
Jogging With APL Along The Shortest Path

Moshe Sniedovich and Suzanne Findlay
Department of Mathematics

The University of Melbourne
Parkville, WC 3052 Australia

E-mail: moshe@mundoe.maths. mu.oz.au
sue@mundoe.maths. mu.oz.au

Abstract represents the cost of the arc and r its reliability, where
reliability refers to the probability that the arc will not fail.

In this paper we examine the classical shortest path
problem and illustrate the modelling issues involved in
formulating APL codes for a number of generalizations
thereof, including multiobjective problems. We also
comment on APL’s ability to cope with algorithms of Ithis
type.

1. Introduction

The shortest path problem is one of the most fundamental
problems in operations research (OR). In its basic 6

form, which we shall examine first, it involves a network
consisting of nodes and directed arcs such that each arc
has a given length defined as a numeric scalar. The
objective is to determine the shortest path connecting a
given pair of nodes, where the length of a path is equal to
the sum of the arc lengths on the path.

As an example, consider the network depicted in Figure 1
and assume that we are interested in the shortest path from Figure 1
node 1 to node 7. By inspection, we discover that the

shortest path is (1,3,6,7) and that its length is equal to 10.
We classify such a problem as an additive, single

objective, shortest path problem: additive because the
length of a path is determined by adding the lengths of the
arcs on the path; single objective because there is a single
optimality criterion: a path is optimal if and only if its
length is the smallest among all other feasible paths
connecting the given pair of nodes.

In this paper we present APL codes for solving other types

of shortest path problems. As an example of the types of (6,0.95) (4,0.92)

problems under discussion here, consider the network

depicted in Figure 2. Observe that the length of an arc is a
pair of numbers (c,r). Interpret any such pair as follows: c

Permissionto copy without fee all or parf of this material is granted provided that the

copies are net made or distributed for direct mmmercialadvantage, the ACM copyright

rwtice and the title of the publication and its date appear, and notice is given that
(3,0.90)

G0PYin9 is by Permission of the Association for Compuling Machinery, To CUpy
otherwise, or to republish, requires a fee and/or specific permission

01992 ACM 0-89791 -478-3 92/0007-0221 $1,50

Figure 2

APL Quote Quad 221 Moshe Sniedovich, Suzanne Findlay

So in this case we are concerned with two objectives: we
attempt to minimize the total cost of a path from
node 1 to node 7, while at the same time we also attempt
to maximize the overall reliability of the path,
observing that whereas the total cost of a path is equal to
the sum of the arc lengths on the path, the overall
reliability of a path is equal to the product of the
reliabilities of the arcs on the path. Of course, in general,
there is no guarantee that there exists a path that optimizes
both objectives simultaneously. For example, in Figure 2,
the path (1,3,6,7) minimizes the cost and the path (1,2,5,7)
maximizes the reliability. There is no single path that

optimizes both. What then is an optimal path?

There are a number of questions with regard to the
treatment of problems of this nature. We shall focus on
the following three:

What optimality criterion should be used in
this case?

What methods can be used to find the best
(“shortest”) path?

How well does APL cope with the tasks posed by
algorithms of this type?

These are the three main topics of discussion in this paper.
We begin with an outline of the structure of the additive
single objective problem and the derivation of the
functional equation governing the solution strategies for
this problem. This done, we generalize the model and
examine a number of other shortest path models. First, a
model where the objective function is not additive, and then
two models where there are two or more objectives. In each
case we briefly discuss APL implementations of these
models on the Macintosh using MicroAPL APL68000
Level II.

2. The Standard Problem

Shortest path problems consist of two interrelated
constructs, namely those pertaining to the structure of the
network underlying the problem and those pertaining to
the structure of the objective function used to assess
the relative desirability of feasible paths in the network.
As far as the structure of the network is concerned, there are
two basic constructs namely nodes and directed arcs.

So, let N denote the number of nodes in the network, and
for simplicity assume that the nodes are labeled n= 1,2,...,N
with node 1 being the origin and node N being the
destination. Thus, the task is to find the shortest path
from node 1 to node N.

As far as the structure of the objective function is
concerned, we shall begin with the assumption that the
length of a path is equal to the sum of the arc lengths on
the path.

The idea guiding the solution strategies for problems of
this type is as follows: Instead of asking the question:

What is the shortest distance from node 1 to node N? [

we examine the more general case:

What is the shortest distance from node 1 to some
arbitrary node n?

In other words, we regard the problem of interest as an
instance of a more general problem. So define

f(n):= the shortest distance from node 1 to node n.

And here is the crucial stage in the formulation of the

solution strategy: Consider an arbitrary node that is not
linked directly to the origin, call this node n. To reach this
node from the origin, we must visit first one of its
immediate predecessor, call it x. The question is then:
what is the best x?

Since our objective is to find the shortest path, the best
choice for x is the one that minimizes the sum of two
quantities, namely the sum of

(1) the length of arc (x,n);
al-d

(2) the distance from node 1 to node x.

And so, if we let d(i,j) denote the length of arc (i,j), then
clearly the best choice for x is one that minimizes the
expression d(x,n)+f(x) over all xe P(n), where P(n) denotes
the set of all immediate predecessors of node n.

What emerges then is that the rule for choosing the best
immediate predecessor is as follows: given node n, choose

an immediate predecessor of n that minimizes d(x,n)+f(x)
over P(n). In other words, the following result must be
true

Theorem

f(n) = min {d(x,n) + f(x)), n=2,3,4,...,N (1)

xc P(n)

This is the famous functional equation of dynamic
programming of Bellman [1]. Observe that for node n= 1
we have f(l)=O by definition.

The objective is then to solve this functional equation so
as to determine the value of f(N) as well as to recover an
optimal (shortest) path from node 1 to node N. To explain
how an optimal path can be recovered, assume that we have
already computed the values off(n) for n= 1,2,3,...,N and let
P*(n) be the set specified as follows:

(2)P*(n):= {YE P(n): d(y,n)+f(y)=f(n)l

Jogging With APL Along the Shortest Path 222 APL 92

namely, it is the set comprising all the immediate
predecessors of node n that solve the functional equation for
f(n). The recovery procedure can be formally described as
follows:

Recovery Procedure: —
Step l. Initialization.

Set x=n=N.
Step2. Stopping Rule.

If n= 1, stop.
Step 3. Iteration.

Setx=i,x where iisanyelement of P*(n). Set
n=i and go to Step 2. —

So the auestion boils down to this: how do we solve lthe
functionti equation?

It turns out that the question is not as simple as it relay
appear to be. There are two potential complications: cme
caused by cycles and one by negative arc lengths.
We shall not elaborate on these difficulties here. The
interested reader is referred to Syslo et al [4] for a detailkd
discussion of these difficulties and their implications.

Rather, we shall assume that the network that we are
dealing with is acyclic in which case the simplest - but
not necessarily the most efficient - way to solve the

functional equation is to evaluate its right-hand side for

n=2 3, ,...,N- 1 - in this order - recalling that f(l)==O.
However, to use this strategy we must ensure that the
nodes are properly labeled, namely that n>x, for all
xc P(n), recalling that P(n) denotes the set of all the
immediate predecessors of node n. Obviously, if the
network is acyclic, it is not difficult to label the nodles
properly. Therefore, in this discussion we assume that the
nodes are properly labeled.

In short, we assume that the objective function is additive,
the network is acyclic and the nodes are properly labeled.
We refer to such a problem as a standard shortest path
problem, As indicated above, practically all the methods

developed for solving the standard shortest path problem
derive, either directly or indirectly, from the dynamlic
programming functional equation given in (l).

Obviously, writing an APL code for this problem is not a
difficult task, especially if efficiency is not a major factor.
One can approach this task in different ways, depending
among other things on one’s personal style. The code
presented below was design primarily for the purpose of

exposition and as a prelude for the discussion of more
complicated shortest path problems.

We assume that the network is defined by two enclosed
vectors, call them p and d, each of length N, recalling that

N denotes the number of nodes in the network. The first

describes the architecture of the network in the following
way: p [n I is a vector consisting of all the immediate

APL Quote Quad 223

successors of node n. For example, in

network described by Figure 1 we can set

p+, ””(113)(l)(l)(2 3)(2 4)(3

the case of the

4)(5 6}

The ,“” is used to ensure that the elements of p are all

vectors, including those that for expediency were specified

as scalars.

The second vector, namely d, specifies the length of the

arcs. That is, for each node n, d [n] is a vector of the

same shape asp t n 1 whose elements specify the lengths of

the arcs connecting the elements of p [n 1 with n. Thus,

in the case of Figure 2 we set

d+, ““ (~ EI) (3)(2)(4 5)(6 6)(4 7)(3 4)

Next, we define a function to do exactly what the
functional equation tells us we should do, except that we do
it with vector notation:

OPT: f[ul~l. /ENU u

ENU: f[tp[oll+fd[w3

That is, for each node n the function EN U generates the

values of d(x,n)+f(x) for all the feasible values of x
(immediate predecessors of n). The function O P T

computes the smallest element of the vector computed by
EN U and store the result in f [n I . By implication it is

obvious that these two functions regard f as a global
vector. Obviously, we shall need a function to apply OPT

foreveryn inl J~N. But before we introduce this

function, we need functions to implement the recovery
procedure. So here they are:

OPflTH : OPftTH (OPTX X) ,U : 1=X+ Tu : u

OPTX: ((ENU w)~f[ul}ntp[wl

That is, the expression X+ OP RT H N yields the shortest

path, X, connecting node 1 to node N. Observe that OPTX

n yields an optimal immediate predecessor of n. In short,

if we tmt all the Dieces together. we obtain the following
APL s~lution to tie stanti-d shortest path problem: -

[g] R+ STf?NDflRD INPUT; p;d;f;N;OIO
[11 UIO+I O (p d)+ INPUT o N+tPP

[21 f+NpEI
[31 R+ OPT”” l$~N
[41 R+ f[Nl, OPflTH N

OPT: f[u I+ L/ENU ~
ENU: f[tp[ull+td[ul
OPRTH : OPflTH (OPTX X) ,U : 1=X+ TU : u
OPTX: ((ENU t.d~f[ul)n+ptul

Moshe Sniedovich, Suzanne Findlay

In the case of the network depicted in Figure 2, we obtain
the following:

STflNDflRD p d
1~1367

All in all, APL does a very good job herein translating the
abstract ideas underlying the algorithm into a concrete
formulation.

3. Non-Additive Problems

There are many interesting problems where the length of a
path is not computed as the sum of its arcs’ lengths. The
major ones are associated with the dyadic functions x L

r. In the case of x the dynamic programming functional

equation can handle only problems where the lengths of the
arcs are nonnegative: if some of the lengths are negative,
it is necessmy to change the formulation of the model (For
details see Sniedovich [3]). Although this is possible, we
shall not treat this extension here. Therefore, throughout
this discussion it is assumed that in the case of
multiplicative objective functions the lengths of all the
arcs are non-negative.

The following APL code is a simple generalization of the
code presented above for the standard problem. Note that
the user can specify the composition function, as well as
an optimality criterion, which can be either L or r , the

latter is used to solve “longest” path problems.

[g] R+(com GSP opt) INPUT ;p; d; f; N;ll IO
[1] 010+ O (p d)+ INPUT O N+Pp
[21 f+ Np(com ID)~Et
[31 R+ OPT”” 14~N
[41 R+ ftNl, OPRTH N

[g] R+(F ID}E
[11 R+(2 3 5 6= F/2 3)/(L/E), (r/E), Ei,l

OPT: f[w]+opt ENU W

ENU:f[tp[wll com td[wl
OPf)TH : OPRTH (OPTX X) ,W : 1=X+ ~W : W

OPTX: ((ENU w)~ftwl)lltp[wl

A number of observations are in order with regard to this
code. Firstly, the vector I D computes the identity

element of the composition function co m which is
needed in line [2] of GS P to initialize the value off [11.

Secondly, the functions OP T X and OP RT H remained in

tact. Thirdly, note that G S P is a dyadic operator.

Fourthly, there are four valid left arguments for GS P,

namely + x L and r ; and two valid right argument,

namely L and r. Last but not least, the derived function

+ GSP L is equivalent to the function STflNDflRD.

And here is the code in action in the context of the network
depicted in Figure 1.

Jogging With APL Along the Shortest Path 224

(+ GSP L)
lD 1367

(x GSP L)
321367

(L GSP L)
213457

(r GSP L)
41367

(+ GSP r)

1812467
(x GSP r)

33612467
(L GSP r)

31257
(r GSP r}

713467

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

To reiterate, the right argument of GSP determines whether

the shortest (L) or longest (r) path is to be recovered; its

left argument determines how the length of a path is
computed from the lengths of its arcs (additive,
multiplicative, etc). Thus, for instance, the derived

function x GSP r will recover the longest multiplicative

path, whereas L GS P r will recover the path whose

shortest arc is the longest possible.

Back to the question of how well APL cope with
algorithms of this type, it must be admitted that APL is
really doing a splendid job here. The concept of user-
defined operators is very natural in this context. There
is, however, one small difficulty here: observe what kind of
gymnastics one has to do in order to compute the identity

element of a primitive function passed as an argument to a
user defined operator. APL designers should provide
a more direct way to accomplish this very
important task. Although it is understood why there is
no universal convention for o p t / ~ g in the case where

opt is a user defined function, it is difficult to accept the

fact that one cannot execute such a statement when o p t is

an argument of a user defined operator whose “value” is
equal to a primitive function.

We now move to a much more difficult class of shortest
path problems, namely problems where there are two or
more objective functions.

4. Multiobjective Problems

Suppose that the lengths of the arcs are vectors of shape K
such that K22 . In the case of Figure 2 we have K=2,
where the first component of the length stipulates the cost
of the arc and the second component stipulates the
reliability of the arc. In view of this, the model must
include additional constructs. Firstly, we must specify a

composition function for each component of the length of
an arc. In case of Figure 2, the first component is additive,
the second is multiplicative. Secondly, for each

APL 92

component we have to specify an optimality criterion,
namely we have to specify whether we wish to maximize

or minimize the corresponding objective function. In the
case of Figure 2, the first component is minimized, the
second is maximized. Thirdly, we must specify some
preference relation stipulating how one determines which
one of a pair of vectors of shape K is better. For example,
in the case of Figure 2 the length of path (1,3,6,7) is equal
to (lg ,8.745 108) and the length path (1,2,5,7) is

equal to (12, El .76 95). And so, which length should

we prefer? There is no obvious answer to this question
because the first is better as far as the cost component is
concerned, whereas the second is better as far as
reliability is concerned.

But before we address these important questions we must
agree on a simpler matter, namely we must decide how we

expand the vector d to accommodate the new axis requined
by the fact that now the length of an arc is a vector rather
than a scalar.

For reasons to become clear shortly, it is convenient to
define d in the following way. As before we let d be an

enclosed vector on length N. For each node n we store in

d [n 1 an enclosed vector of length K, whose componer~ts

correspond to the K components of the arcs. The length of

each such vector is equal to the number of immediate
predecessors that node n has. In other word, P? d [n 1 is

equal to K for all n , and for any given n , all the

components oft d t n 1 are of length P ‘fp [n 1.

And so, in the case of Figure 2 we can specify d as

follows:

de(~O)((,3) (, Er.90)) ((,2) (, Et.89)) ((4 5)
(B.93 0.96)) ((6 6)(0.95 0.96)) ((4 7)

(0.92 13.97)) ((3 4)(E3.9Q @.91))

observing that each row corresponds to a node.

A moment of reflection on the tools of thought needed for
the analysis of problems of the type we address here
immediately reveals the following: what is needed here is
the concept of arrays of functions. Since this is neither
the proper place nor the proper time to discuss this concept
in detail, we shall restrict the discussion only to the ad hc}c
codes developed to simulate this concept for the purpose of
solving the shortest path problem. The interested reader is
referred to APL Quote vol 14(4), 1984 for a number of

papers on this subject.

The operator ECOH defined below is designed to facilitate

the analysis and solution of multiobjective shortest path
problems:

[g] R+ fi(FF ECOH)B
[11 R+(, c,”” FF), fl B
[2] R+Q””~””E””C[l]n-l@R 1

APL Quote Quad 225

Its argument is a character vector of names or symbols
representing dyadic functions. This argument is treated as

an array of functions, namely the derived vector of
functions is applied (dyadically) to its arguments, item by

item. For example,

2 5 3 (’+x*’ ECOH) 3 4 2
5208

R+(1 2)(4 5)
B+(1D 2g) (30 4~)
DISPLfIY R (‘+X’ ECOI’1} B

O+------ _—__________ ~

I .+----- 0+-—----0

I Ill 221 11202001 !

I
~.%l ~------—e---— ~ I

o@---- ____o--—--____o

Now that we can easily manipulate arrays of functions, we
can relax and think about the most important thing in
multiobjective decision making, namely:

Given a collection of vectors of length k, how do you
determine which one is best?

Mathematically speaking, what we need is a preference
relation on the K-dimensional Euclidean space. And in the
realm of decision making, there are two major alternatives
namely, the Lexicographic order and the Pareto order.
To explain how they work, assume that we prefer each of

the components of the vectors to be as small as possible,
namely we wish to minimize all the components. The
lexicographic order will select the vector whose first
component is the smallest. If there is a tie, then it is
broken by considering the second component, The process
continues until there is no tie, or until all the components
have been used to break a tie. In APL, the Lexicographic
ranking of vectors is given directly by the functions grade

up and grade down. Thus, the solution is straight
forward. The function LEX I CO and its companions defined

below solves the shortest path problem induced by the
lexicographic preference order,

[EIl R+ LEXICO INPUT; F; N; UC; UO;p; d; J;OIO
[11 IN IT IftLIZE
[21 R+ FEQURTION
[31 R+F[N2 ,RECOUER N

[01 IN IT IRLIZE; I
[11 010+1 O (UC UO p d)+ INPUT
[21 (UC UO) +UNSPfICE”” UC UO

[31 I+ C(’Lr+x’~UC} o J+-l X’r L’~UO
[41 F+(N+Pp)Pc IO (LzI13) ,(r/~EI) ,Ei,l

FEQURTION : OPT”” lJ-~N
RECOUER : RECOUER (OPTX X) ,(.J : i= X+tGJ : m
OPT: F[u]+cJxt (t$=R)u R+c[l I=IJxENU (.I
ENU: (td[ol) (UC ECOPl)(C[l l= FC’tp[till)
OPTX: t((ENU GJ)IF[(.J])ntp[cJ]

UNSPRCE : (‘ ‘ #tJ)zt..I
I

Moshe Sniedovich, Suzanne Findlay

As we can see, except for a number of inconveniences
caused by the absence of arrays of functions, the APL code
cope with the task pretty well. And here is its solution to
the reliability problem depicted in Figure 2.

DISPLflY LEXICO ‘+X ‘ ‘Lr’ pd
4+ —------ —--------------a

I .+-----------

I IIB 13.7451Q81 1 3 6 7 ~
I

~.%---------- a

O~—-—-- ___ —------------- ~

Obviously, if we regard reliability, rather than cost, the
more important objective, we may be interested in the
solution generated by

DISPLRY LEXICO ‘X+’ ‘rL’ p (@””d)

e+————---—_—___________ ~

I 0+--------0

I lg.7695 121 1 25 7 ~
~*________e I

06-------------------- 0

Next, let us examine the situation where the preference
order is of the Pareto type. The idea underlying this
preference is outlined by the following :

Definition.
Let x and y be any vectors in the k-dimentional Euclidean
space. Wesaythat xisdominated byyifand only if

(l)xi<yi foralli, l<i<k; and

(2) xi<yi for at least one i, l<isk,

Thus, given a finite collection of vectors, we do not
attempt to find the “optimal” element of this collection,
butrather seek to identify all thenondominated elements
of the collection. The point is that the collection may
have several nondominated elements.

This means that the Pareto approach does not actually
provide a solution to the shortest path problem because it
may fall short of selecting a single path. It merely

eliminate paths that in a sense are inferior to other feasible
paths. Some other criteria must be used to pinpoint the
shortest path.

Observe that in the case of the Pareto preference order we
formally define

f(n):= Setof nondominated paths from node 1 to node
n, n=l,2,,.,,N.

So now APL is confronted with a functional equation
involving sets of vectors rather then single vectors. This,
however, does not cause any major difficulty because
enclosed arrays can handle the situation reasonably
well. The complete code is as follows:

LUJ

[11
[21
[31

[01
[11
[21
[33
[41

[01
[11
[21

[01
[11
[21
[31
[41

INITIALIZE
R+ FEQUfiTION
R+(-tFt Nl)(N RECOUER””?FINI)

IN IT IRLIZE; I
010+1 o (UC UO p d)+ INPUT
(UC UO)+UNSPRCE”” UC UO
I+c(’Lr+x’~(JC) O Je-lx’rL’~lJo

F+(N+Pp)pc,cID (1./’~Et),(i_z~i3) ,13,1

R+ f) (FF ECOtl) B
R+((?PB)p””c””R FF),,cB

R+T(A’”) ”” (T””) ”’ccIl”’a””ccII=R

R+ U OPTX n ;I;Z
I+T,/(c,Lt+ct,/U)E””Z+tlENU n
R+t(I+tI/~pZ)Otp[n+tnl
Z+,c(IO””~d[nl) (UC ECOt-1)(-tFIRl)

R+R,t(Z~U)lltFCRl

FEQUfITION: OPT””lJ-~N
OPT: F[u]+Jx(t+~8)uR+JxENu w
MENU: (~[il=Td[ul)ENU’”F[-tpEull
ENU: (ca)) (UC ECOtl),””c””LJ
UNIQUE: ((w~u)=~pu)/u
UNSPRCE: (’ ‘#W)/(,J

RECOUER: ((tZ),a)RECOUER l$Z% OPTX X :
l=X+ta : a

OPT: F[W]+C(CJ)X(*v/(ti’’.?tQM) ‘(Mv.>tgtl+=R
))/@AJNIQIJE (cJ)xt,/MENu w

To determine the nondominated paths associated with the
reliability problem representedb~ Figure 2, we apply the
code to the same input vector used previously by L E X I CO.

The resultis reshaped to prevent overflow.

DISPLR’T’ 2 lPPfiRETO ‘+X’ ‘1.r’ p d

O+-------—-—————___— ____________ ~

I .3+ -------------- ------- -----~

I I .+--------O
4+’----------” I !

I I 1120.76951 IIEI EI.7451E181 I I
Ilcl+ ------ -- 0 ~&

----------Q I I
------ ------------ ________ ~

/ ::--------------------0 I
I I *+------O 0+------0 I I
11 [125711136711 I

~*______e O*---__-o

/ BE--------------------! /
BE----------—----—-— _____________ ~

In otherwords,therearetwonondominated paths(i 2 5

7) and (1 3 6 7). the first costs 12 units and its

reliability isequalto 8.76 95 and the second costs la

units anditsreliability isequaltoE1 .74 51138.

Observe that the same result is obtained if the elements of
the input vector are reversed, namely

JoggingWith APL Along the Shortest Path 226 APL 92

DISPLRY 2 lpPftRETO ‘x+’ ‘rL’ p (@””d)
o+------—_--__--—______-—_______ ~

------ ------ ______________ ~

! ;+ O+----------- 0+--------- I ~

I I 1113 a.7451138i 1120.76951 i I
0-----------0 0’”--------” I \

/ BE- ---——---— ______ ------ ---- ~

I o+ ----_---__--—___——__ ~ 1
i I .+------- .+------O 1 i

111136711125711
II o+-----_a O*---___e /
I Of--------------------: I
o~--_--—__--—_----_-—---- ------ -~

Generally speaking, APL is doing a reasonable job here in
coping with the operations required by the dynamic
programming algorithm, except thatlifecould havebcena
biteasierhadwehad arraysoffunctions atourdisposal.

5. Conclusions

In this investigation we examined APL in a context where
it should perform extremely well, namely in a situation

where it is used as a notation for the formulation c)f

numeric algorithms. It therefore should not come as a

APLQuoteQuod 227

surprise that overall its performance proved excellent, yet
not perfect. While the present discussion is confined to the

analysis of shortest path problems, it has been our
experience that similar conclusions apply in the case of
other operations research problems, Sniedovich [2].

Acknowledgement. The first author’s work in this area
waspartially supported byan ARC grant SG6890197,

References

1. R. Bellman, Dynamic Programming, Princeton
University Press, Princeton, NJ (1957).

2. M. Sniedovich, The APL Phenomenon: An
operational Research Perspective, European
Journal of Operational Research, 38(2), pp. 141-145,
(1989).

3. M. Sniedovich, Dynamic Programming, Marcel
Dekker, NY (1992).

4. M.M. Syslo, N. Dee, and J. Kowalik, Discrete

Optimization Algorithms with Pascal Prog-
rams, Prentice-Hall, Englewood Cliffs, NJ (1983).

Moshe Snicdovich, Suzanne Findlay

