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Abstract 

A pure functional not.ation for defining APL objects is dr- 
scribed, and contrasted with previous work in this arcs. The 
notation is extended to address both theoretical and pragmatic 
programming considerations. The notation is compatible with 
existing implementations, and is shown to straightforwardly in- 
corporate popular extensions to the language. 

Introduction 

The functional programming paradigm has been studied as not only a 
programming methodology [Bac78,Hug84], but ae the basis for a non- 
Von Neumann model of computation [mr84,Hug82]. LISP is most 
often cited as the prototypical functional language, but APL has also 
played a part in the evolution of this programming paradigm. Backus 
[Bac78] drew considerably on his experienre with APL in developing 
his functional notation. 

Inspiration aside, APL has been all but ignored in recent functional 
programming research. One reason for this is that, despite the rich- 
ness of APL notation, it is not possible to express many computations 
functionally. Pure LISP is a computationally complete functional suh- 
set of LISP. However, in APL, the imperative notions of “statement” 
and “goto” are sometimes required in order to express certain computa- 
tions. There is no complete functional subset of commou implementa- 
tions that might be called Pure APL. From a formal perspective, APL 
remains as imperative as Pascal or Fortran. 

Function defiuitiou notation 

Alternatives to the conventional v-form of functiou definition have 
been proposed. Iverson’s original direct definition notation [Ive7G] is 
purely functional. However, it,s nlternatiou is a simple if-then-else, and 
the definition form cannot be applied direct.ly in an expression. Mor- 
row [Morff] defines a truly direct lambda-style notation, but does not 
include a conditional construct. Other proposals abandon the func- 
tional model, and reintroduce imperative features, essentially provid- 
ing syntactic sugar for conventional v-form definitions [IW81], [Ive83], 
[MetBO]. 
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In this paper, scmw of the pragmat.ic drawbacks of lverson’s original 
direct definit.ion notation are addressed. \Ve define a pare functional 
uotation for defining API, objects that is compabible wit,h existing irn- 
plen~entations of t.he language (souw symbols are given new meaning 
within our definitional form). A geucral alternat.ion construct is intro- 
duced, which permits esplicit restrict.ion and partitioning of the do- 
mains of defined fanct.ioas. The notation is extended with a naming 

and encapsulation facilit,y that aIso eliminates a problem with applica- 
tion of mutually recursive definitions. The notation is shown to permit 
the graceful defiuition of ambivalent functions pBM84,Ive83], and to 
generalize straightforwardly to defined operators [IBM84]. 

A uotntiou for pure fuuctiounl forms 

The general form of a funct.ion defiuitiotr expression in this notation is 
a guarded aliernofion *. As in other APL direct-definition forms, the 
names a and w denote the values of left and right arguments respec- 
tively. The form: 

{!Wrd, - etprl a gtrcrld2 - exl,P2 0 0 guad, - ezpr., 1 

We use trnc to denote I.he APL numeric scalar value 1. When a func- 
tiou is applied, alternatives, separated by the symbol 0 , are considered 
from left to riglIt. If gt[<d’.c/i has the value true, erpri is selected as 
the expressiou defining Lhe function’. An unguarded alternative is con- 
sidered t,o be implicitly guarded by true. A guard having no value or 
whose evaluation results in an error is considered to be the same any 
guard with a value other than true. That is, errors resulting from 
evaluation of guards are not signalled (though an error in a selected 
erpri would be signalled normally). 

A definition expression enclosed in braces denotes a funct.ion, and it 
may be applied directly as part of another expression. For example, the 
following expression defines nucl applil?s the absolute value function: 

{w>O -wllw<o---w)-3 
3 

This definition contains two alteruat,ives: w>O - w and w<O - -J 
When the function is appliecl t.o the argument -3, the guard: W>O is 
evaluated, and siuce ir.s value is not true. t.he second alternative is 
considered. The value of the second guard is true, so -w is selected as 
the function’s definit.ion: hence the value of the entire expression is 3. 

In this example, the guards restrict the domain of the function to 
numeric scalars (or siugletou vectors if coercion is admitt.ed). If the 
function is applied to an array or character argument, neit.her guard will 
be true. If no alternative calI be selected, a domain error is signalled 
at the application of the funct.ior~. 

A&T+- {l&O-w a w<o- -w] 
ABS 1 2 3 

DOMIN RRROR 
ABS 1 2 3 

A 
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Associating a definition with a name via the assignment arrow (ss 
shown with the ASS function above) makes it unnecessary to explicitly 
define a function each time it is used in an expression. A further con- 
sequence is that it is then possible for a function to refer to itself. For 
example, the factorial function might be defined: 

FACT-{w=o- IO w>o--w xFACfw-l] 

This method has several disadvantages. First, there is no way to 
apply such a function directly; it must first be defined and associated 
with a name. Second, the function cannot be renamed in the global 
environment without also requiring a change to the definition itself. 

Following [IWSl], we use the symbol o to denote self-reference in a 
definition. This symbol is local name, independent of any global names 
associated with the definition. So factorial might also be defined: 

FACr- {w=O- 1 0 w>O--wxA w-1) 

Since it is strictly local, A solves the global/local name problem 
mentioned earlier for simple recursions, but the problem remains with 
mutually recursive definitions (e.g. F calls 0, which calls R, and so on). 
We will return to this problem shortly. 

Symbolic substitution 

We extend the notation to allow locally defined abbreviations, which we 
will call symbolic subsiirurions. Symbolic substitutions are delimited by 
semicolons, and appear following the guarded alternation defn within 
the definition braces. The general form is: 

{ defn ; name, - exprl ; . . . ; nomen - etpr, 1 

Each namei is any APL identifier, and each eZpVi is an APL expres- 
sion. If namei occurs in defn, upon evaluation, exPri is substituted. 
An espri is only evaluated if an expression containing its name; is 
evaluated. For example, the following: 

{tw;A-10+0} 3 
123 

does not produce an error. On the other hand, if a substituted upres- 
sion is evaluated, it is only necessary to evaluate it once s. These names 
are local, invisible in the calling environment. It is also important to 
distinguish the use of - in this definition form horn assignment in the 
imperative sense. Multiple assignments to a name have no meaning 
here; only one subtitution may apply to a name within a given scope. 

Since an espri may be any APL expression, name< may stand for 
any vdue or function. The following identities hold: 

{X+w;X-1) * {1+w) 
{X0 .+x;x- IW} * {(tw)o .+tw) 

{PX;P-{c} ;x-w) * {tw) 

The third equation shows how substitutions may be provided for 
an argument name. This is so often desirable that a shorthand for 
renaming of the symbols a, w, and A is provided. A femphle may 
prefix the rest of the definition body, separated from it by a colon. 
The denotation of names in a template is simiiar to the conventions 
of the del-form function header (except that a single name defines a 
function name without substitutions for argumente instead of a niladic 
definition). This shorthand ie defined by the following identities, where 
defn stands for a definition body: 

{FW: defn) tJ {defn;FL?f?-A) 

{muf?R: dtfn) ti {defn;Wuo-A;R-cd) 

{LMTX?~: defn) Q {de/n;upUU-a;L--u;B-w} 

Some sample definitions: 

{FACTN: N=O- 1 II It50-NxFAcrN-1) 

{sURTN: IQO-N TEST ~PPRUX N: 
APPRUX-{ (w+N+w)+S) ; 
ZEST-{RPSSla-w-w Uw 3ESrAPPRUXw) 
JPS- lrlo) 

3This ir permitted in functional progranu due to the property of rejerenlial 
tronrporency, i.e. erpremionn have no side efiectm. Sea [HM76,FW76]. 

The first example is a refinement of the factorial function defined 
earlier. The second is a vtrrion of Newton’s method for approximating 
square roots. Note that definitions are allowed to span multiple lines. 

The template is just a shorthand for local substitution; it doer not 
define any global referents. Converrely, as before, a globd name need 
not be the same as the local name, for example: 

?OU-{IACIN: N=O-1 OfiO-Nxxl;(cIN-1) 
?OO 3 

0 

Here, RACris the local name the definition, and its globd name is 
?OO. 

Locd names may alao occurfne, i.e. be referenced globdly, in locd 
function definitions. This provides a rolution to the mutud recursion 
problem mentioned earlier. Observe that the definition: 

{FrnA: ASO-0 oA>o~R4aA;B.4&{fmw-2}} 

does not require any global names; it may be applied directly in an ex- 
pression. Circular references can lead to non-terminating substitution, 
as in: 

{Puuw;?00-RAR; NAR-FOU} 

Function ambivalence 

Some implemtntationr of APL dlow defined functions to be applied 
monadically or dyadicdly, dlowing overloading similar to that of APL 
primitives. A problem then arises in the definitions of these functions; 
namely, determining the delinednese of the left argument. In our nota- 
tion, the nonstrictneae of dternation provides a simple solution. The 
expression: azo is true whenever o ia defined (and a value trrot oth- 
erwise). Therefore, an ambivalent function can be defined in the form: 

(ANTI: (YZU - dyadic-defn 0 monadic-defn} 

where d#odic-defn and monadic-defn are expressions giving the dyadic 
and monadic definitions of ANRg, respectively. 

DeAned operatorr 

APL2 [IBM841 allows the definition of APL operators, objects similar 
to the primitives ndun and product. A defined operator is identicd 
to a defined function, except that in addition to right and left argu- 
ments (which must be vdues), it may also accept one or two operands, 
which may be functions. These objects behave syntacticdly like APL 
primitive operators. 

In APLP, an operator definition’s header contains additional names 
to stand for the operands. By denoting the left and right operands 
g and y respectively, out notation may be extended directly to these 
higher-order objects. The template prefix may also be extended in 
the APL2 tnann~r. Fot example, here is a definition of a simple left- 
associative reduction operator for vectors: 

{ (F LRRD)n: SINGLR- Rb’ 
0 YRCTOR- ( (P URD)-l lR)R RS; 

Rs- ( IO) pbll; 
SINGLE-i=p.R; 
WRGTOR-¶=ppR} 

Operators must be of llxed operand valence; the valence of a defined 
operator is monadic if it contains no reference to the right operand y. 

Research directions 

Since APL has been traditiondly used in an imperative style, it should 
not be surprising if use of this notation eometimee seems awkw=d 
or reveals “shortcomings” in the language. For example, in defining a 
general inner-product style operator, one is struck by the lack of a first- 
row or first-column primitive, though these are easily (if cumbersome1y) 
defined using take. The rank operator [Ive83] and APL2’s take with 
axis (IBM841 are better, but not altogether satisfying; rank require ~JI 
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explicit transpose (which might need to be computed), while take with 
axis would require aimihu computution, and is also origin-dependent. 
Renearcb in functional APL programming is likely to lead to proposals 
for new or alternative language primitives. 

The constructive definition of lists often leads to natural recur- 
sive decompositions in LISP. This seems to suggest that nested arrays, 
which can be defined in a similar inductive manner might lead to more 
elegant or natural solutions to some problems. On the other hand, 
this generality is occasionally undesirable, since it can lead to in&- 
ciency when complete generality is not required. This has led some 
rwearchem to study inclusion of arrays imfunctional languages. “Pure 
APL” as defined here might provide a viable starting point for research 
in functional array Ianguages. 

Formally, functional programs hbve many attractions. The seman- 
tics of a functional language is usually simpler than that of an imper- 
ative one, since the notion of “machine state” has been sbstracted; a 
program is given by an expression rather than a sequence of state transi- 
tions p\Ir81]. Correctness arguments are ueuaHy simpler, because they 
may be stated as equations in the language itself; it is not necessary 
to reason about state sequences. Useful algebraic laws and formal re- 
lationships among programs are more common and easier to exploit in 
pure functional forms than in equivalent imperative programs. It would 
be interesting to explore the application of functional programming im- 
plementation kchniques [Tur79,Hug82] to “Pure APL”. Optimization 
strategies such as [HM76,FW76] might ah.0 prove useful. 

s-w 

A notation for defining pure functional forms of APL computations is 
defined. The notation is extended to sddrass both theoretical and prag- 
matic considerations. The notation is shown to support some popular 
language extensions in a clean, straightforward manner. 

The theoretical and practical advantages of pure functional forms 
are beyond the scope of this paper. However, we do note that the 
notion of “Pure APL” could lead to some interesting and significant 
results in language design and implementation. 
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