APL function definition notation

John Bunda®
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

Abstract

A pure functional notation for defining APL objects is de-
scribed, and contrasted with previous work in this area. The
notation is extended to address both theoretical and pragmatic
programming considerations. The notation is compatible with
existing implementations, and is shown to straightforwardly in-
corporate popular extensions to the language.

Introduction

The functional programming paradigm has been studied as not only a
programming methodology [Bac78, Hug84), but as the basis for a non-
Von Neumann model of computation [Tur84,Hug82]. LISP is most
often cited as the prototypical functional language, but APL has also
played a part in the evolution of this programming paradigm. Backus
[Bac78] drew considerably on his experience with APL in developing
his functional notation.

Inspiration aside, APL has been all but ignored in recent functional
programming research. One reason for this is that, despite the rich-
ness of APL notation, it is not possible to express many computations
functionally. Pure LISP is a computationally complete functional sub-
set of LISP. However, in APL, the imperative notions of “statement”
and “goto” are sometimes required in order to express certain computa-
tions. There is no complete functional subset of common implementa-
tions that might be called Pure APL. From a formal perspective, APL
remains as imperative as Pascal or Fortran.

Function definition notation

Alternatives to the conventional v-form of function definition have
been proposed. Iverson’s original direct definition notation [Ive76] is
purely functional. However, its alternation is a simple if-then-else, and
the definition form cannot be applied directly in an expression. Mor-
row [Mor77] defines a truly direct lambda-style notation, but does not
include a conditional construct. Other proposals abandon the func-
tional model, and reintroduce imperative features, essentially provid-
i[ng syn]tactic sugar for conventional v-form definitions [IW81], [Ive83],
Met80}].

*Research supported by IBM Corporation, Thomas J. Watson Research Center,
Yorktown Heights, New York, June-September 1985

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

© 1987 ACM 0-89791-226-8/87/0005/0253 75¢

In this paper, some of the pragmatic drawbacks of Iverson's original
direct definition notation are addressed. We define a pure functional
notation for defining APL objects that is compatible with existing im-
plementations of the language (some symbols are given new meaning
within our definitional form). A general alternation construct is intro-
duced, which permits explicit restriction and partitioning of the do-
mains of defined functions. The notation is extended with a naming
and encapsulation facility that also eliminates a problem with applica-
tion of mutually recursive definitions. The notation is shown to permit
the graceful definition of ambivalent functions [IBM84,1ve83], and to
generalize straightforwardly to defined operators {IBM84).

A notation for pure functional forms

The general forin of a function definition expression in this notation is
a guarded alternation *. As in other APL direct-definition forms, the
names o and w denote the values of left and right arguments respec-
tively. The form:

{guard, — expr; 0 guardy — expra B ... 0 guard, — expr,}

We use truc to denote the APL numeric scalar value 1. When a func-
tion is applied, alternatives, separated by the symbol 0 , are considered
from left to right. If guard; has the value true, expr; is selected as
the expression defining the function®. An unguarded alternative is con-
sidered to be implicitly guarded by true. A guard having no value or
whose evaluation results in an error is considered to be the same any
guard with a value other than true. That is, errors resulting from
evaluation of gnards are not signalled (though an error in a selected
expr; would be signalled normally).

A definition expression enclosed in braces denotes a function, and it
may be applied directly as part of another expression. For example, the
foliowing expression defines and applies the absolute value function:

{w20~w Bw<0~-w} 73
3

This definition contains two alternatives: w20 — w and w<0 — -w
When the function is applied to the argument ~3, the guard: w20 is
evaluated, and since its value is not ¢true, the second alternative is
considered. The value of the second guard is true, so ~w is selected as
the function’s definition; hence the value of the entire expression is 3.

In this example, the guards restrict the domain of the function to
numeric scalars (or singleton vectors if coercion is admitted). If the
function is applied to an array or character argument, neither guard will
be true. If no alternative can be selected, a domain error is signalled
at the application of the function.

ABS — {w20~w B w<o— -w}
ABS 1 2 3
DONAIN ERROR
ABS 1 2 3
A
!'The notation is similar to the alternation of [Dij76) or [Red84], but our semantics
is deterministic.
2.1, (1ve76]. in which a boolean expression selects one of two alternatives in an
il-then-else fashion,

253

Associating a definition with a name via the assignment arrow (as
shown with the ABS function above) makes it unnecessary to explicitly
define a function each time it is used in an expression. A further con-
sequence is that it is then possible for a function to refer to itself. For
example, the factorial function might be defined:

FPACT—{w=0-10w>0—~w x FACTw-1}

This method has several disadvantages. First, there is no way to
apply such a function directly; it must first be defined and associated
with a name. Second, the function cannot be renamed in the global
environment without also requiring a change to the definition itself.

Following {IW81}), we use the symbol & to denote self-reference in a
definition. This symbol is local name, independent of any global names
associated with the definition. So factorial might also be defined:

PACT {w=0—~10 w>0~wxaw-1}

Since it is strictly local, & solves the global/local name problem
mentioned earlier for simple recursions, but the problem remains with
mutually recursive definitions (e.g. F calls G, which calls F, and so on).
We will return to this problem shortly.

Symbolic substitution

We extend the notation to allow locally defined abbreviations, which we
will call symbolic substitutions. Symbolic substitutions are delimited by
semicolons, and appear following the guarded alternation defn within
the definition braces. The general form is:

{defn;name, —expr,;...;nameq —exprn}

Each name, is any APL identifier, and each ezpr; is an APL expres-
sion. If name; occurs in defn, upon evaluation, expr; is substituted.
An ezpr; is only evaluated if an expression containing its name; is
evaluated. For example, the following:

{tw;4~10+0} 3
123

does not produce an error. On the other hand, if a substituted expres-
sion is evaluated, it is only necessary to evaluate it once 3. These names
are local, invisible in the calling environment. It is also important to
distinguish the use of ~ in this definition form from assignment in the
imperative sense. Multiple assignments to a name have no meaning
here; only one subtitution may apply to a name within a given scope.

Since an ezpr; may be any APL expression, name; may stand for
any value or function. The following identities hold:

{X+w;X-1} ¢ {1+w}
{Xo . +X; X- 1w} & {(tw)e . +iw}
{FX;P-{w};X-w} & {¢w}

The third equation shows how substitutions may be provided for
an argument name. This is so often desirable that a shorthand for
renaming of the symbols a, w, and & is provided. A template may
prefix the rest of the definition body, separated from it by a colon.
The denotation of names in a template is similar to the conventions
of the del-form function header (except that a single name defines a
function name without substitutions for argumenta inatead of a niladic
definition). This shorthand is defined by the following identities, where
defn stands for a definition body:

{F0Q: defn) & {defn;Fo0-a}
{NFOOR: defn} ¢ {defn;NFOO—o& ;R~w}
{LDPOOR: defn} < {defn; DFO0—o ;L— a;R~w}

Some sample definitions:

{FACTN: N=0— 10 N>0—~ Nx FACTN-1}

{SQRT N: N20— N TEST APPROX N;
APPROX~ { (w+N+w)+2} ;
TEST~ { EPSS lo~w — w [w TEST APPROX w}
EPS—1E"10)

3This is permitted in functional programs due to the property of referentiel
transparency, i.e. expressions have no side effects. See [HM76,FW76).

The first example is a refinement of the factorial function defined
earlier. The second is a version of Newton’s method for approximating
square roots. Note that definitions are allowed to span multiple lines.

‘The template is just a shorthand for local substitution; it does not
define any global referents. Conversely, as before, a global name need
not be the same as the local name, for example:

P00~ {FACTN: N=O=1 [>0~ Nx FACTN-1}
F00 3
(-]

Here, FACT is the local name the definition, and its global name is
Fo00.

Local names may also occur free, i.e. be referenced globally, in local
function definitions. This provides a solution to the mutual recursion
problem mentioned earlier. Observe that the definition:

{FOOA: 4<0— 0 [4>0 — BARA; BAR— {FOOw-2}}

does not require any global names; it may be applied directly in an ex-
pression. Circular references can lead to non-terminating substitution,
a8 in:

{F00w ; FOD—BAR; BAR- F00}

Function ambivalence

Some implementations of APL allow defined functions to be applied
monadically or dyadically, allowing overloading similar to that of APL
primitives. A problem then arises in the definitions of these functions;
namely, determining the definedness of the left argument. In our nota-
tion, the nonstrictness of alternation provides a simple solution. The
expression: o=« is true whenever o is defined (and a value error oth-
erwise). Therefore, an ambivalent function can be defined in the form:

{AMBI: aza - dyadic-defn O monadic-defn}

where dyadic-defn and monadic-defn are expressions giving the dyadic
and monadic definitions of ANBI, respectively.

Defined operators

APL2 {IBM84] allows the definition of APL operators, objects similar
to the primitives reduce and product. A defined operator is identical
to a defined function, except that in addition to right and left argu-
ments (which must be values), it may also accept one or two operands,
which may be functions. These objects behave syntactically like APL
primitive operators.

In APL2, an operator definition’s header contains additional names
to stand for the operands. By denoting the left and right operands
a and @ respectively, our notation may be extended directly to these
higher-order objects. The template prefix may also be extended in
the APL2 manner. For example, here is a definition of a simple left-
associative reduction operator for vectors:

{ (F LRED)R: SINGLE— RS
B YECTOR— ((P LRED) 1\R)F RS;
RS— (10) poR;
SINGLE~1=p ,R;
VECTOR~1=ppR}

Operators must Be of fixed operand valence; the valence of a defined
operator is monadic if it contains no reference to the right operand w.

Research directions

Since APL has been traditionally used in an imperative style, it should
not be surprising if use of this notation sometimes seems awkward
or teveals “shortcomings” in the language. For example, in defining a
general inner-product style operator, one is struck by the lack of a first-
row or first-column primitive, though these are easily (if cumbersomely)
defined using take. The rank operator [Ive83] and APL2's take with
axis [IBM84] are better, but not altogether satisfying; rank requires an

254

explicit transpose (which might need to be computed), while take with
axis would require similar computation, and is also origin-dependent.
Research in functional APL programming is likely to lead to proposals
for new or alternative language primitives.

The constructive definition of lists often leads to natural recur-
sive decompositions in LISP. This seems to suggest that nested arrays,
which can be defined in a similar inductive manner might lead to more
elegant or natural solutions to some problems. On the other hand,
this generality is occasionally undesirable, since it can lead to ineffi-
c¢iency when complete generality is not required. This has led some
researchers to study inclusion of arrays infunctional languages. “Pure
APL” as defined here might provide a viable stariing point for research
in functional array languages.

Formally, functional programs have many attractions. The seman-
tics of a functional language is usually simpler than that of an imper-
ative one, since the notion of “machine state” has been abstracted; a
program is given by an expression rather than a sequence of state transi-
tions {Tur81]. Correctness arguments are usually simpler, because they
may be stated as equations in the language itself; it is not necessary
to reascn about state sequences. Useful algebraic laws and formal re-
lationships among programs are more common and easier to exploit in
pureé functional forms than in equivalent imperative programs. It would
be interesting to explore the application of functional programming im-
plementation techniques [Tur79,Hug82] to “Pure APL”. Optimization
strategies such as [HM76,FW76] might also prove useful.

Summary

A notation for defining pure functional forms of APL computations is
defined. The notation is extended to address both theoretical and prag-
matic considerations. The notation is shown to support some popular
language extensions in a clean, straightforward manner.

The theoretical and practical advantages of pure functional forms
are beyond the scope of this paper. However, we do note that the
notion of “Pure APL” could lead to some interesting and significant
results in language design and implementation.

Acknowledgements

The central ideas of this paper were set down during the sammer of 1985
at Yorktown. Thanks to Fritz Rithr and Don Orth, who both provided
valuable insights and criticism from the beginning. I would also like to
thank Christian Lengauer, my advisor, whose ideas on programming
notation and formal semantics were a major influence. Special thanks
to my friend and colleague John Gerth; without John’s efforts this
paper would not appear here.

255

References

{Bac78] J.Backus. Can programming be liberated from the Von Neu-
mann style? A functional style and its algebra of programs.
CACM, 21(8):147-174, August 1978.

Edsger W. Dijkstra. A Discipline of Programming. Prentiss-
Hall, Englewood Cliffs, NJ, 1976.

D. P. Friedman and D. S. Wise. CONS should not evaluate
its arguments. In Procecdings Third International Colloquium
on Awtomata Languages and Programming, 1976. Edinburgh.

(Dij76)

[FW76]

[HM76] Peter Henderson and James Morris. A lazy evaluator. In
Proceedings Third Symposium on Principles of Programming

Languages, 1976. Atlanta, GA.

John Hughes. Graph Reduction with Super-Combinators,
Technical Report PRG-28, Oxford University Computing
Laboratory, Programming Research Group, June 1982.

[Hug82]

[Hug84] John Hughes. Why Functional Progremming Matiers. Tech-
nical Report PMG-40, Institutionen for Informationsbehan-

dling, Chalmers Tekniska Hogskola, Goteborg, Sweden, 1984.
APL® Language Manual. IBM Corporation, 1984.
Kenneth E. Iverson. Elementary Analysis. APL Press, 1976.

Kenneth E. Iverson. Rationalized APL. Technical Report, I.
P. Sharp Associates, Toronto, Ontario, January 1983. 1. P.
Sharp Research Report No. 1.

Kenneth E. Iverson and Peter K. Wooster. A function defi-
nition operator. APL Quote Quad, 12(1), 1981. Proceedings
of APL81 Conference, San Francisco, CA.

R. C. Metzger. Extended direct definition of APL functions.
In APL80 International Conference on APL, North Holland
Publishing Co., 1980. Leeuwenhorst.

[IBM84]
fiveTé)
[Ive83]

w81

[Met80]

[Mor77] L. A. Morrow. Nonce functions. January 1977. Unpublished

manuscript.

(Red84] D. Hugh Redelmeier. Towards Practical Functional Program-
ming. Technical Report CSRG-158, Computer Systems Re-

search Group, University of Toronto, May 1984.

[Tur79] David A. Turner. A new implementation technique for ap-
plicative languages. Software - Practice and Ezperience, 9,

1979.

David. A. Turner. The semantic elegance of applicative
languages. In Proceedings ACM Conference on Functional
Programming and Computer Architecture, October 1981.
Portsmouth, NH.

[Tur81]

David A. Turner. Combinator reduction machines. In Pro-
ceedings of the International Workshop on High-Level Com-
puter Architecture, May 1984. Los Angeles, CA.

[Turs4)

