
Proceedings of the APL 2001 Conference

A n A r r a y - O r i e n t e d (A P L) W i s h List
I d e a s _I" T h i n k N a y b e U s e f u l

3 i m Lucas
jel@danbbs.dk

A b s t r a c t
T h e fundamenta l , da ta s t ruc tu re in A P L is the

array. Ar rays are, in m o s t A P L dialects, the on ly
data s t ruc ture , f r o m scalars as arrays w i th n o
d i m e n s i o n s to the c o m p l e x s t ruc tu res o f n e s t e d
s t rays. B u t there a re o t h e r ways in w h i c h a r ray
concep t s cou ld b e appl ied , ye t so fa r they h a v e
not . T h e s e are the t o p i t ems o n m y "Array-
O r i e n t e d W i s h Lis t" .

Less f u n d a m e n t a l b u t fa r easier to
i m p l e m e n t - - s h o u l d b e cer ta in o p e r a t o r s a n d
func t ions I p r o p o s e , w h i c h I t h ink w o u l d e n h a n c e
the p o w e r o f ex is t ing array ope ra t ions . S o m e o f
these a l ready exist in o n e o r m o r e dialects o f A P L ,
and I t h ink all w o u l d b e n e f i t i f they w e r e
universa l ly adop t ed .

In this suite o f p r o p o s a l s , s o m e are general ,
o the r s m o r e specific, a n d s o m e cou ld in te rac t w i th
each o t h e r in pos i t i ve synergy, b u t n o n e o f t h e m
requires any o f the o t he r s to b e useful . I n s o m e
cases, I sugges t p o t e n t i a l var iants , each r e a s o n a b l e
in its o w n right.

T h e p u r p o s e o f this p a p e r is to p r e s e n t the
concep t s . I n m o s t cases, I d o n ' t a t t e m p t to go in to
details o f i m p l e m e n t a t i o n . T h a t w o u l d requ i re a
m u c h m o r e ex tens ive t r e a t m e n t o f each concep t . I
h o p e tha t o the r s especial ly i m p l e m e n t e r s - -
m i g h t take u p the chal lenge.

Arrays in Current APL
F r o m its i ncep t ion , the f u n d a m e n t a l da ta

s t ruc tu re in A P L has b e e n the array. Scalars w e r e
n o t t r ea t ed as s o m e s o r t o f " m o r e f u n d a m e n t a l "
data ob jec t (" a t o m s ") , w h i c h w e r e a s s e m b l e d to
f o r m arrays as s t ruc tu re o f s e c o n d a r y
consequence . I n s t ead , scalars w e r e c o n s i d e r e d to
be sirnply a l imi t ing case o f arrays in general . A n y

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted w i t h o u t
f e e provided that copies are not m a d e o r distributed for
profit or commercial advantage, a n d that copies bear this
n o t i c e and the fu l l c i t a t i o n o n the first page- To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/our a fee.
APL01 , 06/01, New H a v e n , C T U S A
O2001 A C M 1-$8113-419-3/ 01/0006 $5.00

special charac ter i s t ics they p o s s e s s e d de r ived f r o m
the cons t ra in t s w h i c h s e p a r a t e d t h e m f r o m the
larger, un re s t r i c t ed se t o f arEays, jus t as ze ro , one ,
a n d two are in tegers wh ich , de f ined b y o n e
cons t ra in t , are d i s c o v e r e d to h a v e add i t iona l
"special" p roper t i e sA

Data a r rays

S i m p l e a r r a y s

F o r a l o n g t i m e the on ly arrays in A P L w e r e
so-cal led " s imp le" arrays, i.e., arrays cons i s t ing o f a
single data type. Still, this w a s n o t as res t r ic t ive as
m o t h e r p r o g r a m m i n g languages , s ince A P L on ly
d is t inguished b e t w e e n "cha rac t e r " and " n u m e r i c "
arrays, b u t n o t b e t w e e n logical a n d va r ious
n u m e r i c " t y p e s " - - b o o l e a n , integer , d o u b l e
precis ion, e tc . - - -a t leas t n o t a t the p r o g r a m m i n g
level. A P L arrays h a d n o theore t ica l res t r ic t ions o n
n u m b e r o f d i m e n s i o n s o r size, a n d these cou ld b e
changed at will. E v e n their type cou ld be changed ,
h u t only f o r the a r ray as a who le ; cha rac t e r and
n u m e r i c e l e m e n t s cou ld n o t be m i x e d in the s a m e
array. 2

H e t e r o g e n e o u s a r r a y s

A n o b v i o u s n e x t s tep was to a l low arrays o f
m i x e d type. H o w e v e r , this p r e s e n t e d ser ious
design p r o b l e m s , inc lud ing eff ic ient
i m p l e m e n t a t i o n , a m a j o r c o n c e r n o f A P L
i m p l e m e n t e r s . I n fact, i m p l e m e n t a t i o n o f
h e t e r o g e n e o u s arrays, as they are coiled, wa i t ed o n
i m p l e m e n t a t i o n o f the n e x t log/cal ex tens ion :
"nes ted" arrays. H e t e r o g e n e o u s arrays have b e e n
i m p l e m e n t e d as i f they w e r e n e s t e d arrays, t h o u g h
they a p p e a r d i f f e r en t to the u se r o r p r o g r a m m e r .

N e s t e d a r r a y s

N e s t e d arrays are arrays in w h i c h ind iv idua l
e l emen t s can t h e m s e l v e s b e arrays o t h e r t han
s imple scalars. Such arrays are c o n s i d e r e d to be
"enc losed" ; t h e y are scalars, b u t "with in te rna l
s t ructure . I n o n e sense , n e s t e d arrays al low o n e to

I In fact, deciding which is the defining pzopexty and
which are the derived ones is somewhat arbitrat T.
2 Eampty azxays o f one type c0s~be catenated to arrays
of the other type, but the result - - even i f empty - -
was of one type or the other, not mixed.

An Array-Or iented (APL) Wish List 39

Proceedings of t h e

avoid the quest ion o f heterogeneous a.m.ys, since
e a c h e n c l o s e d d e m e n t o f a n e s t e d a r ray can b e
e i the r cha rac te r , n u m e r i c , o r n e s t e d (a n e w type).
S t i l l t rue h e t e r o g e n e o u s a r rays h a v e s h o w n
t h e m s e l v e s to b e prefeJmble in v a r i o u s s i tuat ions .

N e s t e d a r rays a lso a l l o w o n e to a v o i d d i rec t
i m p l e m e n t a t i o n o f a s e c o n d po ten t i a l l y
p r o b l e m a t i c e x t e n s i o n , n o n - t e c t a n g u I a r arrays , o r
a r rays in w h i c h d i f f e r e n t s u b a r r a y s c o u l d b e o f
d i f f e r e n t size. E .g . , o n e c o u l d n o t h a v e a m a - - i -
w / t h r o w s o f d i f f e r e n t l eng ths , b u t o n e cou ld p u t
t he s a m e data i n t o a n e s t e d s t r u c t u r e as a v e c t o r o f
v e c t o r s , w i t h each e n c l o s e d v e c t o r o f a d i f f e r e n t
length.

T w o s y s t e m s
I n fact , t w o d i s t inc t s y t e m s o f n e s t e d arrays 1

h a v e b e e n d e v e l o p e d . I n t he o n e (c o m m o n to
S h a r p A P L - - i n c l u d i n g S A X - - - a n d .J), e n c l o s i n g a
s i m p l e sca lar tu rns it i n t o s o m e t h i n g d i f fe ren t ,
w h i l e in the o t h e r (AP L2 , a n d m o s t o the r s , w h i c h
axe f o l l o w i n g A P L 2 ' s lead) a s i m p l e sca lar is
iden t ica l to its enc lose .

I n t he fir'st, a l l owing h e t e r o g e n e o u s a r rays
w o u l d b e an i n d e p e n d e n t q u e s t i o n . H o w e v e r , the
l a t t e r s y s t e m requ i res h e t e r o g e n e o u s arrays , s ince a
" n e s t e d " a r ray c o n s i s t i n g o f an e n c l o s e d chaxae te r
sca lar a n d an e n c l o s e d n u m e r i c scalar /.r a
h e t e r o g e n e o u s array.

R a n k v s . D e p t h

R a n b - - t h e n u m b e r o f d i m e n s i o n s - - a n d
D e p t h - - t h e n u m b e r o f levels o f ne s t i ng o f
arzays axe c o m p l e m e n t a x y c o n c e p t s . A n e s t e d axray
w h e r e all e l e m e n t s a t e ach leve l axe ident ica l in
s h a p e can b e r e v e r s i b l y c o n v e r t e d in to a n o n -
n e s t e d array, in w h i c h t h e levels o f d e p t h axe
t r a n s f o r m e d in to add i t i ona l d i m e n s i o n s . T h e s a m e
a m o u n t o f i n f o r m a t i o n is c o n t a i n e d in b o t h
r e p r e s e n t a t / o n s , t h o u g h the qual i ty o f t h e
i n f o r m a t i o n r e p r e s e n t a t i o n d i f fers .

I n theory , n o n - u n i f o r m n e s t e d ar rays c o u l d b e
c o n v e r t e d to " r agged" a r rays w i t h o u t dep th , i.e.,
axrays c o m p o s e d o f subaxxaays o f d i f f e r en t sizes.
So far, n o A P L has i m p l e m e n t e d r a g g e d arrays.

! In the one s y s t e m - - t h a t in which simple scalars axe
n o t identical to their enclosuxes,----nested arrays axe now
refeerxed to as "boxed", to emphasize that they axe in
s o m e s i g n i f i e s JUt way different f rom "enclosed" arrays.
In fact, they are dilrfexent developments o f the same
fiuLndamental concept o f cndOSULZe, each in tma l l y self-
consistent. Other, independent diffexences---mcluding
prototypes and strand notaf ion~g, on't b¢ dealt "with
here. In this paper I will use the t e rm " n e s t e d " to refer
to bo th "boxed" and "enclosed" arrays.

APL 2001 Conference

"Genera l iz ing" a r r a y s
S o m e p e o p l e r e f e r t o n e s t e d ar rays as

"generaliT, ed" aaxays, b u t n e s t i n g is o n l y o n e w a y in
,which ar rays can b e genera l ized_ E.g. , t he r e h a v e
b e e n v a r i o u s p r o p o s a l s o v e r t h e years f o r
i m p l e m e n t i n g " f u n c t i o n axamys", so t h a t d i f f e r e n t
f u n c t i o n s c o u l d b e a p p l i e d t o d i f f e r e n t e l e m e n t s
o r e l emen t -pa ix s in t he i r a r r a y axgurnents .

E v e n t A r r a y s a n d
D i s t i n g u i s h e d V a l u e s

In APL, an expression like ÷A could result in
a DOMAIN ERROR if some elements of A are
zero . Y e t t aken ind iv idua l ly , o n l y s o m e o f the
d e m e n t s o f A w o u l d g e n e r a t e e r ro r s , a n d
f r e q u e n d y o n e w o u l d o n l y w a n t to i den t i fy t h o s e
e l e m e n t s , b u t still ge t t h e resu l t s f r o m t h e o the r s .
T h i s is t he p r e m i s e o f a p a p e r I p r e s e n t e d at
A P L 8 5 , w h i c h I u p d a t e d as a n ax f ide [5] in the
F I n n A P L j o u r n a l 1as t yeax.

Events as va lues
T h e bas i c p r o p o s a l is t h a t e v e n t s - - e r r o r s ,

i n t e r r u p t s , a n d p o s s i b l y o t h e r e v e n t s - - - s h o u l d
c o n s t i t u t e a n e w d a t a t y p e . W i t h h e t e r o g e n e o u s
arrays , e v e n t va lues c o u l d b e d e m e n t s o n equa l
f o o t i n g w i t h cha rac t e r s , n u m b e r s , a n d e n c l o s e d
arrays. D i f f e r e n t t ypes o f e v e n t s w o u l d h a v e
d i f f e r e n t " e v e n t va lues" . O f cou r se , i t w o u l d be
n e c e s s a r y t o de f i ne w h a t r esu l t s the v a r i o u s
p r i m i t i v e f u n c t i o n s w o u l d r e t u r n i f o n e o r b o t h
a r g u m e n t s axe even t s , a n d i f t h e t w o a r g u m e n t s o f
a dyad ic f u n c t i o n a r e t w o d i f f e r e n t even t s .

T h e 1985 p a p e r u n d e r t a k e s a de ta i led
c o n s i d e r a t i o n o f t h e s e i s sues , a n d the 2000 a r d d e
takes a n u p d a t e d l o o k a t t h e m . S o m e detai ls c o u l d
r e a s o n a b l y b e d e c i d e d in m o r e than o n e way , b u t
o n e i m p o r t a n t c o n s i d e r a t i o n is t h a t i t s h o u l d b e
p o s s i b l e to c h o o s e a t a n y t i m e w h e t h e r e v e n t
va lues axe p a s s e d as resu l t s o r w h e t h e r e x e c u t i o n
s h o u l d b e i n t e r r u p t e d , as i t is cur ren t ly . T h i s
c h o i c e o f a c t i on shou ld , in fact , b e spec i f i ab le
sepaxate ly f o r d i f f e r e n t types o f e v e n t s a n d e v e n m
d i f f e r e n t f unc t i ons . I t h i n k it is r e a s o n a b l e to d o
this b y e x t e n d i n g the f i l e r - a p facil i ty tha t is cur-
zent ly u s e d b y b o t h Shaxp a n d D y a l o g A P L s .

More "data tFpe " e x t e n s i o n s
B u t i f o n e n e w da t a t ype c a n b e a d d e d , w h y

n o t o t h e r s ? J has i n t r o d u c e d e x t e n d e d p r e c / s i o n
a n d r a t i ona l da t a types , b u t m y t h o u g h t s a re in
d i f f e r e n t d i rec t ions .

4 0 J i m L u c a s

Proceedings of the APL 2001 Conference

D i s t i n g u i s h e d t y p e s w i t h " o r d i n a r y "
v a l u e s

Some applications go to a great deal o f
trouble to keep track o f qualitative differences in
their data, e.g., whether a bond price came f rom
an actual trade, an unme t bid or offer, a value
computed by a model , or a trader's mental
estimate. But why no t give those values a second
attribute?

In addition to their value, each class o f value
could have a "type". The types could be ordered,
with a precedence such that comhining two
different types would always give the result value
the "lower" type. The meanings given to the
different types should no t be huilt into the
interpreter, though, but assignable by the
programmer. E.g., instead o f the above interpre-
tation, the types could indicate relat/ve degrees o f
certainty in measurement:: "precise", "slighdy
uncertain", "very unsure", "value unknown" ,
"value suspect", etc.

E n u m e r a t e d c l a s s e s

Another possibility is "types" consisting of
finite sets o f values. Th/s is particularly a candidate
for allowing users /programmers to define their
own "classes"_ E.g., N a N (not a number) might
seem a good way to indicate missing data in a
database, but with enumerated types there could
be different values to indicate w~, data is missing
£rom a database: "not applicable", "not available",
"pending input", "pending validation", etc.

W h y n o t j u s t s i m u l a t e t h e m ?

Both "distinguished types" and "enumerated
classes" can readily be simulated in A P L (the
former, e.g., by pairs o f values); in fact, I have
seen both. But they require a great deal o f
additional code, since every primitive operation
(plus, rotate, shape,...) has to be replaced by a
complex function that handles the "calculus" o f
such values in a reasonable and consistent way.
H o w much s impler - -and more ef f ic ient - - to have
a general facility with a consistent calculus built
into the interpreter.

I think complex numbers provide a case in
point. Many are the people who wrote suites o f
functions to deal with complex numbers as
ordered pairs (h'x 2 arrays). Is there a single one o f
them who has encountered the primitive
implementat ion o f complex numbers in APL2,
Sharp A P L (including SAX) or J, -who would
prefer to use---and extend h/s old function
suite? I doubt it. The advantages o f the primitive
implementat ions are too great.

Operators
In proposing new operators, I'll start with a

simple pair, wha t I'II call "Pad" and "Trim".

Pad & Trim
Every place I 've ever p rogrammed has had a

funct ion to catenate two arrays and guarantee that
the result was two dimensional, with the one
argument above the other and the "smaller" one
padded with fill demen t s to match the width o f
the "larger", and treating bo th vectors and scalars
as one-row matrices 1.

I 've seen more complex utilities to handle a
si.rrfilar operation on arrays o f arbitrary rank. Less
frequent have been the "opposite" utilities, wh/ch
t r immed the larger array to match the shape of the
smaller one (on all dimensions but one). I've also
seen code to per form similar "justification" o f two
arguments before addition, multiplication, etc. I 've
long thought that a monadic operator---actually a
complementary pair would be a more sensible
way to handle such enforcement o f conforrnability
in a general way. In A (predecessor to A+), I even
wrote my own operators to do just that.

I s i t w o r t h i t?

Well, I wouldn ' t be proposing such operators
i f I didn' t think so. I've already noted that while
the mos t c o m m o n use o f such an operator would
seem to be with catenation and to pad the smaller
argument to be conformable with the larger, other
potential uses are no t unknown. Another
possibility would be with the monad ic function
known as "mix" (÷) in Dyalog A P L and as "open"
(>) in j. C ~ e n t l y Dy~og's "m=" automatic~Uy
pads lengths but no t ranks, while J's "open" pads
both. But what i f the ragged lengths (or ranks)
were a mistake? I think it would be better if the
default were to signal length and rank errors, but
with the possibility o f overriding that behavior
with the Pad (or Trim) operator. Will the
repertoire o f uses expand i f Pad and Tr im are
implemented as operators? Perhaps not, but is
lack o f ability to predict extended generalization
really a good argument against implementing
something useful?

That 's a rhetorical question, n o t because I
think it has only one answer, bu t because I 'm sure
different people would answer it differently. Sharp

1 Depending on the particular implementation of this
utility, arguments of rank greater than two were often
either reshaped to two-dimensional ox truncated, so
that on.ly one plane was included in the result.

An Array-Oriented (APL) Wish List 41

Proceed ings of the

A P L a n d J have i m p l e m e n t e d d e t e r m i n a n t as
m o n a d i c ve r s ions o f i nne r p r o d u c t w i t h - a n d x
(* in J). W h i l e any other func t ions can b e u s e d in
the place o f - and x, I ' m on ly aware o f o n e o t h e r
pai r (+ a nd =) tha t axe c o n s i d e r e d t O h a v e a
meaxfingful i n t e rp re t a t ion , a n d I ' m n o t e v e n sure
h o w tha t is used. Is i t t hen xvxong t ha t they
i m p l e m e n t e d this facility? Y o u m a y disagree, b u t
/n m y op in ion , abso lu te ly n o d

P e r h a p s a m o r e r d e v a n t examp le w o u l d b e g ,
w h ic h is essential ly a s o u p e d - u p s t r ing sea rch
func t ion . T h e fac t is t ha t s t r ing sea rch utilities
w e re so universa l tha t i t d idn ' t m a k e sense not to
have i t as a pr imi t ive , f o r b o t h i nc rea sed e f f i c iency
and s i rnpl i f icat ion o f code . I th ink the s a m e is t rue
o f Pad , and fo r the sake o f s y m m e t r y a n d
general i ty it m a k e s sense to inc lude its
c o m p l e m e n t , T r i m , as well.

N o t a s s i m p l e a s i t s o u n d s

A n o t h e r r e a s o n fo r wan t i ng these o p e r a t o r s as
pr imi t ives is tha t i m p l e m e n t a t i o n is any th in g b u t
simple_ Exac t ly h o w the shapes s h o u l d be ad jus ted
d e p e n d s o n the func t ion . W i t h scalar ffunctions,
it's easy. Pad , e.g., s h o u l d just i n su re tha t b o t h
a rg um e n t s are the same rank as the g rea te r o f the
t wo a n d tha t the l eng th o f each axis is also the
grea ter o f the two. Well , it's n o t qui te tha t easy,
since o n e m i g h t a rgue tha t scalar (or s ingle ton)
ex tens ion s h o u l d still ho ld , t h o u g h o n e nf igh t
equally well a rgue tha t i t shouldn ' t . A n d w h a t
shou ld o n e do i f t he ranks o f the two a rgu m en t s
d i f fe r b y m o r e t han one? Shou ld the leading or
t.r, iling axes be m a t c h e d , o r shou ld axes o f the
same l eng th a n d o rde r i ng be c o n s i d e r e d eqmva-
lent? H a r d decis ions .

W i t h non-sca la r func t ions , things get ev en
m o r e difficult . W i t h ca tena t ion , exarnin /ng exis t ing
utilities shou ld sugges t w h i c h c o n v e n t i o n s s h o u l d
be a d o p t e d , / f the re seems to be a c o m m o n
s tandard . O the rwi se , decis ions w o u l d hav e to be
made , as has b e e n d o n e in the pas t w i th such cases
as 0 + 0 . Similar, b u t n o t necessar i ly identical ,
dec is ions w o u l d h a v e to be m a d e in c o n n e c t i o n
wi th the var ious o t h e r non- sca l a r func t ions . T h e n
there ' s the que s t i on o f w h a t to do a b o u t de r ived
and us e r - d e f m e d func t ions .

The Rank o p e r a t o r
Whi le I h a p p e n to th ink tha t the rank

ope ra to r , as i m p l e m e n t e d in Sharp A P L a n d J , / s
usefud in its o w n right , i t m i g h t also p r o v i d e a
s imple so lu t ion to s o m e o f the a b o v e difficult ies.
I n these dialects o f A P L , the c o n c e p t o f f u n c t i o n
r an k def ines in a cons i s t en t way h o w the

APL 2 0 0 1 Conference

appl ica t ion o f func t ions , e v e n de r ived func t ions ,
ex tends to arrays o f any rank. T h i s s ame p~dnciple
s h o u l d h o l d "with f imc t ions d e r i v ed b y these n e w
o p e r a t o r . A n d whi le i t is n o t in genera l poss ib l e
to de'n~ t h e r a n k o f a u s e r - d e f i n e d func t ion ,
appl ica t ion o£ the ¢,~b o p e r a t o r t o such a f u n c t i o n
will def ine its behav io r .

I w o n ' t g o in to detail h e r e a b o u t the u se and
function o f t h e r a n k operator, s ince they axe wel l
d o c u m e n t e d d s e w h e r e . B u t I will say tha t I t h ink
its usefuLness i n d e p e n d e n t o £ P a d a n d T r i m is
such that i t s h o u l d b e an d e m e n t o f eve ry A P L
i m p l e m e n t a t i o n , ev en t h o s e that d i f fe r f r o m Sha rp
A P L and j in o t h e r f u n d a m e n t a l respects . A n d
whi le it is easy e n o u g h to s imula te u s ing n e s t e d
arrays as an i n t e rmed ia t e , t ha t a p p r o a c h has
ser ious i n e f f i c i e n d e s as c o m p a r e d to the r ank
approach .

Fil l
Let 's a s s u m e w e ' v e i m p l e m e n t e d P a d a n d

T r i m , a n d tha t I w a n t to d o s o m e t h i n g like A
+ P a d B. W i t h any n e w e l emen t s as ze ro , the
c o r r e s p o n d i n g e lements in the resu l t will s imp ly
be the e lements tha t ex is ted w h e r e v e r there was an
u n m a t c h e d d e m e n t in the argument_ T h a t seems
f-me enough , b u t w h a t i f I w a n t A x p a d B? In
that case, all the c o r r e s p o n d i n g resu l t d e m e n t s
will be ze ro . I n o r d e r to h av e the u n m a t c h e d
values p a s s e d u n a l t e r e d to the result , t he fill
e lements s h o u l d b e 1, n o t 0.

T o me, this is n o t h i n g new. M a n y is the t ime
I%e w a n t e d to b e able to s p e d f y a fill d e m e n t
o t h e r t han the defaul t . Ins tead , I h av e to wr i te
c o n t o r t e d c o d e to subs t i tu te s o m e o t h e r va lue f o r
the O's (usually, t h o u g h s o m e t i m e s fo r b lanks o r
enc losed e lements) b e f o r e I can p r o c e e d wi th m y
c o m p u t a t i o n s . A n o b v i o u s an sw er is to have an
o p e r a t o r w h i c h al lows o n e to s p e d f y the fill
d e m e n t (s) , r l l call tha t o p e r a t o r Fill.

I n its s imples t f o r m , the Fill o p e r a t o r w o u l d
take a scalar va lue fo r its s e c o n d o p e r a n d , e.g., 1
ins tead o f 0 f o r Riling n u m e r i c arrays. B u t w i th
n e s t e d arrays, o n e s h o u l d real ly be able to spec i fy
separa te fill d e m e n t s f o r each d e m e n t o f the
n e s t ed s t ruc ture , w i th pe rvas ive app l ica t ion w h e r e
the s t ruc tu re o f t h e o p e r a n d is n o t as d e e p as tha t
o f the a r g u m e n t axtay(s).

A n o t h e r poss ibi l i ty w o u l d be to a l low
speci f ica t ion o f a v e c t o r o f d i f f e r en t fill d e m e n t s
for Riling the n e w d e m e n t s in a v e c t o r w i th
expand , ove r t ake , o r Pad . B u t i f w e go t ha t far,
'why n o t a l low spec i f i ca t ion o f d i f f e r en t fill
d e m e n t s e v e n w h e n a rgumen t (s) a n d resu l t are
n o t vec to r s? T h e d i f f icul ty is, o f course , t ha t t he

42 J im Lucas

Proceedings of the APL 2 0 0 1 Conference

region to be filled will p robab ly n o t be rectangular.
I p r o p o s e that in this case (and perhaps even in
the rectangular ease), the fill ope rand shou ld
simply be a vector , with the only conform-b i l i ty
cri terion being that the total n u m b e r o f elements
should be the same as the n u m b e r o f n e w
elements created.

Rest
However , there could be some difficulty in

determining the n u m b e r o f fill e lements needed by
the Fill operator . Well, h o w abou t ano the r
opera tor? 1'11 eaU it Rest. Used in conjunct ion with
a sdec t ion specification (e.g., take), the resul t
would be the c o m p l e m e n t o f the sdect ion. I f that
c o m p l e m e n t is rectanguLar, it should retain its
shape (since one can always explicidy r a v d it), bu t
otherw/se it will be a vector , with the demen t s in
the same order as they were in the or ig ina l
argument. E.g.,

1 3÷Rest 3 3p t9
g 5 6

7 8 9

2 2CRest 3 3pt9

3 6 7 8 9

O n e could thus cons t ruc t an array and use
Rest to extract f r o m it precisely the elements
which would be needed by Fill. T h e simpler, scalar
specification o f non-defau l t fill elements could
then be considered an example o f scalar extension.

C o n t r o l S t r u c t u r e s
It's generally i mpor t an t in A P L to avoid loops

where possible, and a s tandard way o f doing this is
to substitute an "if" cons t ruc t with a "where"
construct . E.g., to add one to those d e m e n t s o f an
array A which are greater than zero,

A*A +A > 0

This actually pe r fo rms addit ion on every
d e m e n t o f A, bu t by adding zero to s o m e
demen t s , the result is the same as i f the addi t ion
were p e r f o r m e d only where the condi t ion is true.

N o w that some APLs have imp lemen ted
contro l structures, there is some tendency to use
an : I f s tructure in a :For loop to accomplish the
same purpose. 1 Because o f the repea ted
in terpreta t ion o f the code in the :For loop, this

process is m u c h less ef f ic ient than the above
"APL-style" approachZ.

T h e p rob l em with con t ro l s t ructures is that
they simply aren ' t array oriented. While an
expression like the above could be conta ined
within an :If" clause or a :For loop, the decision
process is all o r not.bAng. T h e only way to apply art
: If condi t ion separately to each d e m e n t o f an array
is to in t roduce a loop ing structure, which is
inhe rendy inefficient. Ins tead, I p r o p o s e a new
operator .

Where
This opera to r wou ld apply its funct ion

ope rand eachwise only on those cells o f the
derived function's argument(s) co r responding to
l 's in the Boolean operand , which mus t be
confo rmab le with the argument(s) . T h e elements
co r respond ing to zeros wou ld be passed
unchanged to the result. Thus , the above A P L
express ion could be r e n d e r e d as

A ÷ I = + Wl]ere CA>0) A n t h e o i s
c o m p o s i t i o n , i n D y a J o g AP£

In this example I 've def ibera tdy used
compos i t ion to turn the 1+ into a monad ic
funct ion and avoid the p r o b l e m o f deciding which
argument should have its d e m e n t s passed to the
result in the dyadic case. Obvious ly , ei ther the left
or r ight a rgument will have to be selected as the
one that always gets used. I suggest that it should
be the right argument , since that's the ordy
possibility in the monad i c case.

M o r e c o m p l e x e x a m p l e s

Plus is m u c h too simple a funct ion to demon-
strate the real usefulness o f Where . I t could also
be used with der ived funct ions, and in
comb/na t /on wi th the Rank opera tor , it should be
possible to use it reasonably in conjunc t ion with
non-scalar funct ions and even user-def ined
functions.

A q u e s t i o n o f e f f i c i e n c y

With primitive and even derived functions,
the in terpre ter should be able to skip process ing
o f those d e m e n t s which are n o t selected by the
operand. But wha t abou t user -def ined funct ions?
Surely, the opera tor can ' t be expected to trace
complex internal logic and execute only those
parts that are r d e v a n t to the selected elements.
No , but it can execute the funct ion wi th the full
array argument(s) , then replace those d e m e n t s o f

t This seems to be particularly prevalent among those
for whom APL was not their first programming
language.

2 [Editor's note: Some implementations do not re-
interpret loop bodies in such cases]

A n A r r a y - O r i e n t e d (A P L) W i s h L i s t 4 3

P r o c e e d i n g s o f t h e

the r e su l t n o t s d e c t e d b y the o p e r a n d wi th the
or iginal a r g u m e n t values .

T h i s rep laces the ine f f i c iency o f re -
i n t e r p r e t i n g the func t ion f o r each d e m e n t o f the
arguument(s) wi th the lesser inef f ic iency o f
gene ra t i ng "unne ces s a ry" resu l t va lues . O f course ,
o n e m u s t b e w a r e o f func t ions w i th s ide effects .
T h e e a c h - s d e c t e d - d e m e n t a p p r o a c h cou ld still b e
f o r c e d b y u s i n g the R a n k operator.

Funct ion a r rays a n d Which
I f o n e h a d fuLnCtion arrays , t h e n o n e c o u l d use

a v e c t o r o f func t ions i n s t ead o f jus t a single
f u n c t i o n as an o p e r a n d to W h e r e . T h e array
o p e r a n d c o u l d t hen b e c o m p o s e d o f indices in to
t ha t v e c t o r , ind ica t ing w h i c h func t ions s hou ld be
app l i ed to w h i c h d e m e n t s o f the a rgument (s) .
E x t e n d e d in this way, t h e o p e r a t o r s h o u l d
p r o b a b l y b e called Whi ch , r a t h e r t h a n 'Where. I
sugges t that origin-1 i n d e x i n g b e impl ied , 'with a
z e r o o p e r a n d va lue ind ica t ing t ha t the a r g u m e n t
s h o u l d b e p a s s e d u n c h a n g e d , as w i th the B o o l e a n
condition for W here .

" U n d e f i n e d " a s a " V a l u e "

The ra t iona le
I t is use fu l a n d e v e n i m p o r t a n t to h a v e a

m e a n s o f spec i fy ing no t h i ng , i.e., the lack o f
• oraethi,g. Z e r o m e a s u r e s the lack o f quantity_
E m p t y arrays are d i f ferent ; t hey r e p r e s e n t ob jec t s
t ha t h a v e f o r m (or s t ruc ture) , even t h o u g h they
h a v e n o con ten t . B u t so far in A P L w e h a v e n o
w a y o f r e p r e s e n t i n g the l ack o f a va lue o r an
objec t , e x c e p t b y the lack o f r ep r e s en t a t i on .

W e can use E]NC o n a speci f ic n a m e to
d e t e r m i n e w h e t h e r or n o t it has a value. H o w e v e r ,
the re are c i r c u m s t a n c e s in w h i c h w e n o t on ly w a n t
to k n o w i f a n a m e is def ined , b u t we w a n t to use
that i n f o r m a t i o n to c o n t r o l w h e t h e r w e supp ly a
va lue in a n o t h e r con tex t .

I n m y exper ience , the m o s t c o m m o n such use
is w h e r e a s u b f u n c t i o n is cal led m o n a d i c a l l y or
dyadical ly d e p e n d i n g o n w h e t h e r the f u n c u o n
c=iling it was i t se l f called m o n a d i c a l l y o r dyadically.
W o u l d n ' t i t b e s imple r i f i n s t e ad o f r e p o r t i n g a
VA.SUE ERROR, we could just call the

s u b f u n c t i o n dyadicany at all t imes , b u t h a v e it
i n t e r p r e t e d m o n a d i c a l l y i f the n a m e o f its lef t
a r g u m e n t is u n d e f i n e d ?

T h e r e are, h o w e v e r , c i r c u m s t a n c e s u n d e r
w h i c h w e w o u l d w a n t tha t VA.5 UE E R R O R , e v e n
i f i t 's j u s t an e v e n t va lue in a h e t e r o g e n e o u s array.
I t w o u l d t h e r e f o r b e h d p f u l to h a v e " u n d e f i n e d "
i t s d f as a "value".

A P t 2 0 0 1 Conference

The detai ls
T h e f irst a s p e c t o f i m p l e r n e n t i n g " u n d e f i n e d "

as an a t t r ibu te or "va lue)' is t h a t i t can b e
a s soc i a t ed wi th a n a m e . O n e w a y this can b e d o n e
is b y s imp ly giving all loc-aliTed n a m e s an initial
va lue o f U N D E F n q E D , un less or unt i l a n o t h e r
va lue is a s s igned to t h e m (or pas sed , f f they are
in te rna l a r g u m e n t n a m e s) . T h i s c o n v e n t i o n w o u l d
n o t n e e d a s epa ra t e s y m b o l o r n o t a t i o n f o r the
U N D E F I N E D "value" . I n s o m e c i r c u m s t a n c e s
(e.g., b e i n g u s e d as a le f t a r g u m e n t t o an
a m b i v a l e n t func t ion) t he u se o f s u c h n a m e s w o u l d
n o t gene ra t e a n e r ror , b u t in o t h e r s cases (e.g.,
b e i n g u sed as a r i gh t a r g u m e n t to a p r i m i t i v e
func t ion) i t cou ld still g ene ra t e a VA.LUE ERROR.

B y us ing such exp l i c i t l y -unde f ined n a m e d o b -
jects, o n e cou ld bui ld c o m p o u n d ob jec t s (arrays)
in w h i c h s o m e i t ems are d e f i n e d a n d o the r s are
not . B u t i f w e w a n t to b e able to d o that , w e will
cer ta in ly w a n t to be able to c rea te s u c h arrays even
in s i tua t ions w h e r e an U N D E F I N E D n a m e d
ob j ec t d o e s n ' t exist. F o r this, w e w o u l d need a
n o t a t i o n , a symbo l , t o r e p r e s e n t t h a t "va lue" as a
p r i m i t i v e cons tan t . I w o u l d like to p r o p o s e the u se
o f - ("jot") , p a r d y fo r its g r aph i c s impl ic i ty a n d
pa r t l y b e c a u s e o f its c u r r e n t u se m o u t e r p r o d u c t .
U n f o r t u n a t e l y , a t leas t o n e A P L has a l ready
a s s igned i t ano the r , po ten t i aUy i n c o m p a t i b l e
mean ing , t

Addi t iona l uses

Missing d a t a

O n e o b v i o u s u s e o f U N D E F I N E D as a va lue
is to ind ica te lack o f data. Actual ly , this is n o t as
s t r a i g h t f o r w a r d as m i g h t f irst a p p e a r , bec au se I ' m
p r o p o s i n g t ha t an UNDEFINED va lue as a lef t
a r g u m e n t s h o u l d i n v o k e the f u n c t i o n ' s m o n a d i c
case. E.g. , UNDEFINED+ 2 s h o u l d g / r e 0 . 5, a n d
not UNDEFINED. (For the latter sort of

b e h a v i o r , see m y a b o v e p r o p o s a l f o r an e v e n t daea
type.) N e v e r t h e l e s s , t he re a re u n d o u b t e d l y
c o n t e x t s in w h i c h it w o u l d m a k e s ense to u s e
U N D E F I N E D to r e p r e s e n t m i s s i n g data.

T h o r n (f o r m a t)

T h o r n (v) can b e u s e d dyadical ly fo r
f o r m a t t i n g n u m b e r s , b u t n o t f o r f o r m a t t i n g
charac ters . T h i s p r e s e n t s a p r o b l e m i f o n e w a n t s
to use dyadic t h o r n o n s o m e (numer i c) d e m e n t s
o f a n e s t e d array, b u t m o n a d i c t h o r n o n s o m e
(character , b u t p o s s i b l y also n u m e r i c) o thers .
B e i n g able to s u p p l y a va lue o f U N D E F I N F . r ~ as

I In Dyalog APL, the jot is now used as a composi6on
opexatoz

4 4 J i m L u c a s

Proceedings of the APL 2001 Conference

a left a rgumen t f o r those d e m e n t s where monad ic
use is desired seems reasonable.

G r a d e

Sirrfil~t-ly, grade on numerics can' t take a left
a rgument , bu t on characters it must . T o specify a
mix o f m o n a d i c and dyadic use, left azgument
values Of U N D E F I N E D would force monad ic
u s e .

F r o m (i n d e x i n g)

Aside From distinguishing be tween monad ic
and dyadic use o f functions, there is one o ther
very impor t a n t A P L context where the simple
p resence or absence o f a value is sign/ficant:
indexing. O n e o f the difficulties in replacing
bracket -semicolon indexing with an indexing
funct ion is f inding a way to represent the case o f
an e_]/ded axis, i.e., a simple way to specify "aU
indices" along an axis wi thou t expficitly
enumera t ing them. Yet what could be simpler
than specifying a value o f U N D E F I N E D , an
explicit equivalent o f elision?

A m b i v a l e n t o p e r a t o r s

Unlike funct ions, opera tors in A P L are e/ther
monad ic or dyadic, but no t both. T h e reason for
this is notat ional , n o t mathematical . Al lowing b o t h
opera tors - - which have long left scope - - and
funct ions - - which have long fight scope - - to be
ambivalent wou ld require m o t e complex syntactic
rules to insure unambiguous parsing. Howeve r , an
operand 'with an U N D E F I N E D value opens up
the possibility o f essentiaUy monad ic use o f
otherwise-dyadic operators .

I won ' t p r o p o s e here monaclic variants for
existing primitive dyadic operators , but I will
suggest that there is interest ing potent ia l in those
APLs in which user -defmed opera tors are
possible. A n d I will po in t out that APL's ou te r
p r o d u c t appears to be just such a construct , with
o ("jot'~ as the symbol for U N D E F I N E D . In
fact, I th ink jot would be an ideal s y m b o l partly
because o f this long-s tandard use.

C o m m e n t s o n S o m e
F u n c t i o n s
Nub a n d Nubs ieve

Dyalog A P L has implemented the monaclie
funct ion Unique, which returns the unique
d e m e n t s o f its argument . I t only works on
vectors . A user -def ined utility is stilI necessary to

plimi~ate dup~cate rows ~ o m a matti.x. O n the
o the r hand, J 's N u b pcimitive returns un ique
subatrays o f rank one less than that o f its
arg-rnent , e.g., rows o f a matr ix, planes o f a 3 -D
array, as well ~s sc'alnr e lements o f a vector . I f ind
this extens ion to be invaluable, and I think every
A P L should i m p l e m e n t iL

Fo r greater versatility, they should also
implement Nubs icve , as f o u n d in J and Sharp
A P L (and which is sinailarly ex tended to azxays o f
rank >1). Nubs i eve re turns a B o o l ~ - vec to r
result, which will select ou t the hub when used as
left a rgumen t to compres s ion along the first
dimension. Nubs i eve is useful fo r applying the
hub-generat ing selection to addit ional data which
may parallel that data used in defining the nub.

Without"
I believe that all m o d e r n APLs have n o w

implemented this primitive, which removes f r o m
its left a rgument all occuLtrences o f the elements in
its r ight azgurnent. As with N u b and Nubsieeve, J
and Sharp A P L have ex tended this funct ion to
arrays o f higher rank, and I think this extens ion
would be a valuable addi t ion to any A P L

I also believe this pr imit ive should have a
boolean sieeve-conterpart like Nubs ieve for
N u b for greater versatility. E v e n Sharp A P L and
J don ' t current ly include this extension, bu t I think
it's even m o r e impor t an t than Nubsieve . I f one
wants to eliminate certain e lements or subarrays
f rom one variable or dataset, then it makes sense
that one wou ld want to be able to s d e c t
cor responding data or make a co r respond ing
e x c l u s i o n - - ~ o m parallel data.

I n C o n c l u s i o n
I have p r o p o s e d here a morley, bu t mos t ly

mutually independent , group o f enhancements to
A P L as it current ly exists. With one except ion, I
have no t p r o p o s e d particular symbols fo r them.
T h o u g h that is an impor t an t topic, its d/scussion
would distract f r om the real pu rpose o f this
discussion, which is the p r o p o s e d functional/ty.

Space and t ime have n o t permi t ted me to
present the full detail o f my thoughts and analyses
Jcegarding these proposals , bu t I hope that they
stimulate a lively discussion. I also h o p e that
before too long I may see some o f them appear in
APL.

An Ar ray-Or ien ted (APL) Wish List 45

Proceedings of t h e APL 2 0 0 1 Confe rence

R e f e r e n c e s :
[1] 1L Bemecky; APL84 Ccm.f~tcnce Proceedings

~,4.PL~0te ~ a g vol. 14, no. 4), p.53

[2] R. Bemec.ky & 1t_ Hui; APL91 Colafearence
Proceedings (APL.Quotc.~a~ voL 21, no. 4) p.39

[3] J. Brovcn; APL84 Coafemace Pro~.~c . l~ (APL
.Quots.Quad, vol. 14, no. 4), p. 81

[4] Lucas. Jim, "Azzay Ofiemed Exception H~dlb'~".
APL85 Confezeace P=oceed.bags (, ' t P L Q H o ~
vol. 15, no. 4), pp. 1-4.

[5] Lucas, Jim, "When Sta.adaxd 'Datatypes' Amm't
Enough% APL,mai.r~t 2/2000 6,4.PL Nays 2/200O,
publication of FirmAPL, Helsinki. Finlaad).

46 J im Lucas

