
APL Extensions - A User's View

Maurice H. Jordan

British Airways
Information Systems support(S42)

PO Box lo-Heathrow Airport
Hounslow Middlesex TV6 2JA

England

ABSTRACT -----e-e

There has been much heated argument about
extensions in APL. This paper reflects 5 years’
experience with one brand of extensions (STSC’s
nested array system). Useful and irritating
features are discussed.

Facilities available are compared with other
implementations - APL2, Dyalog, and IPSA. Topics
covered include event handling, file systems,
strand notation, indexing, the each dual and rank
operators, and interfaces to other languages. The
paper is illustrated with examples drawn from
code produced internally, and from VECTOR
Competitions.

INTRODUCTION ----_____-__

British Airways have been using APL heavily since
1962, both for information centre work and for
airline planning models written by the OR
department. STSC’s nested arrays were introduced
in the middle of that year, and we have been
Wing them heavily ever since. Host of our APL
programmers have never experienced any other
implementation of APL, and would be distinctly
uneasy if they found themselves working in an
implementation without nested arrays.

Although nested arrays represent a considerable
advance over standard APL, we are not always
entirely happy with them. This paper discusses
how we use nested arrays, and looks at
alternative ways of achieving similar results.

The viewpoint taken is not a theoretical one, but
a pragmatic one. APL as a tool with which we have
to produce results. It is easier use of .the tool
that interests us, rather than the precise
semantics of the tool itself.

Permission to copy without fee ail or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 ACM O-89791-226-8/87/0005/0225 7%

BA BACKGROUND _______*-__--

We are the world’s largest international airline
in terms of passengers carried. We also operate
domestic services within the UK - about 20% of
our passengers are carried on these services. Our
network is diverse and sometimes complicated and
covers a range of products from supersonic
Concorde to Yommuter” services in the Scottish
Highlands and Islands. We serve North and South
America, Europe, Africa, the Middle East, the
Indian sub-continent, the Far East and
Australia-New Zealand.

Like all major airlines, we are heavily dependent
on computers for our day-to-day operation. We
have over 600 program development staff. The
systems we develop are usually large, and
whatever the technology used, we always seem to
get to the edges of it very quickly - whether it
is size of data, complexity, number of users, or
their geographic spread .

NARS and NAPS ___________-_

There is considerable Conf usion about what is
included in STSC'S nested array system.
Originally, there was NARS , the Nested Array
Research System [CheneyFJi]. This included many
extensions to the language, but was never
marketed. Instead a core of the extensions was
recoded in assembler, and added to the 1140
in-house APL*Plus extensions product.

The extensions in this product are:

The pre-1982 APL*Plus extensions:

Replicate and statement separator
Error handling
Shared file system
Commfrcial formatting (OFFIT)
Various extra system functions and variables

to which were added nested arrays and language
extensions to deal with them:

Strand notation and strand notation assignment
Enclose and disclose (Cw 5~)
Partitioned enclose and pick (a% -2~)
Mix and split (tw &w)
Match and depth (alo i%))

225

Redefinition of dyadic 1 an4 Q to use match
Type (co)
Each operator (f")
Extension to the domain of operators to include
user-defined functions

Scatter point indexing and scatter point
indexed assignment

Scalar functions operate pervasively - i.e at
all levels of nested arguments

These extensions aiiowed the generalisation of
arrays to be arrays of arrays, with heterogeneous
(mixed character and numeric) simple arrays as a
limiting case.

More recently, ambivalent functions (dyadic
functions which can be called monadically) an&
support for compiled functions have been added.

At BA, we have christened this product NAPS (the
Nested Array Production System) to try to avoid
confusion with the original research system NARS.

The NAPS extensions are describe4 in the APL*Plus
Extensions Manual [APL*Plus 19851

RELATED IMPLEHENTATIONS ___-_-_----._---_--_---

APL2 from IBM is derived from the same theory
(see for example [More82]), and is very similar.
HOWeVer, some primitives have different meanings,
and some additional extensions have been
implemented, such as extensions to the functions
in the domain of axis and user-defined operators.
See the APL2 Language Reference Manual [APL2
19851 for a full description.

Dyalog APL is based on the nested arrays research
system NARS, but has included rather more of the
original than STSC*s NAPS. Recently, user-defined
operators and function assignment have been
added. Error handling facilities are based On the
Sharp implementation. The product is described in
the Dyalog AFL User Guide [Dyalog85].

OTHER IMPLEMENTATIONS _----__-----.----____

IPSA have also extended their APL data structures
to allow generalised arrays, but have done So
from a different theoretical viewpoint.
Differences start with the result of enclosing. a
scalar.

A Dictionary of APL [Iverson86] has been used as
the guide to the facilities here, although many
of the features described are not yet implemented.

THE TWO DIRECTIONS --_____-----------

Although much time at APL conferences is devoted
to proponents of the two basic directions arguing
with each other, not a lot of listening seems to
go on. There is little sign of any
cross-fertilisation, although in the papers at
APL86 there were a few APL2 papers prepared to
show how the IPSA rank operator could be
implemented in APL2 (e.g. [Graham 86]), and Rob
Hodgkinson's paper on SHARP APL/HP drew on some

ideas from APL2 [Hodgkinson 861.

Not only is it difficult to find papers drawing
on ideas from both directions, it is difficult to
find people with experience of using both systems
seriously. The dialects are starting to develop
into languages in their own right, requiring
their own patterns of thought. Those who are
fluent in one dialect can experience difficulty
with the other. The author's experience is almost
exclusively with NAPS. He would be pleased to
learn through his mistakes with the IPSA notation.

It is interesting to observe a fundamental
difference between the Sharp an4 APLZ/STSC/Dyalog
approach. When the respective SyStemS are being
bescribed, presentations on the APL2 approach
always seem to start with a discussion of the
data representations: those from IPSA always seem
to start with a discussion of notation.

The job of the professional programmer is largely
to produce systems to manipulate data - if you
are allowed to choose a convenient
representation, you can make the job very easy
for yourself.

The more flexibility you have in the ways you can
represent and manipulate your data, the more
chance YOU have of choosing a good
representation. While notation and the
consistency of the language are important,
flexibility in data structures is important in
getting things done. Perhaps this accounts for
the continuing popularity of many other languages.

USE OF EXTENSIONS AT BA ___----------_----_----

By far the most useful of the
shared file system. This is
data, an4 has enable4 us to 40
would not have been possible
files under CMS.

extensions is the
use4 for all APL
many things which

using native IBM

Our heavy use of this file system precludes any
migration to APL2 (unless we bought on of the
products available to simulate the file system
under APLZ). But this is not a contentious issue
- nearly all suppliers of APL (excluding IBM)
offer such a file system - so I will not dwell on
it here.

The next most important extension in our use of
APL is the relaxation in the data structures
available. This has enable4 us to develop a much
better programming style, than would have been
possible - we have data structures to represent
screens and files which 40 away with the
necessity to use globals. This enables a much
more modular approach to be taken to program
design. The language extensions then allow these
new data structures to be manipulated easily. The
each operator an4 its ability to take
user-defined functions as arguments iS
particularly important here. Together these
extensions often allow very fast development of
solutions to tricky problems as viewed from
standard APL. This will be discussed later,
taking some examples drawn ,from VECTOR
competitions.

226

Error handling comes next in importance, mainly
allowing us to provide more user-friendly
interfaces. In full screen applications, we can
signal input errors though TERROR and have them
trapped and presented to the user in friendly
form.

The numerous other enhancements, from speedups to
primitives through replicate and diamond to extra
system functions also play a part in improving
the programming environment, but I mention them
mainly for completeness.

Finally the recent enhancements provided with
Compiler SUppOrt have enabled us to improve the
run-time and response-time characteristics of
many of our APL systems. Further development here
should allow us to extend the domain of AFL.

Index origin ------------

A house standard is that 010 is 1. In any
examples where 010 is not defined, the reader may
assume a value of I.

DATA REPRESENTATION _____-___--________

Apart from allowing more flexibility in how data
can be represented and manipulated, extended data
structures allow the bundling of associated data
for passing to procedures and files. One
important use is in file design - data of
different representations can be stored within
the same component. This greatly simplifies the
file design process if all data which normally
changes together is held in the same component -
the programmer does not have to worry about
system crashes during updates.

Quite complex single variables can be used to
hold all the properties of full-screen panels

e.g.Fields on screen, their positions and
attributes

Associated APL variables
Functions to translate contents of APL
variables to text on screen

Functions to translate and validate input
from screen

Position of screen w,indow(s) if scrolling in
operation

(panel definition variables)

or pointers and other information about files

e.g.Fields on file
Corresponding components
How data is stored (sparse or replicated)
Is field keyed for look-ups and where key is
Properties of field for output

(file control blocks).

These CalI easily be passed as arguments to
functions, and a modular approach to programming
withoi?t globals becomes possible. This makes
recursion in handling screens and simultaneous
handling of several files much neater than
otherwise is possible.

STRAND NOTATION ----__--_------

Using standard APL, one is limited to two
explicit arguments to user-defined functions.
Although as time goes on, it becomes easier to
define functions so that they only have two
arguments, it is not always possible.

Our main use of strand notation is to give
functions more than 2 arguments, and let them
return more than one result. (Sometimes the
overall effect is FOO-dual-link)

This is really a bit of a fudge. In the NAPS
implementation, it can also mean a heavy overhead
in workspace storage, as in the case

FOO A B C

the interpreter builds a temporary object A B C
(taking full copies - i.e. not using pointers)
before passing it to FOO. If any of A B or C are
large, the probability of WS FULL in FOO is
greatly enhanced.

With this scheme, strand notation assignment is
also desirable:

0 FOO AbBAC
[I] A B CtAABAC

is much more convenient than the alternatives.

Falkoff's semi-colon notation for this,
[FalkoffEZ], would be a significant improvement.
One would then have a more controllable
mechanism, and prevent the hidden overheads.

In simple strands, strand notation is simple and
much used. Any degree of complexity in the strand
(e.g. indexing) means difficulty - one usually
has to use the interpreter to find out what it
will do. This is an irritation, and IPSA's link
function has many attractions in this area, but
strand notation assignment is a considerable
benefit, and I would be loath to give it up.

The problem with strands is that space has been
given an implicit meaning, and that it is acting
as some sort of function. Note that the problem
arises from vector notation itself, where the
space acts as a high priority catenate, and

1

has different properties to

123

(In the SMIPSA function below, try writing 0,C
instead of C,O - after all, it is only ensuring
there is at least one zero in each row.)

LANGUAGE EXTENSIONS -------_________e--

It is difficult to find problems that have been
solved in different versions of APL extensions.
Very few (if any) APL users are fluent in more
than one dialect. The competition section of
VECTOR (the Journal of the British APL

227

Association) encourages entries in the various
forms of APL, even if they are not eligible for
prizes, and often the alternatives get published.
One can therefore compare the approaches taken by
experts in their own dialects.

The value of extensions can also be seen from
these competitions. It appears difficult to pose
problems that are sufficiently challenging in
standard APL to be worthy of a competition

(withaut making it so difficult that no-one
enters), but yet non-trivial using extensions.

Competition 1 ___________-_

The first competition (VECTOR 1.1; discussions in
VECTOR 1.3) related to the game of life,
represented in a sparse-data form. The
competition involved finding two functions to
convert between a simple representation

ooiio
00011
11100
11000

and to a representation recording nUmberS of
successive runs of 0 and 1

2245223

(the first element of the code vector always
representing number of leading zero’s)

Although no nested array entries were discussed
when the results were given, it was pointed out
that the run-code to boolean was trivial with
replicate:

V WRTB V
[ll ~V/(PV)PO I

V

In several other competitions, replicate would
have been a valuable extension to standard APL.
Perhaps we should have a rule that extensions
only become part of the standard lanquaqe if they
are as simple and as natural as replicate.

Note also that the ‘best’ solution to boolean to
run-time

I’ R’BTR B
[l] RcR-OIO,-l~.RcR/ZpRc(O,B)#B,Z

V

is essentially successive applications of N-wise
reduce :

V R+BTR B
[i] R+-2-/0,(2*/6,2)/zpB+O,B

v

which, although a neater concept, is not a lot
simpler in practice.

Competition 2 _____--______

The competition in Vector 2.2 was to validate and
translate a character matrix, each row of which
represents a single numeric.

Again, the code had to be ISO-standard
conforming, so it couldn’t use system functions
such as OFI and uVI(APL*Plus) or flVFI(Dyalog
APL). Although the basic part of the problem is
trivial With these system functions and the
ability to use split (APL2 enclose-with-axis),
and each

OVFI”~CRARRAT a Dyaloq APL

(Or simply the rank operator in IPSA), the task
of doing this in ISO-conforming APL .was too
daunting, and no solutions were submitted.

So we shouldn’t forget system functions when
discussing extensions to APL. Although they may
not look pretty, they are very effective in
avoiding nasty and often inefficient APL code.
They are even more effective when they fall in
the domain of operators.

Competition 3 _____--______

This competition was set in vector 1.3 and
discussed in 2.1 and 2.3.

Here, the skills of a group of staff were to be
matched with the requirements of jobs.

The staff skills were to be represented by rows
of a matrix, each non-zero entry being the index
into a table of skill descriptions.

e.g.
CONS

123700
137926
790000
165390

The skills reqUited for jobs were similarly
recorded

e.g.
JOBS

123
790
140
130
163

The competition involved writing a dyadic
function to match job requirements to skills
available:

JOBS SKILLMATCH CONS
1100
oiio
0000
1101
0101

228

This
APL,
APL

[iI

produced a range of solutions in standard
but also drew alternative entries in Sharp

V R+J SMXPSA C
Wh?A/JcxZ 1 C,O

V

and APL2

V WJ SMAPLZ C
r13 RcA/"((C[Z]J)-"O)o.cc[Z] C

V

while at least two people at British Airways
immediately jottea down something very similar,
but in STSC's nested arrays:

V R+J SMNAPS C a will also run in Dyalog APL
[l] l?+A/t(&J)o.&C,O

V

One point to note here is that the IPSA and NAPS
solutions both performed better than many of the
standard APL solutions, even though some of these
had been worked on a lot for efficiency.
Certainly the NAPS solution involved a lot less
programming effort. (No timing comparisons were
noted for the APL2 solution, although rewriting as

V M-J SMAPLZB C
111 R+d-(c[21J)~.c'=[2] C,O

P

would probably help.)

Note that in the NAPS solution, split and mix are
being used like IPSA's dual operator. Both
arguments are split into vectors of rows, and the
result reassembled afterwards.

EVENT HANDLING -__--_____--_-

Here there are several approaches. IPSA and
Dyalog have the very powerful WRAP facility,
while STSC provide OELX and IBM have DA. Other
vendors have other implementations.

Event handling systems allow all sorts of wierd

and wonderful opportunities to the wily
programmer. We have attempted, and been largely
successful in limiting implementation of error
handling through two basic utilities:

V ELX‘-PASSBACKERRORS
[l] AV Returns OELX setting to pass errors back

to calling environment
[2] a Values of ODX USI at the lowest level

will be in globals @D ASI. -
(33 &w" Q &SIC"
[41 --- --t --- ELX+~ADM+ADM (OWADM)/UDMO

Pslf(OIo+ocpqSl)=(nsr osx)o
OERROR((A\OD~#OTCNL)/ODX),OTCRL,"(QDM &L

set)"'
V

and

V ELX-ERRORTRAP ELX;DELX
[I] RV ERROR:hodifies OELX setting ELX(TV) to

cutback stack to this level
before executing input ELX

(21 n It assumes OELX is localised in calling
function.

UELX+'aDM'R Avoid DELX IMPLICIT ERROR
ELx+@ELX CI Force error if ELX unacceptable
ASI+ADM+" --- --_
ELX+'~~~+~~K,~OE~~DM)/~DMO

&~'(OIo+ofpMI)~(g~~ ckx)O
OERR~R(~+I~,DIDL~~~~OEL~~~)/((A\OTCNL+DD~)
/ODX),OTCNL,*~(~_~~ &I set)"d',ELx

A simple setting of PASSBACKERRORS in a function
makes that function behave as an APL primitive,
signalling the error at the call of the function
in which the error is found.

ERRORTRAP is more complex, cutting back the stack
to the function from which it was called before
executing the expression passed as its argument.
It depends on OELX being properly localised. It
is often used in expressions such as

ERR:

and other occasions where a simple

could have disastrous consequences because it
could be executed in a lower level function.

Two functions, STOPTRAPS and RESTORETRAPS are
provided to turn off error handling implemented
through these utilities and to reStOre it, so
that real causes of problems can be investigated.
As an aid in this, the original error message and
the state of the stack when it was encountered
are stored in globals.

Use of these utilities enables us to do as much
in the way of event handling as we would want.
They can be simulated in the Sharp or Dyalog
environments, using STRAP. But they let you do a
lot more than is possible with OEA. In
particular, the error recovery procedure can be
varied during a function in a way that seems
difficult with &A.

ELX+uELX+PASSBACKERRORS
OFBOLD T+FSTIE 'DATAFILEi*a Share tie file

R and put hold on it
OELX+*OFUNTIE To',ELxc4 Untie it on error,

a then error handling as before
A few lines of processinq

OFUNTIE To Untie the file again
nELX+ELX FI Restore the original Setting
A few more lines of processing

229

With tIEA, one seems to be forced to spawn
subfunctions whose boundaries are determined by
the desired error handling, rather than the

overall logic of the process being programmed. No
doubt it can be done, but it will look and be

artificial in many cases, and the beaking up of
the code into too many little pieces will detract
from readability and comprehensibility. Too many
small functions can be as great a menace as too
many large ones.

An additional problem is that OEA is essentially
an extension to execute, which creates problems
with programs to analyse APL code, and detracts
from readability, at least of the main path of
the program.

EFFICIENCY AND CORPILED FUNCTION SUPPORT ---_--------____-_______________________

To allow the use of STSC's APL compiler, NAPS now
allows the use of compiled functions. In
practice, this means functions written in
assembler, as this this the end-product of the
compiler process. A workspace of such functions
(FAsTFNS) is supplied with the in-house product.
It is interesting to note that few of these
functions are the product of compiling APL - they
have generally been written in assembler or TABL
Using algorithms very different to those normally
employed in APL. The side-effects of this
approach are highlighted in the behaviour of the
resulting functions with empty array arguments.

Also provided is a facility to measure the
efficiency of APL code - OMF, so that one's
efforts with the compiler can be directed. Using
this facility, and the supplied FASTFNS, we have
been able to dramatically improve the performance
of many systems. Hany of the speedups are similar
in mgnitude to those claimed for the compiler
itself. Where suitable FASTFNS exist, we can now
contemplate tackling problems where performance
in AFL would have been a considerable problem.

IRRITATIONS WITH NESTED ARRAYS --__-___---____---_-__________

Life with nested arrays is not always as simple
and Straightforward as one would like. A few Of
the major irritations with nested array APL are
listed here. Some arise from the nature Of APL
itself, others from STSC's implementation.

DATA REPRESENTATION -_--*_----r_-__*___

Although in theory, we have almost complete
flexibility in how we can represent data, there
are considerable restrictions in practice. Just
as performance with standard APLs suffers when
working with scalars, so performance with nested
arrays suffers when the data is fragmented into
small nested items. Workspace requirements can
also grow alarmingly. It is seldom a good idea to
use non-nested heterogeneous arrays for data to
be manipulated.

one fairly reliable sign that nested array

representations are going to take forever to run
is a generous sprinkling of the each operator -

Alan Graham's "pepper". This is usually
indicative of a looping approach to the problem -
each .' represents a loop. Such code is not

without its value - it can be Written very

quickly, and can be used as an executable
specification for more efficient code to be
checked against. But if left in place in a
production system, it can cost many hours Of
development time and end-user time through bad
response.

We have found that it is much better to avoid

partitioned enclose, but to use partitioned data
techniques as developed by Bob Smith eg[Smith
791. The problem does not lie with the

partitioned enclose, although it has only

recently been implemented in assembler (and with

a boolean right argument can still be beaten by

an APL loop) but with the application of
functions to each part of the resulting nested
structure. The classic

V 23-P PAORREDUCE V;C
[I] RV PARTITIONS: Simulate v/"PCV without

R using Partition enclose.
[;I A P and V must be logical Vectors.

z~(C/I@C+(PvV]/P)~P/V
V

can beat

V/"Pcv

by a factor of 100.

NONCE ERRORS ----mm._____

The major source of irritation is the NONCE ERROR
generated by

Foo-: 10

At BA, comments

n to avoid NONCEnse ERROR

have started appearing. Many and wonderful are
the ways adopted of avoiding nonce error, from
testing for empty arguments before doing
anything, to overtakes and providing fill
elements.

Most of these Could be avoided if the simple
behaviour of DYalog APL [DyalogBS] were adopted:

R+f"O If 0 is empty, the derived function
is applied once to the prototype of o,
and the shape of l? is the shape of 0.

R+=f"w If = or 0 is empty and scalar
conformable, the derived function
is applied once to the prototypes of
= and o, and the shape of
R is determined by the rules for
scalar conformability.

230

This still allows special cases where f applied
to the prototype produces a DOMAIN ERROR to be
dealt with as at present.

The work involved in protecting against this

class of NONCE ERROR would make any migration of
code written in Dyalog to APL*Plus nested array
systems extremely tedious. If STSC were to
introduce user-defined operators, an EACH which
avoided #ONCE ERROR would be the first written,
and probably the most used.

THE HIX PRIMITIVE - t -_--_----__-_----_-__

Under APL+Plus,

tA

generate5 a LENQTH ERROR if the element5 of A are
not all the same length. The first nested array
Utility we wrote, and still the most heavily used
is:

V R+MIX A;DELX;aDM
[I] AV Does MIX op array of nested arrays of same

rank but not shape, using overtake to make shapes
conform

r21 lJELX+'+("LENGTH ERROR"~l2~0DH)/ERR~',
PASSEACKERRORS

[3] R-A 0 +O
[4] ERR:OELX+PASSBACKERRORS
[5] R+?(cr+t,p"A)*"A

V

which emulates the behaviouf of the analogous
APL2 disclose-with-axis, or the Dyalog primitive
mix.

Note that line 3 avoids the need to protect line
5 against NONCE ERROR when A is empty.

EVENT HANDLIN5 IRRITATIONS -----_--_--__----_________

When one wants to trap a specific error (e.g.
NONCE ERROR or US FULL as in the SPLITARRAY
example below) in order to try a different
algorithm, it is necessary to compare the error
message produced against a text string. This IS
cumbersome compared to the alternative scheme of
Using numbers associated with different events.

Note also that the heavily used MIX cover
function can upset the environment (DDH cannot be
localised despite the effort to do so), resulting
in many other errors being reported as 'LENGTH
ERROR when attempts to log errors include calls

Of MIX.

Error handling, as it stands, offers too much
power to the cunning programmer. I feel it should
be restricted ta only execute expressions within
the function in which the trap is set, or to
return control to the level above, with a
Suitable error message. One need5 a mechanism to
enaDle one to distinguish different events simply
and clearly, and the ability to have several
Statements in the domain of the same trap.

FACILITIES AVAILABLE ELSEWHERE ________-_--------------------

In working with nested arrays, one often comes
across problems where facilities provided in
other implementations look attractive. I mention
some of them here; it is not intended to be an
exhaustive list.

COMPOSITION -----_-e--e

This operator appeared in the research NARS, but
did not find its way into the production NAPS
version, perhaps because of the symbol chosen for
it (jot). It did find its way into Dyalog APL.
Composition allows functions to be 'glued'
together to build more complex functions, or
arguments to be 'glued' to functions. (Note that
it is not the same as the IPSA composition-it
covers aspects of " K and tf: u"n;m"v;cases of usv
and u6vlv)

A very common construct in our code is

('=a)FGO"o

(Apply g FOO to each element of w). A much more
natural way of writing this would be

="FOO"w

Here the left argument is a modifier to the
function verb - an adverb. Composition enables
the glueing of these together to produce a
compound verb (as in German).

Another common construct is

FOO"GOO"o

Here GO0 is applied to each element of W, then
FOO is applied to each element of the result. The
workspace requirements can be daunting, for
instance

p"OFREAD"w

Without Composition, (or direct definition), we
have to define trivial function5 elsewhere,
leading to a loss of continuity in the code:

'0 Z+HOO R
[il Z'-FOO GO0 R

V

and then use

HOO"R

(Apart from WS considerations, this nearly always
executes faster, presumably because there are
fewer space manipulation overheads.)

With composition we could write

FOOOGOO"R

and achieve the same result.

Such an operator Seems a sensible step on the
to arrays Of functions, a,concept much

way
easier t0

handle if all fUnCtiOnS in the array are monadic.

231

In our screen software, all input can be forced
through a validation routine. This can be thought
of an array of functions with different functions
applied to different fields on the screen. The
validation functions can be monadic, or dyadic
with left argument provided. It would be much

more natural and simpler if we could use
composition in defining this concept, so that all
these functions are monadic.

The introduction of function assignment to DYalog
APL, which can be thought of as a Simple direct
definition or as a first step towards arrays of
functions, depends rather heavily on Composition
for its usefulness.

INDEXING ALTERNATIVES ---____----_-_-_--___

I have one major application where I don't know
the rank of the data that it will be processing.
This has been a major headache throughout,
especially where indexing is needed. From (0 and
merge (1) would be helpful here, but not
sufficient on their own.

Often the approach has been to split the array
into a vector of sub-arrays, to perform the
operation, and put the data together again.

Here the implementation Of Split
(Enclose-with-axis) is not ideal. Like so much
else in APL there are few problems with matrices,
bUt when the data has rank greater than 2, things
get much more complicated. For this case one
invariably wants the result of the split to be a
vector of subarrays, (occasionally a matrix of
subarrays), but the primitive gives an array of
vectors. This has resulted in the SPLITARRAY
Utility. Its importance to some applications can
be judged by the work that has obviously be
expended in trying to make it efficient in
workspace and execution:

V AA+1 SPLITARRAY A;J;K;R;S;T;nELX:ELX
111 Rv NAPS: Splits array A into array of

subarrays along axes I.
[2] a For vector I, splits along each axis, so

that(PZ)++(pA)[,I]
[31 ELX+OELX+PASSRA~KERRORS
r41 S+PA b KcdJ,‘W(4tps)rI)/~ps
151 '(KmtaK)/LO 0 A+KBA
[61 LO:R~~AA+~((~/S[I]),K/S[T])~A
[7] flELX+'+(("WS FULL**)("NONCE E")r'=7tflDX)

/Li L4b',ELX
[S) AA+S[I]p(CS[T])Q”AA b +O
[g] Ll:tlELX'-ELX 0 J+O R If WS FULL
[lo] LZ:+((J+J+l)>R)tL3 b AA[J]+CS[T]~J~AA b +L2
[II] L3:AA'-S(I]pAA b '0
[I21 L4:AA+S[I)pcS[T]p='AA

V

4 3 SPLITARRAY I 1 3 4 2 2~148

glt::,lpq

SPLITARRAY is Used in effect to simulate an ALONG
operator. It is used, with its inverse MIXARRAYS,
to allow simple functions to be applied along
axes of the data - for example along the HONTH
axis (or the MONTH and YEAR axes) of data WhOSe
dimensions are class of travel, route, where
sold, year, month. The data is processed in
subarrays by a function coded as though it deals
with a simple vector (or matrix).

The along operator would have much in common with
bracket-axis notation (compare +/rll), and the
concept behind it has much in common with the
rank operator. But implementing it through rank
would also need the prefer/defer tl operator.

The great joy of the each operator in NAPS. APL2
and Dyalog APL is the fact that it is possible to
use it with user-defined functions. Although
formally Qefined in the same way as

FOO"< A FOO with disclose

it is not thought of as such by our programmers -
it is simply seen as a mechanism that applies FOO
to each of the elements of the data, a very much
simpler concept for them to grasp. Once someone
thinks of it in this way, as a mechanism whereby
a function is applied to each element Of its
arguments, an explanation of with-disclose seems
highly recursive. (To apply a function to each Of

the elements of w, first apply the disclose
function to each element, then apply the function
you first thought of to each resulting element,
then apply the enclose function to each of the
results.)

In some situations, each is used as dual. An
operation is done to the Structure of the data, a
function is applied to the result, and the
original structure restored. But the first
operation is rarely a primitive APL function, and
the inverse needs explicit application.

An example is the provision of a fill element in
case an array is empty. A fill element to ensure
the correct behaviour is appended to the front of
the array, FOO" called, and the fill element
stripped off again afterwards.

Although it is possible to provide ways of
tackling these problems using further language
extensions - a "fill" operator (eg [Pesch i9641)
COUid be used in the above case, there seem to be

too many Situations needing their own specific
extensions, and I prefer in general the explicit
coding of prior and post operations.

In many other Situations the dual concept is used
without any mention of each. A popular technique
is to sort some data, perform an operation, and
apply the inverse of the sort to the result, so
thar it lines up with the original input.

The use of SPLITARRAY also falls into the domain
of the dual concept. After the data has been
split into its subarrays, a simple function is
called to process the subarrays. This is
sometimes called using the each operator, but
more usually not. Afterwards , a function
WIXARRAYS, the inverse of SPLITARRAY, is called
to restore the data to its original format.

A favorite analogy used in the each versus
with-disclose argument is the notation for inner
product. The power of the inner product notation
is that it makes explicit the functions being
applied. This has led to considerable
exploitation of inner product - to the extent
that +.x is now a minority use [Kanner82]. Will
the same ever be true of with-disclose? Rather
than making operations explicit, the dual
operator makes implicit the application of the
inverse.

User-defined functions have been Within the
domain of the each operator from the start in all
implementations, and account for much of the use
of the operator. How much has the need to provide
inverse functions complicated the implementation
of user-defined functions within tne domain of
operators in IPSA's APL?

EFFICIENCY _-em-----_

Efficiency is important on our APL systems. Much
of tne use of them is interactive. poor response
is very irritating for interactive work.

Buying extra computer power is not always a
feasible answer. If the early growth in computer
power needed to run APL at BA had been allowed to
go unchecked, the annual cost of providing new
power would soon be rivalling the cost Of
investing in new aircraft. As an airline,
investment in new aircraft and operational
equipment gets priority - quite rightly.
Investment in computer systems is already large
and highly visible. Of the money available for
investment in computer systems, it is easier to
justify expenditure on the real time systems
which support our operation - the reservations
system, departure control system, operations
control - where improvements can improve the
product we offer and our competitive standing.

Although mdny systems are now more efficient than

they were a year ago, we are limited in the use

we can make of the APL compiler. This is largely
due to it not being able to deal with nested

arrays. In fact, one sometimes wonders how mucn
the implementers of the compiler are aware of
nested arrays and the facilities offered. One
supplied compiled function implements scatter
point indexing - 1eSS efficiently than the same
nested array feature in the interpreter. An
example published in tne literature promoting the
compiler compiles a function Which tries to
implement the split primitive using loops and
global5 in standard APL.

Another point is that many of the fast functions
which we have used effectively are not the result
of compiling APL. Instead, they have been written
in assembler (or the TABL language developed for
the compiler) and use algorithms different from
those an APL programmer would naturally use. This
non-APL approach is highlighted when the
functions are presented with empty arguments.

Our use of the Ol4F monitoring facilities has
shown up that in well-written APL it is not the
interpretive overhead that costs, but being
forced into unnecessary processing. Perhaps this
iS best illustrated by the optimisation that gets
done within interpreters - special casing
Operators so that A.= does not actually perform
all the comparisons, but stops as soon as a
mismatch has been detected, or v/ stops as soon
as a i is found. Many user-defined operators deal
with this area - associative scan, and many of
the operators in Jim Brown's operators for logic
programming [Brovn86].

To use alternative algorithms, or to break down
the modularity of APL systems to prevent
unnecessary processing, the programmer will
usually need to resort to scalar programming. APL
does not support this well - the code starts t0
consist mainly of loop and conditional control.
Instead of using an APL compiler with this mess,
I prefer the idea of writing it in a language
which is designed for this sort of task (or
rather getting someone else to Write it) and then
being able to call the resulting compiled code
from APL.

Of the APLs I hdve experienced, Dyalog APL seems
the best equipped here, With its ability to
access the Unix shell, and hence functions
written in C. It provides tools to interface APL
data structures, including nested arrays to C.

The importance of this is not just in making APL
systems more efficient - many skilled APL
programmer-days have been expended in trying to
achieve reasonable response times. Kany of the
hierarchical data structures pervasive to our
systems, whether operational financial or
reporting, are based on the sort of confused
logic that is easy to implement in scalar
languages, but very painful in APL. Perhaps this

is a problem specific to BA, but I suspect it
also occurs in other in5tallations where APL is a
relative newcomer. The effort expended in dealing
with these structures could have been avoided if
easy access to scalar languages had been possible.

233

CONCLUSION _-------_- References ---_---___

Extensions to standard APL have made a beneficial
difference to our work. They have not solved all
our problems. They have extended the boundaries
so that problems are encountered further on, if
at all.

Neither direction (APL2/IPSA) have a monopoly of
right or wrong. There are useful features and
ideas in each system. FYOlll the viewpoint of
programming users of APL, the more central role
of data structures in the APL2 style is
preferable.

Until the advent of extended data structures, and
the split in philosophy, one of the major assets
of the two large time-sharing bureaux was their
pragmatism, With such developments as file
systems, formatting, event handling and packages.
In the arguments over nested arrays, this has
been lost.

The pragmatic approach of the implementers of
Dyalog APL has much to commend it, particularly
the access to code written in other languages.

Acknowledgements ___---___*______

I would like to tnank Dave Ziemann for his work
in organising the competition section of Vector,
and the competitors whose solutions I have used.

A.D. Falkoff (1982) Semicolon-Bracket Notation -
A Hidden Resource in APL (APL82 Conference
Proceedings ~113)

C.M. Cheney (1981) Nested Arrays Reference Manual
STSC Inc.

APL*Plus Enhancements (1985) STSC Inc.

Dyalog APL User Guide (198s) Dyadic Systems
Limited.

APL2 Programming: Language Reference Hanual
SH20-9227-0

R Hodgkinson (1986) APL Procedures (APL86
Conference Proceedings p179)

J.A. Brown (1986) Logic Programming in APL2
(APL66 Conference Proceedings ~282)

T. More (1982) Rectangularly Arranged Collections
of Collections (APL82 Conference Proceedings p219)

K.E. Iverson (1986) A Dictionary of APL. IPSA
publication.

A. Graham (1986) Idioms and problem solving
techniques in APL2 (APL86 Conference Proceedings
pi72)

R. Smith (1979) A Programming Technique for
Ron-Rectangular Data (APL79 Conference
Proceedings ~362)

R. Kanner (1982) The use and disuse of APL: an
empirical study (APL82 Conference Proceedings
Pl54)

R. Pesch (1984) On the Question of Fill (APL
Quote-Quad 15.1 p9)

Vector(The Journal of the British APL Association)
Competition sections in volumes 1.1 thro 2.3

234

