
APL function definition notation

.John Bunda’
Depart’tment of Computer Sciences
The IJl1iversit.y of Texas at Austin

Austin, Texas 78712

Abstract

A pure functional not.ation for defining APL objects is dr-
scribed, and contrasted with previous work in this arcs. The
notation is extended to address both theoretical and pragmatic
programming considerations. The notation is compatible with
existing implementations, and is shown to straightforwardly in-
corporate popular extensions to the language.

Introduction

The functional programming paradigm has been studied as not only a
programming methodology [Bac78,Hug84], but ae the basis for a non-
Von Neumann model of computation [mr84,Hug82]. LISP is most
often cited as the prototypical functional language, but APL has also
played a part in the evolution of this programming paradigm. Backus
[Bac78] drew considerably on his experienre with APL in developing
his functional notation.

Inspiration aside, APL has been all but ignored in recent functional
programming research. One reason for this is that, despite the rich-
ness of APL notation, it is not possible to express many computations
functionally. Pure LISP is a computationally complete functional suh-
set of LISP. However, in APL, the imperative notions of “statement”
and “goto” are sometimes required in order to express certain computa-
tions. There is no complete functional subset of commou implementa-
tions that might be called Pure APL. From a formal perspective, APL
remains as imperative as Pascal or Fortran.

Function defiuitiou notation

Alternatives to the conventional v-form of functiou definition have
been proposed. Iverson’s original direct definition notation [Ive7G] is
purely functional. However, it,s nlternatiou is a simple if-then-else, and
the definition form cannot be applied direct.ly in an expression. Mor-
row [Morff] defines a truly direct lambda-style notation, but does not
include a conditional construct. Other proposals abandon the func-
tional model, and reintroduce imperative features, essentially provid-
ing syntactic sugar for conventional v-form definitions [IW81], [Ive83],
[MetBO].

‘Research supported by IBM Corporat.ion, Thonxss J. Watson Reaesrch Center,
Yorktown Heights, New York, Ju~~-Sept~rn&r 1985

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

In this paper, scmw of the pragmat.ic drawbacks of lverson’s original
direct definit.ion notation are addressed. \Ve define a pare functional
uotation for defining API, objects that is compabible wit,h existing irn-
plen~entations of t.he language (souw symbols are given new meaning
within our definitional form). A geucral alternat.ion construct is intro-
duced, which permits esplicit restrict.ion and partitioning of the do-
mains of defined fanct.ioas. The notation is extended with a naming

and encapsulation facilit,y that aIso eliminates a problem with applica-
tion of mutually recursive definitions. The notation is shown to permit
the graceful defiuition of ambivalent functions pBM84,Ive83], and to
generalize straightforwardly to defined operators [IBM84].

A uotntiou for pure fuuctiounl forms

The general form of a funct.ion defiuitiotr expression in this notation is
a guarded aliernofion *. As in other APL direct-definition forms, the
names a and w denote the values of left and right arguments respec-
tively. The form:

{!Wrd, - etprl a gtrcrld2 - exl,P2 0 0 guad, - ezpr., 1

We use trnc to denote I.he APL numeric scalar value 1. When a func-
tiou is applied, alternatives, separated by the symbol 0 , are considered
from left to riglIt. If gt[<d’.c/i has the value true, erpri is selected as
the expressiou defining Lhe function’. An unguarded alternative is con-
sidered t,o be implicitly guarded by true. A guard having no value or
whose evaluation results in an error is considered to be the same any
guard with a value other than true. That is, errors resulting from
evaluation of guards are not signalled (though an error in a selected
erpri would be signalled normally).

A definition expression enclosed in braces denotes a funct.ion, and it
may be applied directly as part of another expression. For example, the
following expression defines nucl applil?s the absolute value function:

{w>O -wllw<o---w)-3
3

This definition contains two alteruat,ives: w>O - w and w<O - -J
When the function is appliecl t.o the argument -3, the guard: W>O is
evaluated, and siuce ir.s value is not true. t.he second alternative is
considered. The value of the second guard is true, so -w is selected as
the function’s definit.ion: hence the value of the entire expression is 3.

In this example, the guards restrict the domain of the function to
numeric scalars (or siugletou vectors if coercion is admitt.ed). If the
function is applied to an array or character argument, neit.her guard will
be true. If no alternative calI be selected, a domain error is signalled
at the application of the funct.ior~.

A&T+- {l&O-w a w<o- -w]
ABS 1 2 3

DOMIN RRROR
ABS 1 2 3

A

0 1987 ACM O-89791-226-8/87/0005/0253 7%

253

Associating a definition with a name via the assignment arrow (ss
shown with the ASS function above) makes it unnecessary to explicitly
define a function each time it is used in an expression. A further con-
sequence is that it is then possible for a function to refer to itself. For
example, the factorial function might be defined:

FACT-{w=o- IO w>o--w xFACfw-l]

This method has several disadvantages. First, there is no way to
apply such a function directly; it must first be defined and associated
with a name. Second, the function cannot be renamed in the global
environment without also requiring a change to the definition itself.

Following [IWSl], we use the symbol o to denote self-reference in a
definition. This symbol is local name, independent of any global names
associated with the definition. So factorial might also be defined:

FACr- {w=O- 1 0 w>O--wxA w-1)

Since it is strictly local, A solves the global/local name problem
mentioned earlier for simple recursions, but the problem remains with
mutually recursive definitions (e.g. F calls 0, which calls R, and so on).
We will return to this problem shortly.

Symbolic substitution

We extend the notation to allow locally defined abbreviations, which we
will call symbolic subsiirurions. Symbolic substitutions are delimited by
semicolons, and appear following the guarded alternation defn within
the definition braces. The general form is:

{ defn ; name, - exprl ; . . . ; nomen - etpr, 1

Each namei is any APL identifier, and each eZpVi is an APL expres-
sion. If namei occurs in defn, upon evaluation, exPri is substituted.
An espri is only evaluated if an expression containing its name; is
evaluated. For example, the following:

{tw;A-10+0} 3
123

does not produce an error. On the other hand, if a substituted upres-
sion is evaluated, it is only necessary to evaluate it once s. These names
are local, invisible in the calling environment. It is also important to
distinguish the use of - in this definition form horn assignment in the
imperative sense. Multiple assignments to a name have no meaning
here; only one subtitution may apply to a name within a given scope.

Since an espri may be any APL expression, name< may stand for
any vdue or function. The following identities hold:

{X+w;X-1) * {1+w)
{X0 .+x;x- IW} * {(tw)o .+tw)

{PX;P-{c} ;x-w) * {tw)

The third equation shows how substitutions may be provided for
an argument name. This is so often desirable that a shorthand for
renaming of the symbols a, w, and A is provided. A femphle may
prefix the rest of the definition body, separated from it by a colon.
The denotation of names in a template is simiiar to the conventions
of the del-form function header (except that a single name defines a
function name without substitutions for argumente instead of a niladic
definition). This shorthand ie defined by the following identities, where
defn stands for a definition body:

{FW: defn) tJ {defn;FL?f?-A)

{muf?R: dtfn) ti {defn;Wuo-A;R-cd)

{LMTX?~: defn) Q {de/n;upUU-a;L--u;B-w}

Some sample definitions:

{FACTN: N=O- 1 II It50-NxFAcrN-1)

{sURTN: IQO-N TEST ~PPRUX N:
APPRUX-{ (w+N+w)+S) ;
ZEST-{RPSSla-w-w Uw 3ESrAPPRUXw)
JPS- lrlo)

3This ir permitted in functional progranu due to the property of rejerenlial
tronrporency, i.e. erpremionn have no side efiectm. Sea [HM76,FW76].

The first example is a refinement of the factorial function defined
earlier. The second is a vtrrion of Newton’s method for approximating
square roots. Note that definitions are allowed to span multiple lines.

The template is just a shorthand for local substitution; it doer not
define any global referents. Converrely, as before, a globd name need
not be the same as the local name, for example:

?OU-{IACIN: N=O-1 OfiO-Nxxl;(cIN-1)
?OO 3

0

Here, RACris the local name the definition, and its globd name is
?OO.

Locd names may alao occurfne, i.e. be referenced globdly, in locd
function definitions. This provides a rolution to the mutud recursion
problem mentioned earlier. Observe that the definition:

{FrnA: ASO-0 oA>o~R4aA;B.4&{fmw-2}}

does not require any global names; it may be applied directly in an ex-
pression. Circular references can lead to non-terminating substitution,
as in:

{Puuw;?00-RAR; NAR-FOU}

Function ambivalence

Some implemtntationr of APL dlow defined functions to be applied
monadically or dyadicdly, dlowing overloading similar to that of APL
primitives. A problem then arises in the definitions of these functions;
namely, determining the delinednese of the left argument. In our nota-
tion, the nonstrictneae of dternation provides a simple solution. The
expression: azo is true whenever o ia defined (and a value trrot oth-
erwise). Therefore, an ambivalent function can be defined in the form:

(ANTI: (YZU - dyadic-defn 0 monadic-defn}

where d#odic-defn and monadic-defn are expressions giving the dyadic
and monadic definitions of ANRg, respectively.

DeAned operatorr

APL2 [IBM841 allows the definition of APL operators, objects similar
to the primitives ndun and product. A defined operator is identicd
to a defined function, except that in addition to right and left argu-
ments (which must be vdues), it may also accept one or two operands,
which may be functions. These objects behave syntacticdly like APL
primitive operators.

In APLP, an operator definition’s header contains additional names
to stand for the operands. By denoting the left and right operands
g and y respectively, out notation may be extended directly to these
higher-order objects. The template prefix may also be extended in
the APL2 tnann~r. Fot example, here is a definition of a simple left-
associative reduction operator for vectors:

{ (F LRRD)n: SINGLR- Rb’
0 YRCTOR- ((P URD)-l lR)R RS;

Rs- (IO) pbll;
SINGLE-i=p.R;
WRGTOR-¶=ppR}

Operators must be of llxed operand valence; the valence of a defined
operator is monadic if it contains no reference to the right operand y.

Research directions

Since APL has been traditiondly used in an imperative style, it should
not be surprising if use of this notation eometimee seems awkw=d
or reveals “shortcomings” in the language. For example, in defining a
general inner-product style operator, one is struck by the lack of a first-
row or first-column primitive, though these are easily (if cumbersome1y)
defined using take. The rank operator [Ive83] and APL2’s take with
axis (IBM841 are better, but not altogether satisfying; rank require ~JI

254

explicit transpose (which might need to be computed), while take with
axis would require aimihu computution, and is also origin-dependent.
Renearcb in functional APL programming is likely to lead to proposals
for new or alternative language primitives.

The constructive definition of lists often leads to natural recur-
sive decompositions in LISP. This seems to suggest that nested arrays,
which can be defined in a similar inductive manner might lead to more
elegant or natural solutions to some problems. On the other hand,
this generality is occasionally undesirable, since it can lead to in&-
ciency when complete generality is not required. This has led some
rwearchem to study inclusion of arrays imfunctional languages. “Pure
APL” as defined here might provide a viable starting point for research
in functional array Ianguages.

Formally, functional programs hbve many attractions. The seman-
tics of a functional language is usually simpler than that of an imper-
ative one, since the notion of “machine state” has been sbstracted; a
program is given by an expression rather than a sequence of state transi-
tions p\Ir81]. Correctness arguments are ueuaHy simpler, because they
may be stated as equations in the language itself; it is not necessary
to reason about state sequences. Useful algebraic laws and formal re-
lationships among programs are more common and easier to exploit in
pure functional forms than in equivalent imperative programs. It would
be interesting to explore the application of functional programming im-
plementation kchniques [Tur79,Hug82] to “Pure APL”. Optimization
strategies such as [HM76,FW76] might ah.0 prove useful.

s-w

A notation for defining pure functional forms of APL computations is
defined. The notation is extended to sddrass both theoretical and prag-
matic considerations. The notation is shown to support some popular
language extensions in a clean, straightforward manner.

The theoretical and practical advantages of pure functional forms
are beyond the scope of this paper. However, we do note that the
notion of “Pure APL” could lead to some interesting and significant
results in language design and implementation.

Ackrtowledgementa

The central ideas of this paper were set down during the summer of 1985
at Yorktown. Thanks to Fritr Riihr and Don Orth, who both provided
valuable insights and criticism from the beginning. I would aleo like to
thank Christian Lengauer, my advisor, whose ideas on programming
notation and formal semantics were a major influence. Special thanks
to my friend and colleague John Gerth; without John’s efforts this
paper would not appear here.

References

@ac78]

[Dij76]

[FW76]

[HM76]

PW321

PW4

[IBM841

[Ive76]

[Ive83]

[lWSl]

[Met801

[Mor77]

F-H

[Tur79]

[Tur81]

[Tur84]

J. Backus. Can programming be liberated from the Von Neu-
mann style? A functional style and its algebra of programs.
CACM, 21(8):147-174, August 1978.

Edsger W. Dijkstra. A Discipline o/Programming. Prentiss-
Hall, Englewood Cliffs, NJ, 1976.

D. P. Friedman and D. S. Wise. CONS should not evaluate
its arguments. In Proceedings Third Iniemationol Colloquium
on Automata Langrrages and Progmmming, 1976. Edinburgh.

Peter Henderson and Jbmes Morris. A lazy evaluator. In
Proceedings Third Symposium on Principles of Programming
Languages, 1976. Atlanta, GA.

John Hughes. Graph Reduciion with Super-Combinaiors.
Technical Report PRG-28, Oxford University Computing
Laboratory, Programming Research Group, June 1982.

John Hughes. Why Funefionol Progmmming Matters. Tech-
nical Report PMG40, lnetitutionen for Informationsbehan-
dling, Chalmers Tekniska Hogskola, Goteborg, Sweden, 1984.

APZd Language Manual. IBM Corporation, 1984.

Kenneth E. lverson. Elementary Anofysis. APL Press, 1976.

Kenneth E. Ivemon. Rationalized APL. Technical Report, I.
P. Sharp Associates, Toronto, Ontario, January 1983. I. P.
Sharp Research Report No. 1.

Kenneth E. Iverson and Peter K. Wooster. A function defi-
nition operator. APL Quofe Quad, 12(l), 1981. Proceedings
OF APL81 Conference, San Rsncisco, CA.

R. C. Metzger. Extended direct definition of APL functions.
In APL80 Infernotional Conference oti APL, North Holland
Publishing Co., 1960. Leeuwenhorst.

L. A. Morrow. Nonce functions. January 1977. Unpublished
manuscript.

D. Hugh Redelmeier. Towards Practical Funcfional Program-
ming. Technical Report CSRG-158, Computer Systems Re-
search Group, University of Toronto, May 1984.

David A. Turner. A new implementation technique for ap-
plicative languages. Sofiware - Pmdice and Ezpetience, 9,
1979.

David. A. Turner. The semantic elegance of applicative
languages. In proceedings ACM Conference on Funciional
Progmmming and Computer Archilectun, October 1981.
Portsmouth, NH.

David A. Turner. Combinator reduction machines. In Pro-
ceedings of ihe International Workshop on High-Level Corn-
p&r Amhilectun, Mby 1984. Los Angeles, CA.

255

