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ABSTRACT

There has been much heated argument about
extensions in APL. This paper reflects 5 years'
experience with one brand of extensions (STSC's
nested array system). Useful and irritating
features are discussed.

Facilities available are compared with other
implementations - APL2, Dyalog, and 1IPSA. Topics
covered include event handling, file systems,

strand notation, indexing, the each dual and rank

operators, and interfaces to other languages. The
paper is illustrated with examples drawn from
code produced internally, and from VECTOR
competitions.

INTRODUCTICN

British Airways have been using APL heavily since
1982, both for information centre work and for
airline planning models written by the OR
Gepartment. STSC'sS hested arrays were introduced
in the middle of that year, and we have been
using them heavily ever since. Most of our APL
programmers have never experienced any other
implementation of APL, and would Dbe distinctly
uneasy if they found themselves working in an

implementation without nested arrays.

Although nested arrays represent a considerable
advance over standard APL, we are not always
entirely happy with them. This paper discusses
how we use nested arrays, and looks at
alternative ways of achieving similar results.

The viewpoint taken is not a theoretical one,
a pragmatic one. APL as a tool with which we have
to produce results. It is easier use of .the tool
that interests wus, rather than the precise
semantics of the tool itself.

but
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BA BACKggOQg?

We are the world's largest international airline
in terms of passengers carried. We also operate
domestic services within the UK about 20% of
our passengers are carried on these services. Our
network is diverse and sometimes complicated and
covers a range of products from supersonic
Concorde to “commuter" services in the Scottish
Highlands and Islands. We serve North and South
America, Europe, &frica, the Middle East, the
Indian sub-continent, the Far East and
Rustralia-New Zealand.

Like all major airlines, we are heavily dependent

on computers for our day-to-day operation. We
have over 600 program development staff. The
systems we develop are usually large, and
whatever the technology used, we always seem to
get to the edges of it very quickly - whether it
is size of data, complexity, number of users, or
their geographic spread.
NARS and NAPS
There is considerable confusion about what is
included in STSC's nested array system.
Originally, there was NARS, the Nested Array
Research System [Cheney81i]. This inc¢luded many
extensions to the language, but was never
marketed. Instead a core of the extensions was
recoded in assembler, and added to the 1140
in-house APL#Plus extensicns product.
The extensions in this produet are:
The pre-1982 APL»Plus extensions:

Replicate and statement separator

Error handling

Shared file system

Commercial formatting ([FMT)

various extra system functions and variables
to which were added nested arrays and language

extensions to deal with them:

Strand notation and strand notation assignment
Enclose and disclose (w 2w)

Partitioned enclose and pick («%w «2w)

Mix and split (tw ‘w)

Match and depth (emw sw)



Redefinition of dyadic 1 and ¢ to use match
Type (ew)
Each operator (f™)

Extension to the domain of operators to include
user-defined functions

Scatter point indexing and scatter point
indexed assignment

Scalar functions operate pervasively = i.e at

all levels of nested arguments

These extensions aliowed the generalisation of
arrays to be arrays of arrays, with heterogeneous
(mixed character and numeric) simple arrays as a
limiting case.

More recently, ambivalent functions (dyadic
functions which can be called monadically) and
support for compiled functions have been added.

At BA, we have christened this product NAPS (the
Nested Array Production System) to try to avoia
confusion with the original research system NARS.

The NAPS extensions are described in the APLxPlus
Extensione Manual [APL*xPlus 1985]

RELATED IHPLEHEgTQ?IQ??

APL2 from IBM is derived from the same theory
(see for example [Mores2]), and is very similar.
However, some primitives have different meanings,
and some additional extensions have been
implemented, such as extensions to the functions
in the domain of axis and user-defined operators.
See the APL2 Language Reference Manual [APL2
1985] for a full description.

Dyalog APL is based on the nested arrays research
system NARS, but has included rather more of the
original than STSC's NAPS. Recently, user-defined
operators and function assignment have been
added. Error handling facilities are based on the
Sharp implementation. The product is described in
the Dyalog APL User Guide [Dyalogss].

OTHER IHEE??@NTATIONS

IPSA have also extended their APL data structures
to allow generalised arrays, but have done so
from a different theoretical viewpoint.
Differences start with the result of enclosing, a
scalar.,

A Dictionary of APL [Iversong86] has been used as
the guide to the facilities here, although many
of the features described are not yet implemented.

THE TWO DIRECTIONS

Although much time at APL conferences is
to proponents of the two basic directions
with each cther, not a lot of listening seems to
go on. There is little sign of any
cross-fertilisation, although in the papers at
APLB6 there were a few APL2 papers prepared to
show how the IPSA rank operator could be
implemented in APL2 (e.g. [Graham 86]), and Rob
Hodgkinson's paper on SHARP APL/HP drew on some

devoted
arguing

ideas from APL2 [Hodgkinson 86].

Not only is it difficult to find papers drawing
on ideas from both directions, it is difficult to
find people with experience of using both systems
seriously. The dialects are starting to develop
into languages in their own right, requiring
their own patterns of thought. Those who are
fluent in one Adialect can experience dAaifficulty
with the other. The author's experience is almost
exclusively with NAPS. He would be pleased to
learn through his mistakes with the IPSA notation.

It is interesting to observe a fundamental
difference between the Sharp and APL2/STSC/Dyalog
approach. When the respective systems are being
described, presentations on the APL2 approach
always seem to start with a discussion of the
data representations; those from IPSA always seem
to start with a discussion of notation.

The job of the professional programmer is
to produce systems to manipulate data -
are allowed to choose a
representation, you can make the
for yourself.

largely
if you

convenient
job very easy

The more flexibility you have in the ways you can
represent and manipulate your data, the more
chance you have of choosing a good
representation. While notation and the
consistency of the language are important,
flexibility in data structures is important in
getting things done. Perhaps this accounts for

the continuing popularity of many other languages.

USE OF EXTENSIONS AT BA

By far the most useful of the extensions is the
shared file system. This is wused for all APL
data, and has enabled us to do many things which
would not have been possible using native IBM
files under CMS.

Our heavy use of this file system precludes any

migration to APL2 (unless we bought on of the

products available to simulate the file system
under APL2). But this is not a contentious issue
- nearly all suppliers of APL (excluding I1BM)

offer such a file system - so I will not Awell on
it here.

The next most important extension in our use of
APL is the relaxation in the data structures
available. This has enabled us to develop a much
better programming style than would have been

possible - we have data structures to represent
screens and files which do away with the
necessity to use globals. This enables a much

more modular approach to be taken toO program
design. The language extensions then allow these

new data structures to be manipulated easily. The
each operator and its ability to take
user-defined functions as arguments is
particularly important here, Together these

extensions often allow very fast development of

solutions to tricky problems as viewed from
standard APL. This will be discussed later,
taking . some examples Arawn from VECTOR

. competitions.
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Error handling comes next in importance, mainly
allowing us to proviade more user-friendly
interfaces. In full screen applications, we can
signal input errors though [JERROR and have them
trapped and presented to the user in friendly
form.

The numerous other enhancements, from speedups to
primitives through replicate and diamond to extra
system functions also play a part in improving
the programming environment, but I mention them
mainly for completeness.

Finally the recent

enhancements provided with

compiler support have enabled us to improve the
run-time and response-time characteristics of
many of our APL systems. Further development here
should allow us to extend the domain of APL.

;ggex origin

A house standard is that [l10 is 4. In any
examples where [I0 is not defined, the reader may
assume a value of 1.

DATA REPRESENTATION

Apart from allowing more flexibility in how data

can be represented and manipulated, extended data
structures allow the bundling of associated data

for passing to procedures and files. One
important use is in file design =~ Aata of
different representations can be stored within
the same component. This greatly simplifies the

file design process if all data which normally
changes together is held in the same component -
the programmer does not have to worry about
system crashes during updates.

Quite complex single variables c¢an be used to
hold all the properties of full-screen panels

e.g.Fields on screen, their positions and
attributes
Associated APL variables
Functions to translate contents of APL
variables to text on screen
Functions to translate and validate input
from screen
Position of screen window(s) if scrolling in

operation
(panel definition variables)

or pointers and other information about files

e.g.Fields on file
Corresponding components
How data is stored (sparse or replicated)
Is field keyed for look-ups and where key is
Properties of field for output
(file control blocks).

These can easily be passed as arguments to
functions, and a modular approach to programming

without globals becomes possible. This makes
recursion in handling screens and simultaneous
handling of several files much neater than

otherwise is possible.
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STRAND NOTATION

Using standard APL, one is limited to two
explicit arguments to user~defined functions.
Although as time goes on, it becomes easier to
define functions so that they only have two
arguments, it is not always possible.

Oour main use of strand notation is to give
functions more than 2 arguments, and 1let them
return more than one result. (Sometimes the
overall effect is FOO-dual-link)

This is really a bit of a fudge. 1In the NAPS

implementation, it can also mean a heavy overhead
in workspace storage, as in the case

FOO A B C
the interpreter builds a temporary object A B C

(taking full copies - i.e. not using pointers)
before passing it to FOO. If any of A B or C are

large, the probability of WS FULL in FOO is
greatly enhanced.
With this scheme, strand notation assignment is
also desirable:

V FOO AABAC

[1] A B cenABAC

is much more convenient than the alternatives.
Falkoff's semi-colon notation for this,
[Falkoff82], would be a significant improvement.
One would then have a more controllable
mechanism, and prevent the hidden overheads.
In simple strands, strand notation is Simple and
much used. Any degree of complexity in the strand
(e.g. indexing) means difficulty - one usually

has to use the interpreter to find out what it
will do. This is an irritation, and IPSA's 1link
function has many attractions in this area, but
strand notation assignment is a considerable
benefit, and I would be loath to give it up.

The problem with strands is that space has
given an implicit meaning, and that it is
as some sort of function. Note that the problem
arises from vector notation itself, where the
space acts as a high priority catenate, and

been
acting

i
has different properties to
123

(In the SMIPSA function below, try writing 0,C

instead of C,0 - after all, it is only ensuring
there is at least one zero in each row.)

LANGUAGE EXTENSIONS

It is Aifficult to find problems that have been
solved in different versions of APL extensions.
Very few (if any) APL users are fluent in more
than one daialect. The competition section of
VECTOR (the Journal of the British  APL



Association) encourages entries in the various
forms of APL, even if they are not eligible for
prizes, and often the alternatives get published.
One can therefore compare the approaches taken Dby
experts in their own dialects.

The value of extensions can also be seen from
these competitions. It appears difficult to pose
problems that are sufficiently challenging in
standard APL to be worthy of a competition
(without making it so difficult that no-one
enters), but yet non-trivial using extensions.

Competition 1

The first competition (VECTOR 1.1; discussions in
VECTOR 1.3) related to the game of life,
represented in a sparse-data form. The
competition involved finding two functions to
convert between a simple representation

00110
60011
11100
11000

and to a representation recording numbers of
successive runs of O and 1

2245223

(the first element of the code vector always
representing number of leading zero's)

Although no nested array entries were discussed
when the results were given, it was peinted out
that the run-code to boolean was trivial with
replicate:

7 ReRTB ¥
[1] Rev/(pV)p0 1
v

In several other competitions, replicate woulad
nave been a valuable extension to standard APL.
Perhaps we should have a rule that extensions
only become part of the standard language if they
are as simple and as natural as replicate.

Note alsc that the 'best' solution to Dboolean to
run-time

vV ReBTR B
[t] Rer-010, 14R*R/1pR+(0,B)#B,2
v

is essentially successive applications of N-wise
reduce:

v R-BTR B
[1] Re"2-/0,(2%/B,2)/1pB+0,B
v

which, although a neater concept, is not a 1lot
simpler in practice.

Competition 2

The competition in Vector 2.2 was to validate and
translate a character matrix, each row of which
represents a single numeric.

Again, the code haa to be ISC-stanaara
conforming, so it couldn't use system functions
such as [F1 and OVI(APL*Plus) or [OVFI(Dyalog
APL). Although the basic part of the problem is
trivial with these system functions and the

ability to use split (APL2 enclose-with-axis),
and each

OVFI"4CHARMAT A Dyalog APL

(or simply the rank operator in IPSA), the task
of doing this in ISO-conforming APL .was too
daunting, and no solutions were submitted.

So we shoulan't forget system functions when
discussing extensions to APL. Although they may
not look pretty, they are very effective in
avoiding nasty and often inefficient APL code.
They are even more effective when they fall 4in
the domain of operators.

Compeg;gion 3
This competition was set 4in Vector .3 and
daiscussed in 2.1 and 2.3.

Heré¢, the skills of a group of staff were to De
matched with the requirements of jobs.

The staff skills were to be represented by rows
of a matrix, each non-zero entry being the index
into a table of skill descriptions.

e.g.
CONS
123700
137926
790000
1653890

The skills required for dobs were
recorded

similarly

JOBS

L S R
M w0 N
Ww o oo w

The competition involved writing a dyadic
function to match job requirements to skills
available:

JOBS SKILLMATCH CONS
1100
04110
00O
1101
0101
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This produced a range of solutions 4in Standard
APL, but also drew alternative entries in Sharp
APL
V R&J SMIPSA C
[1] RHBA/Je32 1 C,0
v
and APL2

V R«J SMAPL2 C
[1]  ReA/7((€[2]3)~"0)e.ec[2] C

v

while at least two people at British Airways
immediately jotted down something very similar,
but in STSC's nested arrays:

V R+J SMNAPS C R will also run in Dyalog APL
ReA/T(4T) 0. 64C,0
v

[1]

One point to note here is that the IPSA and NAPS
solutions both performed better than many of the
standard APL solutions, even though some of these
had been worked on a lot for efficiency.
Certainly the NAPS solution involved a 1lot less
programming effort. (No timing comparisons were
noted for the APLZ solution, although rewriting as

¥V R¢J SMAPL2B C
[1] Rren/"(c[2])e.ec[2] C,0

v
would probably help.)

Note that in the NAPS solution, split and mix are
being used like IPSA's dual operator. Both
arguments are split into vectors of rows, and the
result reassembled afterwards.

EVENT HANDLING

Here there are several approaches. 1PSA and
Dyalog have the very powerful {TRAP facility,
while STSC provide (ELX and IBM have [JEA. Other
vendors have other implementations.

Event handling systems allow all sorts of wierd
and wonderful opportunities to the wily
programmer. We have attempted, and been largely

successful in 1limiting implementation of error
handling through two basic utilities:

V ELX¢PASSBRACKERRORS
AV Returns OJELX setting to pass errors
to calling environment

[1]

back

[2] a values of DM [SI at the lowest level
will be in globals ADM ASI.

[3) LDMe'' ¢ ASIe'!

[4] ELX+'ADM*ADM, (0spADM) /DM
ASI+(010+0epASI)>(ASI Ds1)e
OERROR ( (A\ODN#0TCNL) 70DM) ,OTCNL, * * (ADM ASI
Set)ll'

9
and

229

V ELX*ERRORTRAP ELX;0ELX

{2} aY ERROR:Modifies UELX setting ELX(TV) to
cutback stack to this level
before executing input ELX

(2] @ It assumes (ELX is localised in calling
function.

[3) DELX+'ODM'A avoid OELX IMPLICIT ERROR

[4] ELX+3ELX @ Force error if ELX unacceptable

[5] AsI-ADMe'

{61 ELX+'ADMeADY,{OepADY)/(IDMO
ASI-(010+0ephS1)>(ASI Os1)0
DERROR(2#1*,D1DLOC! *OELX" * )/ ((A\DTCNL=20DX)
/0p¥) ,OTCNL, ' * (ADM £S1 set)'' o' ,ELX

v

A simple setting of PASSBACKERRORS in a function
makes that function behave as an APL primitive,
signalling the error at the call of the function
in which the error is found.

ERRORTRAP is more complex, cutting back the stack
to the function from which it was called before
executing the expression passed as 4its argument.
It depends on [ELX being properly localised. It
is often used in expressions such as
DELX<ERRORTRAP '-ERR'
ERR:?
and other occasions where a simple
DELX+'9ERR"'
could have disastrous consequences because it

could be executed in a lower level function.

T™wo functions, STOPTRAPS and RESTORETRAPS are

provided to turn off error handling implemented
through these utilities and to restore it, so
that real causes of problems can be investigated.
As an aid in this, the original error message and
the state of the stack when it was encountered
are stored in globals.

Use of these utilities enables us to0 do as much
in the way of event handling as we would want.
They can be simulated in the Sharp or Dyalog

environments, using DTRAP. But they let you 4o a

lot more than is possible with [EA. In
particular, the error recovery procedure can be
varied during a function in a way that seenms
difficult with DEA.

ELX~[JELX<PASSBACKERRORS

OFHOLD T«FSTIE ’'DATAFILEi'A Share tie file

f and put hold on it
DELXe*DOFUNTIE TO',ELXP Untie it on error,

6 then error handling as before
A few lines of processing

OFUNTIE TR Untie the file again
DELX+ELX A Restore the original
A few more lines of processing

setting



with 0EA, one seems to be forced to  spawn
subfunctions whose boundaries are determined by
the desired error handling, rather than the

overall logic of the process being programmed. No
doubt it can be done, but it will look and be
artificial in many cases, and the beaking up of
the code into too many little pieces will detract
from readability and comprehensibility. Too many

small functions can be as great a menace as too
many lJarge ones.

An additional problem is that [EA is essentially
an extension to execute, which creates problems

with programs to analyse APL code,
from readability, at least of
the program.

and detracts
the main path of

EFFICIENCY AND COMPILED FUNCTION SUPPORT

To allow the use of STSC's APL compiler, NAPS now
allows the use of compiled functions. In
practice, this means functions written in
assembler, as this this the end-product of the

compiler process. A workspace of
(FASTFNS) is supplied with the

such functions
in-house product.

It is interesting to note that few of these
functions are the product of compiling APL - they
have generally been written in assembler or TABL

using algorithms very different to those normally
employed in APL. The side-effects of this
approach are highlighted in the behaviour of the
resulting functions with empty array arguments.

Also provided is a facility to measure
efficiency of APL code -~ [MF, so that one's
efforts with the compiler can be directed. Using
this facility, and the supplied FASTFNS, we have
been able to dramatically improve the performance
of many systems. Many of the speedups are similar
in magnitude to those claimed@ for the compilier
itself. Where suitable FASTFNS exist, we can how
contemplate tackling problems where performance
in AFL would have been a considerable problem.

the

IERITATIONS WITH NESTED ARRAYS

Life with nested arrays is not always as simple
and straightforward as one would like. A few of
the major irritations with nested array APL are

listed here. Some arise from the nature of APL
itself, others from STSC's implementation.

DATA REPR@SENTATION

Although in theory, we have almost complete
flexibility in how we can represent data, there
are considerable restrictions in practice. Just
as performance with standard APLs suffers when

working with scalars, so performance with nhested
arrays suffers when the data is fragmented into
small nested items. Workspace requirements can
alsc grow alarmingly. It is seldom a good idea to
use non-nested heterogeneous arrays for data to
be manipulateqd.

230

One fairly reliable sign that nested array
representations are going to take forever to run
is a generous sprinkling of the each operator -

Alan Graham's "pepper". This is usually
indicative of a looping approach to the problem -
each represents a loop. Such code is not
without its value =~ it can be written very
quickly, and can Dbe used as an executable
specification for more efficient code to be
checked against. But if left in place in a
production system, it can cost many hours of

development time and end-user time
response.

through bad

We have found that it is much better to avoiad
partitioned enclose, but to use partitioned data
technigues as developed by Bob Smith eg[Smith

79]. The problem does not lie with the
partitioned enclose, although it has only
recently been implemented in assembler (and with
a boolean right argument can still be beaten by
an APL 1loop) but with the application of
functions to each part of the resulting nested

structure. The classic
V Z¢P PAORREDUCE V;C
[1] AV PARTITIONS: Simulate V/“PSV without
A using Partition enclose.
[2] A P and V must be logical vectors.

{3] Ze(c/10C+(PVV)/P)SP/V
v
can beat
v/ pey

by a factor of 100.

NONCE ERRORS

The major source of irritation is the NONCE
generated by

ERROR

FOO" 20
At BA, comments
A to avoid NONCEnse ERROR

have started appearing. Many and wonderful are

the ways adopted of avoiding nonce error, from
testing for enpty arguments before doing
anything, to overtakes and providing fill
elements.

Most of these could be avoided if the simple

behaviour of Dyalog APL [Dyalog85] were adopted:

Rtf'w If w is empty, the derived function
is applied once to the prototype of w,
and the shape of R is the shape of w.

Reaf'o If = or « 4iS empty and scalar

conformable, the derived function

is applied once to the prototypes of

« and w, and the shape of

R is determined by the rules for

scalar conformability.



This still allows special cases where f applied
L0 the prototype produces a DOMAIN ERROR to Dbe
dealt with as at present.

The work involved in protecting against this
class of NONCE ERROR would make any migration of
code written in Dyalog to APL»Plus nested array
systems extremely tedious. If 8TSC were to
introduce user-defined operators, an EACH which
avoided NONCE ERROR would be the first written,
and probably the most used.

Under APLxPlus,
TA

generates a LENGTH ERROR if the elements of A are
not all the same length. The first nested array
utility we wrote, and still the most heavily used
is:

v ReMIX A;DELX;0DM
[1] AY Does MIX on array of nested arrays of same
rank but not shape, using overtake to make shapes
conform
[2] {ELxe'-(''LENGTH ERROR''wi2[DM)/ERRO',
PASSBACKERRORS
3] Reta 0 20
[4] ERR:DELX¢PASSBACKERRORS
[s5} ReT(CIAT,p A) A
v

which emulates the Dbehaviour of the analogous
APL2 disclose~with-axis, or the Dyaleg primitive
mix.

Note that line 3 avoids the need to protect 1line
5 against NONCE ERROR when A is empty.

gVENT HANDLING {RRITATIONS

When one wants to trap a specific error (e.g.
NONCE ERROR or WS FULL as in the SPLITARRAY
example below) in order to try a different
algorithm, it is necessary to compare the error
message produced against a text string. This is
cumbersome compared to the alternative scheme of
using numbers associated with different events.

Note also that the heavily used MIX cover
function can upset the environment (ODM cannot be
localised despite the effort to do so0), resulting
in many other errors being reported as - LENGTH
ERROR when attempts to log errors include calls
of MIX.

Error handling, as it stands, offers too much
power to the cunning programmer. I feel it should
be restricted to only execute expressions within
the function 4in which the trap is set, or to
return control to the 1level above, with a
suitable error message. One needs a mechanism to
enable one to distinguish different events simply
and clearly, and the ability to have several
statements in the domain of the same trap.
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FACILITIES AVAILABLE ELSEH@ER@

In working with nested arrays, one often comes
across problems where facilities provided in
other implementations look attractive. I mention
some of them here; it is not intended to be an
exhaustive list.

gOHPOSI?IO§

This operator appeared in the research NARS, but
did not find its way into the production NAPS
version, perhaps because of the symbol chosen for
it (jot). It Aid find its way into Dyalog APL.
Composition allows functions to be 'glueq’
together to build more complex functions, or
arguments to be 'glued' to functions. (Note that
it is not the same as the IPSA composition-it
covers aspects of ~ ® and U: u'n;m’v;cases of y¥v

and ubv)
A very common construct in our code is
(= )FOO '@

(Apply = FOO to each element of w). A much more
natural way of writing this would be

=oF00"w

Here the 1left argument is a modifier to the
function verb - an adverb. Composition enables
the glueing of these together to produce a
compound verb (as in German).

Another common construct is

FOO'GO0 'w
Here GOO is applied to each element of w, then
FOO is applied to each element of the result. The

workspace requirements can be  daunting, for
instance

p IFREAD
Without composition, (or direct definition), we
have to define trivial functions elsewhere,
leading to a loss of continuity in the code:
VY Z¢€HOO R

{1] 2z+Foo GoO R
v

and then use
HOO 'R
(Apart from WS considerations, this nearly always
executes faster, presumably because there are
fewer space manipulation overheads.)
With composition we could write
FOO°GOO R
and achieve the same result.
Such an operator seems a sensible step on the way

to arrays of functions, a-concept much easier to
handle if all functions ih the array are monadic.



In our screen software, all input can be forced
through a validation routine. This can be thought
of an array of functions with different functions
applied to different fields on the screen. The
validation functions can be monadic, or dyadic
with left argument provided. It would be much
more natural and simpler if we could use
composition in defining this concept, so that all
these functions are monadic.

The introduction of function assignment to Dyalog
APL, which can be thought of as a simple direct
definition or as a first step towards arrays of
functions, depends rather heavily on composition
for its usefulness.

§§9EXI§§_AETEBNATIVES

I have one major application where I don't Kknow
the rank of the data that it will be processing.
This has been a major headache throughout,
especially where indexing is needed. From ({) ana
merge (}) would be helpful here, but not
sufficient on their own.

Often the approach has been to split the array
into a wvector of sub-arrays, to perform the
operation, and put the data together again.

Here the implementation of split
(Bnclose-with~-axis) is not ideal. Like so much
else in APL there are few problems with matrices,
but when the data has rank greater than 2, things
get much more complicated. For this case one
invariably wants the result of the split to be a
vector of subarrays, (occasionally a matrix of
subarrays), but the primitive gives an array of
vectors. This has resulted in the SPLITARRAY
utility. Its importance to some appiications can
be judged by the work that has obviously Dbe
expended in trying to make it efficient in
workspace and execution:

V AR+l SPLITARRAY A;J;K;R;S;T:;DELX;ELX

[1] aY NaPs: splits array A into array of
subarrays along axes I.

{2] @ For vector I, splits along each axis, so
that(p2)«*(pa)[,1]

f3) ELX-DELX~PASSBACKERRORS

[4] s¢«ph o Redl,T«(~(1p0S)el)/ 108

[5] -(Kkm1pK)/LO ¢ AeKBA

[6] LO:RepARCL((x/S[1]1),x/s[T))pA

[{7] [DELXe'+{(''WS FULL'')(''NONCE E'')e=7t(DK)

/L1 L4o' ELX

[8] anes[1]p(es(T])p 22 6 40

[9] L1:[ELX«ELX ¢ J«0 A If WS FULL

[10] L2:((J€I+1)>R)TL3 ¢ AA[J]ecs[T]pIman ¢ -L2

[11] L3:naes{I]pAn ¢ =0

[12] L4:nAe«s(I]pcs(T]p>2R

v

4 3 SPLITARRAY 1 1 3 4 2 2p148

12 17 18|33 34
3 4 19 20 t35 36
N— f n
56 21 221137 38
78 23 24 L39 40
N— T N

9 10][25 26]{41 42
11 121127 28] 143 44
) N N

(e

13 14|29 30}]45 46
15 16|31 32| |47 48
n n n

SPLITARRAY is used in effect to simulate an ALONG
operator. It is used, with its inverse MNIXARRAYS,
to allow simple functions to be applied along
axes of the data - for example along the MONTH
axis (or the MONTH and YEAR axes) of data whose
dimensions are class of travel, route, where
sold, year, month. The data is processed in
subarrays by a function coded as though it deals
with a simple vector (or matrix).

The along operator would have much in common with
bracket-axis notation (compare +/[1]), and the
concept behind it has much 4in common With the
rank operator. But implementing it through rank
would also need the prefer/defer o] operator.

EACH vs DUAL

The great joy of the each operator in NAPS, APL2
and Dyalog APL is the fact that it is possible to
use it with user-defined functions. Although
formally Qefined in the same way as

FOO "< A FOO with aisclose

it is not thought of as such by our programmers -
it is simply seen as a mechanism that applies FOO
to each of the elements of the data, a very much
simpler concept for them to grasp. Once someone
thinks of it in this way, as a mechanism whereby
a function is applied to each element of its
arguments, an explanation of with-disclose seens
highly recursive. (To apply a function to each of
the elements of «, first apply the disclose
function to each element, then apply the function
you first thought of to each resulting element,
then apply the enclose function to each of the
results.)

In some situations, each is used as dual. An
operation is done to the structure of the data, a
function 4is applied to the result, and the
original structure restored. But the first
operation is rarely a primitive APL function, and
the inverse needs explicit application.

An example is the provision of a fill element in
case an array is empty. A fill element toO ensure
the correct behaviour is appended to the front of
the array, F00~ «called, and the fill element
stripped off again afterwards.
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Although it is possible to provide ways of
tackling these problems using further language
extensions - a "fill" operator (eg [Pesch 1984])

couid be used in the above case, there seem to be
too many situations needing their own specific
extensions, and I prefer in general the explicit
coding of prior and post operations.

In many other situations the dual concept is used
without any mention of each. A popular technique
is to sort some data, perform an operation, and
apply the inverse of the sort to the result, so
that it lines up with the original input.

The use of SPLITARRAY also falls into the domain
of the dual concept. After the data has been
split into its subarrays, a simple function is
called to process the subarrays. This is
sometimes called using the each operator, but
more usually not. Afterwards, a function
MIXARRAYS, the inverse of SPLITARRAY, is called
to restore the data to its original format.

A favorite analogy used in the each
with-disclose argument is the notation for inner
product. The power of the inner product notation
is that it makes explicit the functions being
applied. This has led to considerable
exXploitation of inner product - to the extent
that +.x is now a minority use [Kanners2]. will
the same ever be true of with-disclose? Rather
than making operations explicit, the dual
operator makes implicit the application of the
inverse.

versus

User~defined functions have been within the
domain of the each operator from the start in all
implementations, and account for much of the use
of the operator. How much has the need to provide
inverse functions complicated the implementation
of user~defined functions within the domain of
operators in IPSA's APL?

EFFICIENCY

Efficiency is important on our APL systems. Much
of the use of them is interactive. Poor response
is very irritating for interactive work.

Buying extra computer power is not always a
feasible answer. If the early growth in computer
power needed to run APL at BA had been allowed to
go unchecked, the annual cost of providing new
power would soon be rivalling the cost of
investing in new aircraft. As an airline,
investment in new aircraft ana operational
equipment gets priority - quite rightly.
Investment in computer systems is already large
and highly visible. Of the money available for
investment in computer systems, it is easier to
justify expenditure on the real time systems
which support our operation - the reservations
system, departure control system, operations
control - where improvements c<an improve the
product we offer and our competitive standing.

Although many systems are now more efficient than
they were a year ago, we are limited in the use
we can maxe of the APL compiler. This is largely
due to it not being able to deal with nested
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arrays. In fact, one sometimes wonders how much
the implementers of the compiler are aware oOf
nested arrays and the facilities offered. One
supplied compiled function implements scatter
point indexing - less efficiently than the same
nested array feature in the interpreter. An
example published in the literature promoting the
compiler compiles a function which tries to
implement the split primitive using loops and
globals in standard APL.

Another point is that many of the fast functions
which we have used effectively are not the result

of compiling APL. Instead, they have been written
in assembler (or the TABL language developed for

the compiler) and use algorithms different from
those an APL programmer would naturally use. This
non-APL approach is highlighted when the
functions are presented with empty arguments.

our use of the [OMF monitoring facilities has
shown up that in well-written APL it is not the
interpretive overhead that costs, but being
forced into unnecessary processing. Perhaps this

is best illustrated by the optimisation that gets
dcne within interpreters - special casing
operators so that A.= does not actually perform
all the comparisons, but stops as soon as a
mismatch has been detected, or V/ stops as soon

as a 1 is found. Many user-defined operators deal
with this area - associative scan, and many of
the operators in Jim Brown's operators for logic
programming [Brown8é].

To use alternative algorithms, or to break down
the modularity of APL systems to prevent
unnecessary processing, the programmer will
usually need to resort to scalar programming. APL
does not support this well ~ the code starts to
consist mainly of loop and conditional control.
Instead of using an APL compiler with this mess,
I prefer the idea of writing 4t in a language
which is designed for this sort of task (or
rather getting someone else to write it) and then
being able to call the resulting compiled code
from APL.

Of the APLs I have experienced, Dyalcg APL
the Dbest equipped here, with its
access the Unix shell, and hence
written in C. It provides tools to interface
data structures, including nested arrays to C.

seems
apility to

functions
APL

The importance of this is not just in making APL
systems more efficient - many skilled APL
programmer-days have been expended in trying to

achieve reasonable response times. Many of the
hierarchical data structures pervasive to our
systems, whether operational financial or
reporting, are based oOn the sort of confused
logic that is easy to implement in scalar
languages, but very painful in APL. Perhaps this
is a problem specific to BA, but 1 suspect it

also occurs in other installations where APL is a
relative newcomer. The effort expended in dealing
with these structures could have been avoided |if
easy access to scalar languages had been possible.



CONCLUSION

Extensions to standard APL have made a beneficial
daifference to our work. They have not solved all
ocur problems. They have extended the boundaries
so that problems are encountered further on, if
at all.

Neither direction (APL2/IPSA) have a monopoly of
right or wrong. There are useful features and

ideas in each system. From the viewpoint of
programming users of APL, the more central role
of data structures in the APL2 style is
preferable.

Until the advent of extended data structures, and

the split in philosophy, one of the major assets
of the two large time-sharing bureaux was their
pragmatism, with such developments as file
systems, formatting, event handling and packages.

In the arguments over nested arrays, this has
been lost.

The pragmatic approach of the implementers of
Dyalog APL has much to commend it, particularly
the access to code written in other languages.
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