Proceedings of the APL 2001 Conference

An Array-Oriented (APL) Wish List
Ideas I Think May be Useful

Jim Lucas
jel@danbbs.dk

Abstract

The fundamental data structure in APL is the
array. Arrays are, in most APL dialects, the only
data structure, from scalars as arrays with no
dimensions to the complex structures of nested
arrays. But there are other ways in which array
concepts could be applied, yet so far they have
not. These are the top items on my "Array-
Orniented Wish List”.

Less fundamental—but far easier to
implement—should be certain operators and
functions I propose, which I think would enhance
the power of existing array operations. Some of
these already exist in one or mote dialects of APL,
and 1 think all would benefit if they were
universally adopted.

In this suite of proposals, some are general,
others more specific, and some could interact with
each other in positive synergy, but none of them
requires any of the others to be useful. In some
cases, I suggest potental variants, each reasonable
in its own right.

The putpose of this paper is to present the
concepts. In most cases, I don't attempt to go into
details of implementation. That would require a
much more extensive treatment of each concept. I
hope that others—especially implementers—
might take up the challenge.

Arrays in Current APL

From its inception, the fundamental data
structure in APL has been the array. Scalars were
not treated as some sott of "more fundamental”
data object ("atoms"), which were assembled to
form arrays as structure of secondary
consequence. Instead, scalars were considered to
be simply a limiting case of atrays in general. Any

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for
profil or commercial advantage, and that copies bear this
notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
APLO1, 06/01, New Haven, CT USA

©2001 ACM 1-58113-419-3/ 01/0006 $5.00

An Array-Oriented (APL) Wish List

special characteristics they possessed derived from
the constraints which separated them from the
larger, unrestricted set of atrays, just as zero, one,
and two are integers which, defined by one
constraint, are discovered to have additional
"special” properties.!
Data arrays
Simple arrays

For a long time the only arrays in APL were
so-called "simple” arrays, i.e., arrays consisting of a
single data type. Stll, this was not as restrictive as
in other programming languages, since APL only
distinguished between "character” and "numeric”
arrays, but not between logical and various
numeric "types"—DBoolean, integer, double
precision, etc.—at least not at the programming
level. APL arrays had no theoretical restrictions on
number of dimensions or size, and these could be
changed at will. Even their type could be changed,
but only for the array as a whole; character and

numeric elements could not be mixed in the same
array.2

Heterogeneous atrays

An obvious next step was to allow arrays of
mixed type. However, this presented serious
design problems, including efficient
implementation, a major concern of APL
implementers. In fact, implementaton of
heterogeneous arrays, as they are called, waited on
implementation of the next logical extension:
"nested" arrays. Heterogeneous arrays have been
implemented as if they were nested arrays, though
they appear different to the user or progtammer.

Nested arrays

Nested arrays are arrays in which individual
elements can themselves be arrays other than
simple scalars. Such arrays are considered to be
"enclosed"; they are scalars, but with internal
structure. In one sense, nested arrays allow one to

11In fact, deading which is the defining property and
which are the derived ones is somewhat arbitrary.

2 Empty arrays of one type cow/d be catenated to arrays
of the other type, but the result — even if empty —
was of one type or the other, not mixed.

39

Proceedings of the APL 2001 Conference

avoid the question of heterogeneous arrays, since
each enclosed element of a nested atray can be
either character, numeric, or nested (a new type)-
Sdll, true heterogeneous arrays have shown
themselves to be preferable in various situations.

Nested arrays also allow one to avoid direct
tmplementadon of a second potentially
problematic extension, non-rectangular arrays, or
atrays in which different subarrays could be of
different size. E.g., one could not have a matrix
with rows of different lengths, but one could put
the same data into a nested structure as a vector of
vectors, with each enclosed vector of a different

length.
Two systems

In fact, two distinct sytems of nested arrays!
have been developed. In the one (common to
Sharp APL—including SAX—and J), enclosing a
simple scalar turns it into something different,
while in the other (APL2, and most others, which
are following APL2's lead) a simple scalar is
identical to its enclose.

In the first, allowing heterogeneous atrays
would be an independent quesdon. However, the
latter system requires heterogeneous arrays, since a
"nested” atray consisting of an enclosed character
scalar and an enclosed numeric scalar & a
hetetogeneous array.

Rank vs. Depth

Rank—the number of dimensions—and
Depth—the number of levels of nesting—of
arrays are complementary concepts. A nested array
where all elements at each level are identical in
shape can be reversibly converted into a non-
nested array, in which the levels of depth are
transformed into additional dimensions. The same
amount of informaton is contained in both
representations, though the quality of the
information representation differs.

In theory, non-uniform nested arrays could be
converted to "ragged” atrays without depth, ie,
arrays composed of subatrays of different sizes.
So far, no APL has implemented ragped arrays.

1 In the one system—that in which simple scalars are
not identical to their enclosures,—nested arrays are now
referred to as "boxed", to emphasize that they are in
some significant way different from "enclosed™ arrays.
In fact, they are different developments of the same
fundamental concept of enclosure, each internally self-
consistent. Other, independent differences—including
prototypes and strand notation—won’t be dealt with
here. In this paper I will use the term "nested” to refer
to both "boxed" and "enclosed" arrays.

40

"Generalizing" arrays

Some people refer to mnested arrays as
"generalized” arrays, but nesting is only one way in
which atrays can be generalized E.g., there have
been various proposals over the years for
implementing "function arrays", so that different
functions could be applied to different elements
or clement-pairs in their atray arguments.

Event Arrays and
Distinguished Values

In APL, an expression like +4 could result in
a DOMAIN ERROR if some elements of A ate
zero. Yet taken individually, only some of the
elements of A would generate errors, and
frequently one would only want to identify those
elements, but still get the results from the others.
This is the premise of a paper I presented at
APLS8S5, which I updated as an article [5] in the
Finn APL joumnal last year.

Events as values

The basic proposal is that events—errors,
interrupts, and possibly other events—should
constitute a new datatype. With heterogeneous
arrays, event values could be elements on equal
footing with characters, numbers, and enclosed
atrays. Different types of events would have
different "event values”. Of course, it would be
necessary to define what results the wvarous
primitive functions would return if one or both
arguments are events, and if the two arguments of
a dyadic function are two different events.

The 1985 paper undertakes a detailed
consideration of these issues, and the 2000 atticle
takes an updated look at them. Some details could
reasonably be decided in more than one way, but
one important consideration is that it should be
possible to choose at any time whether event
values are passed as results or whether execution
should be interrupted, as it is cutrently. This
choice of action should, in fact, be specifiable
separately for different types of events and even 1n
different functions. I think it is reasonable to do
this by extending the Otrap facility that is cur-
rently used by both Sharp and Dyalog APLs.

More "data type” extensions

But if one new data type can be added, why
not others? J has introduced extended precision
and rational datatypes, but my thouphts are in
different directons.

Jim Lucas

Proceedings of the APL 2001 Conference

Distinguished types with "ordinary"
values

Some applications go to a great deal of
trouble to keep track of qualitative differences in
their data, e.g., whether a2 bond price came from
an actual trade, an unmet bid or offer, a value
computed by a model, or a trader's mental
estimate. But why not give those values a second
attribute?

In addition to their value, each class of value
could have a "type". The types could be ordered,
with a precedence such that combining two
different types would always give the result value
the "lower" type. The meanings given to the
different types should not be built into the
interpreter, though, but assignable by the
programmer. E.g., instead of the above intetpre-
tation, the types could indicate relative degrees of
certainty in measurement:: '"precise", "slightly
uncertain”, "very unsure", "value unknown",
"value suspect”, etc.

Enumerated classes

Another possibility is "types" consisting of
finite sets of values. This is particularly a candidate
for allowing users/programmers to define their
own "classes”". E.g, NaN (not a2 number) might
seem a good way to indicate missing data in a
database, but with enumerated types there could
be different values to indicate why data is missing
from a database: "not applicable”, "not available”,

"pending input", "pending validation", etc.
Why not just simulate them?

Both "distinguished types" and "enumerated
classes" can readily be simulated in APL (the
former, e.g., by pairs of values); in fact, I have
seen both. But they require a great deal of
additional code, since every primitive operation
(plus, rotate, shape,...) has to be replaced by a
complex function that handles the "calculus" of
such values in a reasonable and consistent way.
How much simpler—and mote efficient—to have
a general facility with a consistent calculus built
into the interpreter.

I think complex numbers provide a case in
point. Many ate the people who wrote suites of
functions to deal with complex numbers as
ordered pairs (¥ x2 arrays). Is there 2 single one of
them who has encountered the ptimitive
implementation of complex numbers in APL2Z,
Sharp APL (including SAX) or J, who would
prefer to use—and extend—his old function
suite? I doubt it. The advantages of the primitve
mmplementations are too great.

An Array-Oriented (APL) Wish List

Operators

In proposing new operators, I'll start with a
simple pair, what I'll call "Pad" and "Trim".

Pad & Trim

Every place I've ever programmed has had a
function to catenate two atrays and guarantee that
the result was two dimensional, with the one
argument above the other and the "smallet” one
padded with fill elements to match the width of
the "larget”, and treating both vectors and scalars
as one-row matrices’.

I've seen mote complex utilities to handle a
similar operation on arrays of arbitrary rank. Less
frequent have been the "opposite" utilities, which
tdimmed the larger array to match the shape of the
smaller one (on all dimensions but one). I've also
seen code to perform similar "justification” of two
arguments before addition, multiplication, etc. I've
long thought that a monadic operator—actually a
complementary pair—would be a more sensible
way to handle such enforcement of conformability
in a general way. In A (predecessor to A+), I even
wrote my own operators to do just that.

Is it worth it?

Well, I wouldn't be proposing such operators
if I didn't think so. I've already noted that while
the most common use of such an operator would
seem to be with catenation and to pad the smaller
argument to be conformable with the latger, other
potential uses are not unknown. Anothet
possibility would be with the monadic function
known as "mix" (+) in Dyalog APL and as "open"
(>) in J. Currently Dyalog's "mix" automatically
pads lengths but not ranks, while J's "open" pads
both. But what if the ragged lengths (or ranks)
were a mistake? I think it would be better if the
default were to signal length and rank errors, but
with the possibility of ovetriding that behavior
with the Pad (or Ttm) operator. Will the
repertoire of uses expand if Pad and Trm are
implemented as operators? Perhaps not, but is
lack of ability to predict extended generalization
really a good argument against implementing
something useful?

That's a rhetorical question, not because I
think it has only one answer, but because I'm sure

different people would answer it differently. Sharp

1 Depending on the particular implementation of this
utility, arguments of rank greater than two were often
either reshaped to two-dimensional or truncated, so
that only one plane was included in the result.

41

Proceedings of the APL 2001 Conference

APL and] have implemented determinant as
monadic versions of inner product with — and x
(* in J). While any other functions can be used in
the place of - and x, I'm only aware of one other
pair (+ and x) that are considered to have a
meaningful interpretation, and I'm not even sure
how that is used. Is it then wrong that they
implemented this facility? You may disagree, but
in my opinion, absolutely notl

Perhaps a more relevant example would be g,
which is essentially a souped-up string search
function. The fact is that string search utilities
were so universal that it didn't make sense zof to
have it as a primitive, for both increased effidency
and simplification of code. I think the same is true
of Pad, and for the sake of symmetry and
generality it makes sense to include its
complement, Ttim, as well.

Not as simple as it sounds

Another reason for wanting these operators as
prmitives is that implementation is anything but
simple. Exactly how the shapes should be adjusted
depends on the functon. With scalar functions,
it's easy. Pad, e.g., should just insure that both
arguments are the same rank as the greater of the
two and that the length of each axis is also the
preater of the rwo. Well, it's not quite that easy,
since one might argue that scalar (or singleton)
extension should still hold, though one might
equally well arpue that it shouldn't. And what
should one do if the ranks of the two arpuments
differ by more than one? Should the leading or
trailing axes be matched, or should axes of the
same length and ordering be considered equiva-
lent? Hard decisions.

With non-scalar functions, things get even
more difficult. With catenation, examining existing
utilities should suggest which conventions should
be adopted, i there seems to be a common
standard. Otherwise, decisions would have to be
made, as has been done in the past with such cases
as 0+0. Similar, but not necessarily identical,
decisions would have to be made in connection
with the various other non-scalar functions. Then
there's the question of what to do about derived
and user-defined functons.

The Rank operator

While I happen to think that the rané
operator, as implemented in Sharp APL and], is
useful in its own tght, it might also provide a
simple solution to some of the above difficulties.
In these dialects of APL, the concept of function
rank defines in a comsistent way how the

42

application of functions, even derved functions,
extends to arrays of any rank. This same principle
should hold with functions derived by these new
operators. And while it is not in general possible
to derive the rank of a user-defined function,
application of the rank operator to such a function
will define its behavior.

I won't go into detail here about the use and
function of the rank operator, since they are well
documented elsewhere. But I will say that I think
its usefulness—independent of Pad and Trim—is
such that it should be an element of every APL
implementation, even those that differ from Sharp
APL and J in other fundamental respects. And
while it is easy enough to simulate using nested
arrays as an intermediate, that approach has
serious inefficiencies as compared to the rank
approach.

Fill

Let's assume we've implemented Pad and
Trm, and that I want to do something like 4
+Pad B. With any new elements as zeto, the
cotresponding elements in the result will simply
be the elements that existed wherever there was an
unmatched element in the argument. That seems
fine enough, but what if I want A xPad B? In
that case, all the corresponding result elements
will be zero. In order to have the unmatched
values passed unaltered to the result, the fll
elements should be 1, not 0.

To me, this is nothing new. Many is the tme
I've wanted to be able to specify a fill element
other than the default. Instead, I have to write
contorted code to substtute some other value for
the O's (usually, though sometimes for blanks ot
enclosed elements) before I can proceed with my
computations. An obvious answer is to have an
operator which allows one to specify the fill
element(s). I'll call that operator Fill.

In its simplest form, the Fill operator would
take a scalar value for its second operand, eg., 1
instead of O for filling nuineric arrays. But with
nested arrays, one should really be able to specify
separate fill elements for each element of the
nested structure, with pervastive application where
the structure of the operand is not as deep as that
of the argument array(s).

Another possibility would be to allow
specificaton of a vector of different fill elements
for filling the new elements in a vector with
expand, overtake, or Pad. But if we go that far,
why not allow specification of different fill
elements even when argument(s) and result are
not vectors? The difficulty is, of coutse, that the

Jim Lucas

Proceedings of the APL 2001 Conference

region to be filled will probably not be rectangular.
I propose that in this case (and perhaps even in
the rectangular case), the fill operand should
simply be a vector, with the only conformability
criterdon being that the total number of elements
should be the same as the number of new
elements created.

Rest

However, there could be some difficulty in
determining the number of fill elements needed by
the Fill operator. Well, how about another
operator? I'll call it Rest. Used in conjunction with
a selection specification (e.g., take), the result
would be the complement of the selection. If that
complement is rectangular, it should retain its
shape (since one can always explicitly ravel it), but
otherwise it will be a vector, with the elements in
the same order as they were in the original
argument. E.g.,

1 3tRest 3 3p19
4 5 6
7 B8 9
2 24Rest 3 3p19
3 6 78 9

One could thus construct an atray and use
Rest to extract from it precisely the elements
which would be needed by Fill. The simpler, scalar
specification of non-default fill elements could
then be considered an example of scalar extension.

Control Structures

It's generally important in APL to avoid loops
where possible, and a standard way of doing this is
to substitute an "if' construct with a "where"
construct. E.g., to add one to those elements of an
array A which are preater than zero,

A<A+A>0

This actually performs addition on every
element of A, but by adding zero to some
elements, the result is the same as if the addition
were performed only where the condition is true.

Now that some APLs have implemented
control structures, there is some tendency to use
an :If structure in a :For loop to accomplish the
same putpose.! Because of the repeated
interpretation of the code in the :For loop, this

! This seems to be particularly prevalent among those
for whom APL was not their first programming

language.
An Array-Oriented (APL) Wish List

process is much less efficdent than the above
"APL-style" approach2.

The problem with control structures is that
they simply aren't array oriented. While an
expression like the above could be contained
within an :If clause or a :For loop, the decision
process is all or nothing. The only way to apply an
:If condition separately to each element of an atray
is to introduce a looping structure, which is
inherently inefficient. Instead, I propose a new
operatot.

Where

This operator would apply its function
operand eachwise only on those cells of the
derived function's argument(s) corresponding to
1's in the Boolean operand, which must be
conformable with the argument(s). The elements
corresponding to zeros would be passed
unchanged to the result. Thus, the above APL
expression could be rendered as

A«<1°+ Where (A>0) A n the o is
composition, in Dyalog APL

In this example I've deliberately wused
composition to tum the 1+ into a monadic
function and avoid the problem of deciding which
argument should have its elements passed to the
result in the dyadic case. Obviously, either the left
or right argument will have to be selected as the
one that always gets used. I suggest that it should
be the rght arpument, since that's the only
possibility in the monadic case.

More complex examples

Plus is much too simple a function to demon-
strate the real usefulness of Where. It could also
be wused with derived functions, and in
combination with the Rank operator, it should be
possible to use it reasonably in conjunction with
non-scalar functons and even user-defined
functons,

A question of efficiency

With ptimitive and even derived functions,
the interpreter should be able to skip processing
of those elements which are not selected by the
operand. But what about user-defined functons?
Surely, the operator can't be expected to trace
complex internal logic and execute only those
parts that are relevant to the selected elements.
No, but it can execute the function with the full
atray argument(s), then replace those elements of

2 [Editor’s note: Some implementations do not re-
interpret loop bodies in such cases)

43

Proceedings of the APL 2001 Conference

the result not selected by the operand with the
original argument values.

This replaces the inefficdency of re-
interpreting the function for each element of the
argument(s) with the lesser ineffidency of
generating "unnecessary” result values. Of course,
one must beware of functions with side effects.
The each-selected-element approach could still be
forced by using the Rank operator.

Function arrays and Which

If one had function arrays, then one could use
a vector of functons instead of just a single
function as an operand to Where. The array
operand could then be composed of indices into
that vector, indicating which functions should be
applied to which elements of the argument(s).
Extended in this way, the operator should
probably be called Which, rather than Where. 1
suggest that origin-1 indexing be implied, with a
zero operand value indicating that the argument
should be passed unchanged, as with the Boolean
condition for Where.

"Undefined"” as a "Value"
The rationale

It is useful and even important to have a
means of specifying nothing, ie., the lack of
sommething. Zero measures the lack of quantity.
Empty arrays are different; they represent objects
that have form (or structure), even though they
have no content. But so far in APL we have no
way of representing the lack of a value or an
object, except by the lack of representation.

We can use [ONC on a specific name to
determine whether or not it has a value. However,
there are circumstances in which we not only want
to know if a name is defined, but we want to use
that information to control whether we supply a
value in another context.

In my experence, the most common such use
is where a subfunction is called monadically or
dyadically depending on whether the function
calling it was itself called monadically or dyadically.
Wouldn't it be simpler if instead of reporting a
VALUE ERROR, we could just call the
subfunction dyadically at all times, but have it
interpreted monadically if the name of its left
argument is undefined?

There are, however, circumstances wunder
which we would want that VALUE ERROR, even
if it's just an event value in a2 heterogeneous array.
It would therefor be helpful to have "undefined"
itself as a "value”.

44

The details

The first aspect of implementing "undefined"
as an attrbute or "value" is that it can be
associated with a name. One way this can be done
is by simply giving all localized names an initial
value of UNDEFINED, unless or until another
value is assigned to them (or passed, if they are
intemal argument names). This convention would
not need a separate symbol or notaton for the
UNDEFINED "value". In some circumstances
(e.g., being used as a left argument to an
ambivalent function) the use of such names would
not generate an error, but in others cases (e.g,
being used as a right argument to a primitive
function) it could still generate a VALUE ERROR.

By using such explicitly-undefined named ob-
jects, one could build compound objects (atrays)
in which some items ate defined and others are
not. But if we want to be able to do that, we will
certainly want to be able to create such arrays even
in situatons where an UNDEFINED named
object doesn't exist. For this, we would need a
notation, a symbol, to tepresent that "value" as a
ptimitive constant. I would like to propose the use
of o ("jot"), partly for its graphic simplicity and
partly because of its current use in outer product.
Unfortunately, at least one APL has already
assigned it another, potentally incompatible
meaning.!

Additional uses

Missing data

One obvious use of UNDEFINED as a value
is to indicate lack of data. Actually, this is not as
straightforward as might first appear, because I'm
proposing that an UNDEFINED value as a left
arpument should invoke the function's monadic
case. E.g., UNDEFINED+2 should give 0.5, and
not UNDEFINED. (For the latter sort of
behaviot, see my above proposal for an event data
type.) Nevertheless, there are undoubtedly
contexts in which it would make sense to use
UNDEFINED to represent missing data.

Thom (format)

Thomn (¥) can be used dyadically for
formatting numbers, but not for formatting
characters. This presents a problem if one wants
to use dyadic thorn on some (humerc) elements
of a nested array, but monadic thorm on some
(character, but possibly also numeric) others.
Being able to supply a value of UNDEFINED as

! In Dyalog APL, the jot is now used as 2 composition
operator

Jim Lucas

Proceedings of the APL 2001 Conference

a left argument for those elements where monadic
use is desired seems reasonable.

Grade

Similarly, prade on numerics can't take a left
argument, but on characters it must. To specify a
mix of monadic and dyadic use, left argument
values of UNDEFINED would force monadic
use.

From (indexing)

Aside from distinguishing between monadic
and dyadic use of functions, there is one other
very important APL context where the simple
presence or absence of a value is significant:
indexing. One of the difficuldes in replacing
bracket-semicolon indexing with an indexing
function is finding a way to tepresent the case of
an elided axis, ie., a simple way to specify "all
indices" along an axis without explicitly
enumerating them. Yet what could be simpler
than specifying a value of UNDEFINED, an
explicit equivalent of elision?

Ambivalent operators

Unlike functions, operatots in APL are either
monadic or dyadic, but not both. The reason for
this is notational, not mathematical. Allowing both
operators — which have long left scope — and
functions — which have long right scope — to be
ambtvalent would require mote complex syntactic
rules to insure unambiguous parsing. However, an
operand with an UNDEFINED value opens up
the possibility of essentially monadic use of
otherwise-dyadic operators.

I won't propose here monadic varants for
existing primitive dyadic operators, but I will
suggest that there is interesting potential in those
APLs in which user-defined operators are
possible. And I will point out that APL's outer
product appears to be just such a construct, with
o ("jot") as the symbol for UNDEFINED. In
fact, I think jot would be an ideal symbol, partly
because of this long-standard use.

Comments on Some
Functions

Nub and Nubsieve

Dyalog APL has implemented the monadic
function Unique, which returns the unique
elements of its argument. It only works on
vectors. A user-defined utility is stll necessary to

An Array-Oriented (APL) Wish List

eliminate duplicate rows from a matrix. On the
othet hand, J's Nub ptimitive feturns unique
subatrays of rank one less than that of its
argument, e.g., rows of a matrix, planes of a 3-D
array, as well as scalar elements of a vector. I find
this extension to be invaluable, and I think every
APL should implement it

For pgreater versatility, they should also
implement Nubsieve, as found in J and Sharp
APL (and which is similarly extended to arrays of
rank >1). Nubsieve tetums a Boolean vector
result, which will select out the nub when used as
left argument to compression along the frst
dimension. Nubsieve is useful for applying the
nub-generating selecion to additional data which
may parallel that data used in defining the nub.

Without

I believe that all modeth APLs have now
implemented this primitive, which removes from
its left argument all occurrences of the elements in
its right argument. As with Nub and Nubsieve,]
and Sharp APL have extended this function to
arrays of higher rank, and I think this extension
would be a valuable addition to any APL.

I also believe this primitive should have a
boolean sieve-conterpart—like Nubsieve for
Nub—for preater versatility. Even Sharp APL and
J don’t currently include this extension, but I think
it's even more important than Nubsieve. If one
wants to eliminate certain elements or subarrays
from one varable or dataset, then it makes sense
that one would want to be able to select
corresponding data—or make a corresponding
exclusion—from parallel data.

In Conclusion

I have proposed hete a motley, but mostly
mutually independent, group of enhancements to
APL as it currently exists. With one exception, I
have not proposed particular symbols for them.
Though that is an impottant topic, its discussion
would distract from the teal purpose of this
discussion, which is the proposed functionality.

Space and time have not permitted me to
present the full detail of my thoughts and analyses
regarding these proposals, but I hope that they
stimulate a lively discussion. I also hope that

before too long I may see some of them appear in
APL.

45

Proceedings of the APL 2001 Conference
[4] Lucas, Jim, "Artay Oriented Exception Handling”,

References: APLS5 Conference Proceedings (APL Owots Onad,
[11 R Bemecky; APL84 Conference Proceedings vol. 15, no. 4), pp. 1-4.
(APL Owote Oxad, vol. 14, no. 4), p.53 [S] Lucas, Jim, "When Standard 'Datatypes’ Aren’t
(21 R. Bemecky & R Hui; APLY91 Conference Enough", APl -uutiser 2/ 2000 (APL. News 2/ 2000,
Proceedings (APL QOwote Ouad, vol. 21, no. 4) p.39 publication of FinnAPL, Helsinki, Finland).

[3] J. Brown; APL84 Conference Proceedings (4PL.
Omnote Ouad, vol. 14, no. 4), p. 81

46 Jim Lucas

