simplest - but
not necessarily the most efficient - way to solve the
functional equation is to ¢valuate its right-hand side for
n=2,3,....N-1 - in this order - recalling that f(1)=0.
However, to use this strategy we must ensure that the
nodes are properly labeled, namely that n>x, for all
x€ P(n), recalling that P(n) denotes the set of all the
immediate predecessors of node n. Obviously, if the
network is acyclic, it is not difficult to label the nodes
properly. Therefore, in this discussion we assume that the
nodes are properly labeled.

In short, we assume that the objective function is additive,
the network is acyclic and the nodes are properly labeled.
We refer to such a problem as a standard shortest path
problem. As indicated above, practically all the methods
developed for solving the standard shortest path problem
derive, ecither directly or indirectly, from the dynamic
programming functional equation given in (1).

Obviously, writing an APL code for this problem is not a
difficult task, especially if efficiency is not a major factor.
One can approach this task in different ways, depending
among other things on one's personal style. The code
presented below was design primarily for the purpose of
exposition and as a prelude for the discussion of more
complicated shortest path problems.

We assume that the network is defined by two enclosed
vectors, call them p and d, each of length N, recalling that
N denotes the number of nodes in the network. The first
describes the architecture of the network in the following
way: pLn1l is a vector consisting of all the immediate

APL Quote Quad

successors of node n. For example, in the case of the
network described by Figure 1 we can set

pe, " (18) (1) (1)(2 3)(2 4)(3 4>(5 63

The ,” is used to ensure that the elements of p are all
vectors, including those that for expediency were specified
as scalars.

The second vector, namely d, specifies the length of the
arcs. That is, for each node n, d[n] is a vector of the
same shape as p[n] whose elements specify the lengths of
the arcs connecting the elements of pfn1 withn. Thus,
in the case of Figure 2 we set

de, " (10X (3 (82X (4 5Y(6 6){(4 72(3 4

Next, we define a function to do exactly what the
functional equation tells us we should do, except that we do
it with vector notation:

OPT: fLwl€l/ENU o
ENU: fltplell+tdloel

That is, for each node n the function ENU generates the
values of d(x,n)+f(x) for all the feasible values of x
(immediate predecessors of n), The function OP T
compuies the smallest element of the vector computed by
ENU and store the result in f [n]. By implication it is
obvious that these two functions regard f as a global
vector. Obviously, we shall need a function to apply OPT
for every n in 141 N. But before we introduce this
function, we need functions to implement the recovery
procedure. So here they are:

OPATH: OPATH (OPTR ®),u : 1=XKé¢ to 1 o
OPTR: ((ENU w)}1flwId0tplwl
That is, the expression X¢OPATH N yields the shortest
path, X, connecting node 1 to node N. Observe that OPTX
n yields an optimal immediate predecessor of n. In short,

if we put all the pieces together, we obtain the following
APL solution to the standard shortest path problem:

[01 ReSTANDARD INPUT;p;d;f;N;0OI0
[1] DIO€1 o (p d)€INPUT o Netep
[2] f€NpO

[3]1 ReOPT 141N

[4] RefI[N1,OPATH N

OPT: flwl€l/ENU w

ENU: fltplwll+tdle]

OPATH: OPATH (OPTX X) ,w & 1=Xé¢ to @ o
OPTRX: ((ENU w)1fludd0tplw]

223

Moshe Sniedovich, Suzanne Findlay

In the case of the network depicted in Figure 2, we obtain
the following:

STANDARD p d
101 367

All in all, APL does a very good job here in translating the
abstract ideas underlying the algorithm into a concrete
formulation.

3. Non-Additive Problems

There are many interesting problems where the length of a
path is not computed as the sum of its arcs' lengths. The
major ones are associated with the dyadic functions x L
. In the case of x the dynamic programming functional
equation can handle only problems where the lengths of the
arcs are nonnegative: if some of the lengths are negative,
it is necessary to change the formulation of the model (For
details see Sniedovich [3]). Although this is possible, we
shall not treat this extension here. Therefore, throughout
this discussion it is assumed that in the case of
multiplicative objective functions the lengths of all the
arcs are non-negative.

The following APL code is a simple generalization of the
code presented above for the standard problem. Note that
the user can specify the composition function, as well as
an optimality criterion, which can be either L or T, the
latter is used to solve "longest” path problems.

[0l
(1]
[21
31
(4]

Re(com GSP opt) INPUT;p;d;f;N;0IO
OI0€ o (p d)€INPUT o Neépp
f¢Ne{(com ID)10

R€OPT 141N

RefI[N1,0PATH N

(ol
(1l

Re(F IDOE
Re(2 3 5 6=F/2 3)/(L/E),(I/E),0,1

OPT: fLwleopt ENU o
ENU:f{tplwl] com tdle]
OPATH: OPATH (OPTR X) ,w :
OPTX: ((ENU W 1fluDltplul

1=K¢ v : @

A number of observations are in order with regard to this
code. Firstly, the vector ID computes the identity
element of the composition function com which is
needed in line [2] of GSP to initialize the value of £ L 117,
Secondly, the functions OPTR® and OPATH remained in
tact. Thirdly, note that GSP is a dyadic operator.
Fourthly, there are four valid left arguments for GSP,
namely + > L and l; and two valid right argument,
namely L and . Last but not least, the derived function
+ GSP L isequivalent to the function STANDARD.

And here is the code in action in the context of the network
depicted in Figure 1.
Jogging With APL Along the Shortest Path

224

{(+ GSP L) INPUT
181 367

{x GSP L) INPUT
321367

(L GSP L) INPUT
213457

(I GSP L> INPUT
41367

(+ GSP I INPUT
1812467

(x GSP I> INPUT
336 1 2467

(L GSP ') INPUT
31257

(I GSP > INPUT
713467

To reiterate, the right argument of GSP determines whether
the shortest (L) or longest (I) path is to be recovered; its
left argument determines how the length of a path is
computed from the lengths of its arcs (additive,
multiplicative, etc). Thus, for instance, the derived
functionx GSP [will recover the longest multiplicative
path, whereas L GSP T will recover the path whose
shortest arc is the longest possible.

Back to the question of how well APL cope with
algorithms of this type, it must be admitted that APL is
really doing a splendid job here. The concept of user-
defined operators is very natural in this context. There
is, however, one small difficulty here: observe what kind of
gymnastics one has to do in order to compute the identity
element of a primitive function passed as an argument to a
user defined operator. APL designers should provide
a more direct way to accomplish this very
important task. Although it is understood why there is
no universal convention for opt/18 in the case where
opt is a user defined function, it is difficult to accept the
fact that one cannot execute such a statement when op t is
an argument of a user defined operator whose "value" is
equal to a primitive function.

We now move to a much more difficult class of shortest
path problems, namely problems where there are two or
more objective functions.

4. Multiobjective Problems

Suppose that the lengths of the arcs are vectors of shape K
such that K>2 . In the case of Figure 2 we have K=2,
where the first component of the length stipulates the cost
of the arc and the second component stipulates the
reliability of the arc. In view of this, the model must
include additional constructs. Firstly, we must specify a
composition function for each component of the length of
an arc. In case of Figure 2, the first component is additive,
the second is multiplicative. Secondly, for each

APL 92

component we have to specify an optimality criterion,
namely we have to specify whether we wish to maximize
or minimize the corresponding objective function. In the
case of Figure 2, the first component is minimized, the
second is maximized. Thirdly, we must specify some
preference relation stipulating how one determines which
one of a pair of vectors of shape K is better. For example,
in the case of Figure 2 the length of path (1,3,6,7) is equal
0(10,08.745198) and the length path (1,2,5,7) is
equal to (12,0.7695). And so, which length should
we prefer? There is no obvious answer to this question
because the first is better as far as the cost component is
concerned, whereas the second is better as far as
reliability is concerned.

But before we address these important questions we must
agree on a simpler matter, namely we must decide how we
expand the vector d to accommodate the new axis required
by the fact that now the length of an arc is a vector rather
than a scalar.

For reasons to become clear shortly, it is convenient to
define d in the following way. As before we let d be an
enclosed vector on length N. For each node n we store in
dInl an enclosed vector of length K, whose components
correspond to the K components of the arcs. The length of
each such vector is equal to the number of immediate
predecessors that node n has. In other word, ptdln1 is
equal to K for all n, and for any given n, all the
components of tdLn1] are of lengthetplnl.

And so, in the case of Figure 2 we can specify d as
follows:

de(10) ((,3)(,0.90))((,2)(,8.89)((4 5
(8.93 B8.96))((6 6)(0.95 0.96))((4 7
(.92 8.97))((3 4)(9.90 6.91))

observing that each row corresponds to a node.

A moment of reflection on the tools of thought needed for
the analysis of problems of the type we address here
immediately reveals the following: what is needed here is
the concept of arrays of functions. Since this is neither
the proper place nor the proper time to discuss this concept
in detail, we shall restrict the discussion only to the ad hoc
codes developed to simulate this concept for the purpose of
solving the shortest path problem. The interested reader is
referred to APL Quote vol 14(4), 1984 for a number of
papers on this subject.

The operator ECOM defined below is designed to facilitate
the analysis and solution of multiobjective shortest path
problems:

[0] ReA(FF ECOMB
[1] Re(,c,”FF),A B
[2] Rea" 77 € "c[11519R

APL Quote Quad

225

Its argument is a character vector of names or symbols
representing dyadic functions. This argument is treated as
an array of functions, namely the derived vector of
functions is applied (dyadically) to its arguments, item by
item. For example,

2 53 ('"+xkx' ECOMY 3 4 2
5 20 8

Ae(l 2)(4 5

B«{(10 20) (39 40>

DISPLAY A ('+x' ECOM) B
O ———— o
I 0@ 0D ° I
| 111 22| [120 2e0] |
R o |
o€ - —— — O

Now that we can easily manipulate arrays of functions, we
can relax and think about the most important thing in
multiobjective decision making, namely:

Given a collection of vectors of length k, how do you
determine which one is best?

Mathematically speaking, what we need is a preference
relation on the K-dimensional Euclidean space. And in the
realm of decision making, there are two major alternatives
namely, the Lexicographic order and the Pareto order.
To explain how they work, assume that we prefer each of
the components of the vectors to be as small as possible,
namely we wish to minimize all the components. The
lexicographic order will select the vector whose first
component is the smallest. If there is a tie, then it is
broken by considering the second component. The process
continues until there is no tie, or until all the components
have been used to break a tie. In APL, the Lexicographic
ranking of vectors is given directly by the functions grade
up and grade down. Thus, the solution is straight
forward. The function LEXICO and its companions defined
below solves the shortest path problem induced by the
lexicographic preference order.

[#1 ReLEXICO INPUT;F;N;UC;UC;p;d;J;0I0

[1] INITIALIZE
[2] ReFEQUATION

[3] ReFIN1,RECOUER N

[6] INITIALIZE;I

[1] OI0€t o (UC UO p d)€INPUT

[21 (UC UO)Y€UNSPACE"UC U0

[3] Iec('LT+x'1UC) o JeT1x'TL'1U0
[4] Fe(NeppdpcIl (L/1@),(r/18),8,1

FEQUATION: OPT 141N

RECOUER: RECOUER(OPTX X)) ,u i1 1=Ré¢tw @ w
OPT: FLwlécIxt{(t40AX0A€cl1IoIxENU w
ENU: (+dlw1) (UC ECOM) (c[11oF[tplwll)
OPTR: M{{(ENU)1FLoI)0tplul

UNSPACE: (' '#w)/w

Moshe Sniedovich, Suzanne Findlay

As we can see, except for a number of inconveniences
caused by the absence of arrays of functions, the APL code
cope with the task pretty well. And here is its solution to
the reliability problem depicted in Figure 2.

DISPLAY LEXICO '+x' 'LT' p d
0 D) e e e e e et e e o a
I —— . !
| 118 8.745188] 1 3 6 7 |
| ovmmmmmmm e . !
9 ——— e ————— e o

Obviously, if we regard reliability, rather than cost, the
more important objective, we may be interested in the
solution generated by

DISPLAY LEXICO 'x+' 'TL' p ("D
O P e e e e e e e ——— o
IR . |
| 18.7695 12| 1t 25 7 |
| ov—mmmmmee . |
Q€ o e o e o e e e s i e s a

Next, let us examine the situation where the preference
order is of the Pareto type. The idea underlying this
preference is outlined by the following :

Definition.
Let x and y be any vectors in the k-dimentional Euclidean
space. We say that x is dominated by y if and only if
(1) x;<y; for all i, 1<i<k; and
(2) xj<y; for at least one i, 1<i<k,

Thus, given a finite collection of vectors, we do not
attempt to find the "optimal” element of this collection,
but rather seek to identify all the nondominated elements
of the collection. The point is that the collection may
have several nondominated elements,

This means that the Pareto approach does not actually
provide a solution to the shortest path problem because it
may fall short of selecting a single path. It merely
eliminate paths that in a sense are inferior to other feasible
paths. Some other criteria must be used to pinpoint the
shortest path.

Observe that in the case of the Pareto preference order we
formally define

f(n):= Set of nondominated paths from node 1 to node
n, n=1,2,....N.

So now APL is confronted with a functional equation
involving sets of vectors rather then single vectors. This,
however, does not cause any major difficulty because
enclosed arrays can handle the situation reasonably
well. The complete code is as follows:

Jogging With APL Along the Shortest Path 226

fol
11
[21
(31

R€PARETO INPUT;N;010;UC;U0;p;d;d;F
INITIALIZE

Re€FEQUATION

Re(+FIN1) (N RECOUER"tFINI)

[0l
1]
21
£33
[4]

INITIALIZE;I

0I0€1 ¢ (UC UD p d)€INPUT

(UC V0> €«UNSPACE"UC U0
Iec('LT+x'"1UC) o JeT1x'TL'1UO
Fe(Népplpc,cIll(L/1@) ,(I/18),0,1

Re A (FF ECOM) B
Re((1pB)p <A FF) ,,cB
Ret (272" (37) "cl11"5"c[11=R

[ol
11
[21

el
(1]

Re U OPTX n ;I;Z
Iet,/(c,Uect,/U)e"ZeMENU n

[2] Ret(IetIz1p2)04plnetn]

[31 Ze,c(I0"tdln1) (UC ECOM) (AFLRI)
[4]1 ReR,t(Z1WI1FIR]

FEQUATION: OPT 141N

OPT: Fluledx{(14oA)IA€IXENU w

MENU: (c[1]1otdlw1)ENUFL[tplwl]

ENU: (ca)) (UC ECOM) ,"c"q

UNIQUE: ((wirad)=1pw)’/w

UNSPACE: (' '#w)‘w

RECOUER: ((12) ,0)RECOUVER 1lZ¢w OPTX X :

1=Xeta : «

OPT: Floléec(adIx(™V/ (M~ 20MI(MY.>aMedA

) /7A€UNIQUE (cJ)xt,/MENU w

To determine the nondominated paths associated with the
reliability problem represented by Figure 2, we apply the
code to the same input vector used previously by LEXICO.
The result is reshaped to prevent overflow.

DISPLAY 2 1pPARETO '+x' 'LTI' p d
O P e e e . ——————————————————]
| 0~ e o |
R I o ||
| | 112 8.7695] |10 @8.745108] | |
IR E—— o oM o ||
| o€~ o |
[e~ ° |
| | e9m—mmm- o o9mmm—m- o | |
1 ltas?l 11367 | |
|] eve—mm o avmmomo o | I
I O e e — ° !
= e ————— e ——— o

In other words, there are two nondominated paths (1 2 5
7?) and (1 3 6 7). the first costs 1 2 units and its
reliability is equal t0o 8 . 7695 and the second costs 1 8
units and its reliability is equal to® . 745188,

Observe that the same result is obtained if the elements of
the input vector are reversed, namely

APL 92

DISPLRY 2 1pPARETO 'x+' 'TL' p (¢"d)
| 0) e e e e e e e o |
I ed—— ° o> o | |
| | 118 9.7451088] |12 8.7695] | |
[] oNmmmmmee e 0 oM o | |
| e€——mmm o |
| e o °]
I | ed=m——ue ° 0y——m—m I I
111367 |tes ?| | |
| I [R T, 8 o0V I I I
| oe— s I
O e e ————_— e ————————— []

Generally speaking, APL is doing a reasonable job here in
coping with the operations required by the dynamic
programming algorithm, except that life could have been a
bit easier had we had arrays of functions at our disposal.

5. Conclusions

In this investigation we examined APL in a context where
it should perform extremely well, namely in a situation
where it is used as a notation for the formulation of
numeric algorithms. It therefore should not come as a

APL Quote Quad

227

surprise that overall its performance proved excellent, yet
not perfect. While the present discussion is confined to the
analysis of shortest path problems, it has been our
experience that similar conclusions apply in the case of
other operations research problems, Sniedovich [2].

Acknowledgement. The first author's work in this area
was partially supported by an ARC grant SG6890197,

References

1. R. Bellman, Dynamic Programming, Princeton
University Press, Princeton, NJ (1957).

2. M. Sniedovich, The APL Phenomenon: An
Operational Research Perspective, European
Journal of Operational Research, 38(2), pp. 141-145,
(1989).

3. M. Sniedovich, Dynamic Programming, Marcel
Dekker, NY (1992).

4. M.M. Syslo, N. Deo, and J. Kowalik, Discrete

Optimization Algorithms with Pascal Prog-
rams, Prentice-Hall, Englewood Cliffs, NJ (1983).

Moshe Sniedovich, Suzanne Findlay

