APL 82, W. H. Janko, W. Stucky (ed.),
APL Quote Quad, Vol. 13 No. 1,
(© 1982 by ACM, Inc.

EXTENDING APL:

WHAT MORE CAN A PROGRAMMER ASK

FOR?

Dragan Bozinovic

IBM Canada Laboratory,

Dept. 792

1150 Eglinton Avenue East

Don Mills,
(416)

1. Abstract

This paper explores certain underdeveloped
parts of APL which ought to grow if APIL is
to qualify as implementation language for
large and maintainable software systems.
Following specific problems are discussed:
* Integrating APL with other parts of
information processing environment.

° Operating systems.

» Programs written in other languages.
° Data bases.

Using independently developed functions
and subsystems.

o Problems with names.

o Problems with space.

Execution contrxol of object attributes.
Communications among functions.

° Passing parameters.

° Returning values.

D Transferring control.

Information hiding modules.

e Packaging related functions.

> Packaging data with functions.

e Local functions.

2. Introduction

APL would benefit from unified treatment of
as pointed out

different classes of objects,
by Crick in [13]. He proposes that
workspaces, files, and defined functions,
all be treated as arrays. (The word array

as used in this paper includes non-simple or

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-078-8/82/007/0049

Ontario M3C
443-6711

1H7

nested arrays.) He also proposes borrowing
the access control mechanism (access
matrices) from present APL file systems and
permitting its application on any node of an

array. This will allow N-way sharing of
objects, now possible only with files. The
proposal deserves more than an applause, it

desexrves work.

3. Approach

In order to reconcile the contradictory
objectives of desirable uniformity and
needed differentiation the follouwing
approach can be followed:

1. Define a common syntax for operations on
all objects in the APL universe. Conceal
the differences in internal
representation from the programmers uwho
are not interested in them.

Provide a lower level interface for
programmers who need more control overx
the work of the system. This interface
must also stay within the same common
syntax. The interface will define a
logical view of system's intexnal
operations but in the form invariant to
differences in implementation. This
level will be oriented towards systems
programmexrs.

Within the two previously defined
interfaces, and within the same common
syntax, provide functions for
manipulation of objects outside of the
APL universe objects normally
controlled by the operating system.
Again the interface with the operating
system should have tuwo levels
corresponding with two levels of
interface with APL:

$00.75

49

1) The first level of interface with the
operating system should be independent
of the idiosyncrasies of any operating
system. It will support only basic
functions provided by the majority of
operating systems. Programs written
using this level will be portable
across operating systems. APL will
perform translation from the portable
interface to the native interface of
the host operating system.

2) The second level of interface with the
operating system will be dependant on
the operating system. It can be
implemented as simply as accepting the
commands of the operating system in
their native form, passing them
unchanged to the operating system, and
returning the output of those commands
in the form of APL objects.

Such integration into the outside
environment should make APL suitable as an
alternate command language for systems that
allow user programs to replace the command
interpreter, such as UNIX allows a user
program to xun as a "shell". It should also
allow easy interface with programs written
in other programming languages, and non-APL
files and data bases, making APL suitable
for data base query applications.

4. Outgrowing the WorKspace

The concept of the workspace has greatly
contributed to the popularity of APL as an
interactive language, particularly by giving
an easy way to restart interrupted sessions.
This feature has to be maintained. However,
the requirement that arguments of APL
primitives must be resident in the active
workspace is felt as a serious restriction
imposed on the language. The library system
has little chance to stand the test of time
due to limitations like single level
organization, and numbering used instead of
naming.

5. Directories

I will use the word directory to denote the
most general APL object. outwardly, a
directory is just an array indexed by name,
containing other arrays, some of them being
directories. The root directory contains
the whole APL system, i.e. other system
directories and directories of primary
users. Directories of primary users may
contain directories of secondary users, etc.
Leaf directories contain no directories,
only files, functions, and arrays of data.
However, directories normally coexist with
non-directory objects in the same directory.
Potentially any directory can be used as a

50

workspace, subject to restrictions by its
access matrix. Loading of a workspace is
replaced by choosing the global directory.
This scheme is modeled aftexr the directory
structure of UNIX opexrating system [5]. It
could be also thought of as a system of
nested symbol tables.

Important attributes and roles of
directories are described here:
PERMANENT A directory that can bhe
destroyed only explicitly.

A directory that is destroyed
implicitly by a predefined
system action.

A temporary directory created
implicitly as a side effect of a
system action.

An implicit directory created by
a function invocation and
destroyed by the termination of
that invocation.

An implicit directory created by
starting an interactive session
and destroyed by its normal
termination.

Selected permanent directory in
which global objects are
created. Root of invocation
directories.

TEMPORARY

IMPLICIT

INVOCATION

SESSION

GLOBAL

5.1. Invocation Directories

When a function is invoked a new directory
is created in the active directory. Names
local to the function are defined in this
new directory and marked as uninitialized.
The new directory is then made the active
dirxectory. If a function is suspended due
to exror, the active directory is not
changed. The directory created by function
invocation is not a permanent directory. It
lives as long as function invocation.

5.2. Resolving names

If a reference is made to a name not defined
in the active directory, the parent
directory is searched, then its parent
directory, and so on until an object with
that name is found or the search of the
global directory is completed without
finding the object with that name. The
session directory is searched next.

If the name is not found in the
directories searched by default, a program
controlled list of directories is searched
next. Distinguished variable

ODPD Default Directories
is a vector of directory names.
listed in ODD are searched in order.
the name is not found after session
directory was searched, directories listed

directories
When

in ODD are searched in orxrdexr. This alious
access to system directories and directories
of othexr users, and also allows adding and
removing of directories with programs being
tested.

If an object is found, it is used. IZf
the search was unsuccessful and the name was
used as the receiver of an assignment, an
object with that name is normally created in
the active directory unless the name was
declared with scope attribute GLOBAL, when
it is created in the global directory.
Otherwise a VALUE ERROR is signalled.

If the receiver of an assignment is found
in a directory for which the user does not
have write permission, an object with the
same name is created in the session
directory. This allows testing of programs
without updating critical directories.

5.3. Operations with Names

To distinguish operations performed on the
name from those performed on the object of
that name, APL primitive execute (i) can be
extended as follows:

(2NAME)

* When used right of the assignment returns
value of the object named by NAME.

* When used at the left of the assignment,
returns the object named by the value of
(character vector) NAME as a receiver.

A«'B’
Be3
Ce(ap)+1
o]

(2A)«7
B

The simple rule is: expressions evaluated
on the right side of the assignment return
values, evaluated on the left side of the
assignment return receivers.

5.4. Qualifying Names

In addition to the default directorxry search,
the proposed hierarchy of directories allows
qualification of names with names of
directories, subject to restrictions by the
access matrices of directories. I use
symbol + to denote qualification, as in:

direname
dirifedir2ename

The leftmost directory is found by normal

51

directory search unless the #full
gualification starting with the xoot
directoxry is given. Full qualification is
recognized by o in front of the first
directory name:

crootedirlename
To increase the utility of name
qualification we also need to know the names
of several important directories that can be
contained in distinguished variables:

OAD Active Directory
[IGD Global Directory
[1SD Session Directory

A primitive oxr distinguished function should
be provided to return the name of the parent
directory when given a name of a directory
as the argument. If the name passed as the
argument is not fully qualified, it will be
resolved using methods described above.
Distinguished variables will contain names
of directories fully qualified to the zxoot
directory.

Variables can be used as qualifierxs
instead of literal directoxry names. A
variable used as a gqualifier can be a vector
of directory names. Directories will be
searched in the order of appearance.

(s4var_dir)ename

6. Object Attributes

APL is a language with late binding. Value,
shape, data type, and even object type of an
object, can be changed at execution time.
Two other important attributes, name scope
and life span, are not accessible at
execution time. Classes of objects are not
defined completely, e.g. the only named
constant in APL is label. Some attributes
are restricted to particular object classes,
e.g. protection exists only for functions
and files but not for any other objects.
Other attributes, like data type, may need
to bhe expanded. Properties likely to bhe
defined as object attributes, are: object
class, name scope, life span, data type,
protection, etc.

Most attributes of names and named
objects that are kept in the symbol table
entry for the object, are not accessible
from APL programs. It would be useful to
allow access to values of those attributes,
as well as the assignment to them, through
uniform syntax. If the distinguished
function [ONC is allowed on the left of the
assignment arrow we can change the name
class by assignment, which is in APL the
normal way to assign a value to anything
that can have a value.

(ONC '"NAME') « 2
Similar functions can be provided for name
scope and life span, [INS and 0OLS,
eliminating the necessity for dec¢laring name
scope on the function header line, and
providing program control over these
important attributes.

6.1. Object Class

Although all objects have the appearance of
arrays, it is useful to be able to tell them
apart when necessary. For example, as Crick
has proposed in [1], functions can be Kept
in an executable tokenized form as nested
arrays. He proposes execution of such
arrays by an operator V. Having attrxibutes
allows an alternative approach without
excluding the first.

(OONC '"NAME') « 3

a NAME is a function.

(ONC 'NAME') « 2

A NAME is a data array

a and can be manipulated.

(ONC 'NAME') « 3

A NAME is a function again.

6.2. Name Scope

Name scope is fixed at function definition
time. RPL also provides an incomplete set
of name scopes only tuwo. Reference [6]
identifies a complete set of five name
scopes by considering following criteria:

1. Does the name defined and used in the
active function refer to the same object
as when used in the calling function.

Yes -- global, no local.

2. Is the object referred to by this name in
the active function accessible to the
called function. Yes unmasked, no --
masked.

3. If the object referred to by this name is
local to the active function, is the
object, if such exists, that was known by
the same name to the calling function
accessible to functions called from the
active function. Yes transparent.

The five name scopes will here be called:

GLOBAL

GLOBAL MASKED

LOCAL,

LOCAL MASKED, and

STRICTLY LOCAL or TRANSPARENT.

s W N -

They could be assigned numbers and treated
like object class:

(ONS 'name')«5

6.3. Life Span

The concept of life span is not clearly
distinguished in APL. Local objects are
aluays destroyed when defining function is
normally texminated. Globhal objects can be
destroyed only explicitly.

52

Explicit run-time definition of two life
spans,

1. TEMPORARY
2. PERMANENT

is proposed in this paper. It will be
useful to allow all combinations of 1life
span and name scope. Particularly useful
combination, presently missing from APL,
will be PERMANENT life span with any of the
LOCAL name scopes. It results in objects
that are owned by the function but retain
data between successive invocations of the
function.

(ONS
(gLs

'name')«5
'name ')«2

7. Defining Functions

placed on the number of objects
passed to a function (tuwo) and
the results of a function (one)
are harmful for the structuring of APL
programs. I assume that these limitation
will be lifted with the introduction of
nested arrays by using the strand notation
that will allow passing unlimited number of
enclosed arguments and returning unlimited
number of enclosed results. The syntax will
be, hopefully, as simple as:

Limitations
that can be
returned as

(A B C)«(L1 L2 L3) F R1 R2 R3

vZ«L F R; L1 L2 L3 R1 R2 R3 Z1 Z2 Z3

(L1 L2 L3)«L

(R1T R2 R3)«R

Z«Z21 22 Z3

v

Assuming that this problem is solved, I
now turn to some other extensions to
function definition that should make APL

better suited for design of large, complex,
or reliable software systems.

7.1. Label treated as a Vector

The concept of an array is a cornerstone of
APL. Houweverxr, label is nou treated as a
scalar integer constant. That is an anomaly
in the language based on arrays. If a label
appears on more than one line a reference to
that label should give a vector of line
numbers where that label appears. Label
also should not be of data type INTEGER but
rather of a separate data type LABEL and
should identify the invocation in addition
to the line number within the invoked
function. This will help restrict
manipulations that can be done with labels
to those that are necessary and safe.

Branch will be legal only to labeled lines,
not to any integexr value. This will also
weaken APL's dependency on line numbers and
organization of functions into lines instead
of statements.

The APL editor will automatically supply
indices in the displayed version of function
lines with "multiply defined" labels.
Indices will staxrt at O0IO0 and be assigned
in increments of one. The following examples
assume integer origin zero.

v F1; 0OI0«0
£1]
[7] LBLCO]:
£11] LBLL1]:
[14] LBLL2]: F2
[17] LBLL3]:
v

There will be a distinguished variable
OLINEYL (LINE Label). It gives the value of
the label vector for the label on the
line/statement being executed. This value
can be captured in a function invoked from
that line by assigning OLINEL to a local
variable on the header line. This will
allow easy definition of functions to
simulate constructs of structured
programming. That may be desirable for
instruction in programming that will combine
APL interactive debugging facilities with
the style required in other programming
languages, for prototyping applications to
be translated into languages having such
constructs, or simply for programming
convenience.

VF2;0I0«0; Le[JLINEL
£13] "SYNTAX ERROR

\4
When F1 is invoked and F2 is suspended due
to SYNTAX ERROR, values of variables will be
as defined by the following example:

F1
SYNTAX ERROR
F2L1]1: 'SYNTAX ERROR
A
OLINEL

L
1 17
gLc

7 11

1 14

L v 1t 0Lne

Branching to the first and the last line
defined by the label vector can be
accomplished using one of the following
origin independent branches:

53

First Last
»label

+1tlabel >~ 1tlabel
->L/label +[/label

One index origin will have to be chosen
for printing the listing of the function
with multiply defined labels if they are to
be annotated with indices. It will bhe the
current value of OI0O in the worKkspace unless
0I0 is localized and initialized in the
header line of the function containing
multiply defined labels, when this initial
value will be used. Initialization
expression must be restricted to a constant.

The ability to change [JI0 within a
function is more harmful than useful.
Functions should be written entirely in one
index origin that will be specified in the
header 1line. This is houwever not a
prerequisite for implementing label vectors
as long as origin independent branching is
used. Objects initialized on the headex
line should be assumed to be constants
having name scope STRICTLY LOCAL. An
attempt to change such an object within the
function should result in CONSTANT ERROR.

With label defined as above, following
branching pattexrns could be used:

loop:=>(c)/1+ 110LINEL

loop:~[JLINEL

case:>(cl1,c2,...,cn)/1+14" 1H0OLINEL
no condition true

case:» 1tJLINEL

case:~»" 1tJLINEL

case:>" 1tJLINEL

case:

7.2. Local Functions

Within one physical unit (for purposes of
editing, copying, expunging, and other
maintenance) several functions can be
defined. Blocks can be defined within a
function. Blocks have properties of
functions regarding name scope and life span
of objects. They are analogous to BEGIN-END
blocks in ALGOL and PL/I. In this text word
"blocKk' will be used to refer to block or
function unless otherwise indicated. A
block is defined as an in-line,
parameterless, local function.

Labels are by default TEMPORARY constants
STRICTLY LOCAL to the block in which they
are defined. This prevents branching to
labels in both enclosed and enclosing block.
Alternatively, it may be useful to
explicitly define labels as LOCARL, in the
present APL sense, to the block in which
they are defined. This still prevents
branching to statements within an enclosed
block. Exit from an inner block to a label
in an outer block is now possible unless
that label is redefined in the inner block.

Labels can also be passed
to a function. Prerequisite
that label is not treated as
as a distinguished data type LABEL, which
carries information not only about the line
number, but also about the function
invocation to which that line numbex
belongs. A label parameter can be used to
make a para-normal exit to a point different
from the point of invocation which can alseo
be several levels up in invocation
hierarchy. Granted, this will not simplify
the management of the invocation stack, but
it could be done since label is not treated
as an integer any more. Label now points to
the specific line in specific invocation.
All invocations, subordinate to the
invocation that receives control via branch
to a label parameter, are purged before the
transfer of control is performed. This, by
the way, solves the problem of defining a
function GOTO that simulates the branch
arrow.

as an argument
for this is
an integer but

Although this goes against the simplified
definition of structured programming, there
are real programming situations where
program clarity benefits from immediate
return upon discovery of a para-normal
condition. Tausworthe in [8] discusses
handling of para-normal conditions within
the framework of structured programming.

By nesting block definitions, local
functions can be defined without the need to
'£ix' them at execution time. This will
eliminate present penalties for modular
programming: laxrge number of global
functions or difficulty of debugging and
editing dynamically created local functions.

VvV Z « L F1 R; 0I0«0
v ; 0OI0«0
a Block.
\4
V Z « L F2 R; 0OI0«0

Local function.

k4

54

7.3. Information Hiding

There can be any numbexr of globally defined
functions in a source function definition
unit. There can be lines within the source
function definition unit that are outside of
the physical scope of any function. Those
lines can be used to declare objects that
are local to the source module but common to
all top level (global) functions defined by
the source module. Objects defined within
the source unit but outside of the physical
scope of any defined function, are within
logical scope of all global functions
defined by that source unit. If those
objects are defined with life span PERMANENT
and name scope STRICTLY LOCAL, they are
ouned by global functions defined in that
source unit, i.e. all other functions can
not change values of those objects and can
access theixr values only as parameters.

Such a cluster of defined functions is an
elegant and safe implementation of
information hiding module. Information to
be hidden from the outside world but known
to all functions in the cluster is defined
in the same source module with functions but
outside of the physical scope of any
function.

Information hiding modules will have the
structure outlined in the following example:

* % % TOP OF FILE * * *

[0] (ONS 'name_1') « 5
(OLS 'name_1") « 2
Declare attributes
of owned objects, .
Name Scope as
strictly local,
Life Span as
... permanent.
(ONS 'name_m') « 5
(JLS 'name_m') « 2
[0] vZ«L function_1 R
il v
[0] VZe«L function_n R
[kl v
* * % END OF FILE * % %

Coroutines

The concept of routines cooperating at the
same level of invocation hierarchy has been
found useful and has been implemented in
some high level languages. Reference [2]
shows how coroutines can be implemented by
using global variables without any changes

to APL syntax. An elegant way to implement
coroutines by extending APL is proposed in
this paper. It depends on the new system
variable OLASTL and the new operator which
will here be called coinvocation operator
and be represented by the right arrou (-)
when it is not in the first position on the
line.

Coroutines have one restriction -- they
can not return values. In order to get any
output from a coroutine it should be passed
at least one argument by name.
Rlternatively, coroutines can be defined in
the same information hiding module and
communicate through commonly owned objects.

Coinvocation Operator

The coinvocation operator, when applied to a
function, creates coinvocation of that
function on the same nesting level as the
invoking function. If the coinvocation of
the function to which the coinvocation
operator is applied already exists on the
current nesting level, the control is
transferred to the existing coinvocation
without creating a new one. In ordexr to
accommodate the concept of coinvocations
within an invocation, system variable 0LC
will have to become a nested array.

In the list of coinvocations each
coroutine is present as many times as it was
resumed and in the order of resuming. This
is important for tracing program execution.
Following illustration represents the
sequence of invocations and coinvocations
top to bottom, left to right:

F1CA1]

F2CA23]
F3CA3] F4CA4] FS5CA5]1 F3{B3]
. . F6LA6]
F7CA7]

For the above example,
represented as:

JLC can be

A7 R6 (B3 A5 A4 A3) A2 A1
where simple scalars represent return points
for functions on the stack.

8.2, Last Line Executed

OLASTL is
each line
vector of

updated by the interpreter after
is executed. It is an integerx
shape zero or one showing the

number of the last executed line. [OLASTL is
PERMANENT but STRICTLY LOCAL to the
function. Such combination allows Keeping a

distinct copy of this variable for each
coinvocation and the retention of the value
of that variable while the coinvocation is
waiting to be resumed.

55

* When the function is invoked without
coroutine operator the value of [JLASTL is
an empty vector while the first line of
the function is being executed.

* When the function is invoked with
coroutine operator

o If there is an activated coinvocation
of this function within the most
recent invocation, then the value of
OLASTL is the number of the line from
which this function has last time
transferred control to another
coinvocation. The existent
coinvocation is resumed.

o Otherwise the value of [JLASTL is empty
vector and coinvocation of this
function is created within the most
recent invocation.

Model for coroutine definition:
* * % TOP OF FILE * % %
([JNS 'PRODUCT')« 5 a Strictly local.
(LS 'PRODUCT')« 2 a Permanent.
vV L CONSUMER R; RESUME«OLASTL+1
+>RESUME
AR PRODUCER-+ B
CONSUME PRODUCT

AR PRODUCER- B
CONSUME PRODUCT

R PRODUCER- B
CONSUME PRODUCT

v
v L PRODUCER R; RESUME«OLASTL+1
*éééUHE

ﬁééDUCT « PRODUCE

A CONSUMER~ B

PRODUCT « PRODUCE
R CONSUMER~» B

AR CONSUMER-> B
PRODUCT <« PRODUCE

v
* % % END OF FILE * * *

9. Conclusion

APL needs to incorporate some new concepts
to make it more useful language for
implementing large and maintainable
applications. Some of the concepts that are
becoming widely recognized as useful for
disciplined approach to design and
construction of software systems are
proposed in this paper for inclusion in APL.

Acknouwledgementsg

Criticism and advice from Jim Brown have
helped me improve an early draft of this
paper. Noxrmand Montour did not allow me to
forget ahout APL when it was contending for
a place on my priority list.

References

1. Crxick, Michael F. C., Should APL be a
Declining Lanquage, APL'81 Conference
Proceedings, San Francisco, ACM
Publication, pp. 83-88.

2. Giloi, W. K. and Hoffman, R., Adding a
modern control structure to APL without
changing the syntax, APL'76 Conference
Proceedings (Ottawa 1976), ACHM
Publication, pp. 189-194.

3. Parnas, D. L., On the criteria_to be used
in_decomposing systems into modules,
CACHM, Dec 1972.

4. Parnas, D. L., Desigqning software for
ease of extension and contraction, IEEE
Transactions on Software Engineering,
March 1979.

5. Ritchie, D. M., and Thompson K., The UNIX

Time-Sharing System, The Bell Systenm
Technical Journal, Volume 57, No. 6,

July-August 1978, pp. 1905-1929.
UNIX is a trademark of Bell Laboratories.

6. Seeds, G. M., Arpin, A., LaBarre M., Name

scope_control in APL defined functions,
APL Quote Quad, Vol 8, No 4, June 1978,
pp. 15-19.

7. Smith, Bob, Nested arrays, operators, and

functions, APL'81 Conference
Proceedings, San Francisco, ACM
Publication, pp. 286-290.

8. Tausworthe, R. C., Standardized

Development of Computer Softuware,
Vol. 1, 1977, Prentice-Hall.

56

