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Everything is either trivial or undecidable.—Mathematician's joke.

ABSTRACT

APL derives great expressive power from seemingly trivial features,
such as empty arrays, but there is still resistance to the implementa-
tion of the elementary trivial functions including left /stop - and
right/pass +, which perform no calculations. This paper defines
functional triviality; describes trivial functions and operators and
their uses; discusses the mathematical basis of their expressive
power; and defines new trivial functions and operators. It urges im-
plementation of several of these functions as primitives for reasons
of efficiency and expressiveness, and considers their efficient im-
plementation via idiom recognition.

Introduction: Trivia and Triviality Defined

Definition 0. The definitive collection of APL Trivia is the Trivial
Pursuit card deck produced for APL86 [Zi86]. For example, in the
General category, card 78: “According to the draft ISO APL stan-
dard, what is the name for the function in the expression R++W?" The
answer is “conjugate”, and in APLs without complex arithmetic itis
atrivial function, the identity function with domain all real numbers.
It is this sort of trivial function that we are pursuing here—functions
and operators that do neither arithmetic nor array manipulation.

Definitions 1 and 2, “wivial 1. Of little importance or significance.
2. Ordinary; commonplace.” [Am82]

Donald McIntyre has frequently drawn attention to the impor-
tance of certain trivial features of APL [McI83]. Comparing the use
of empty arrays with the conceptual advance represented by the
invention of the 0 in India, he has gone on to praise even more APL's
ability to return, not merely a 0 or an empty answer, butnothing at all
as the result, for example, of 211,

Edsger Dijkstra placed a real value on the trivial programs skip
and abort in {Di76). The first succeeds for any input that is
acceplable as output simply by doing nothing. In his notaticn for the
weakest precondition wp(skip,R)=R, which is to say that any propo-
sition that is true before a skip remains true afterwards. The second
fails on all input. Aborting the program cannot result in any statement
about the computation becoming true, so (wp(abort,R)=F). In other
words, if there is an Abort statement anywhere in a program then
correct execution is guaranteed only if that statement can never be
executed. Implementations of skip and abort appear below.
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At first sight the functions to be discussed here appear to be
useless in programming, and of slight value in teaching, fulfilling
definition 1. For example, several authors list all 16 possible truth
tables for two variables, and point out that six of them are trivial and
have no corresponding function in APL, while the other ten are all
important, and are represented by the four logical and six comparison
functions. [Be87] is arecent example. This paper is a contribution to
fulfilling definition 2 by encouraging the implementation and routine
use of these and other trivial functions and operators.

The determination of what is trivial in sense 1 is based on
expectations of usage, not just on the mathematical definitions. For
example a similar analysis of the logical primitives produced a some-
what different result in the construction of Loglan, a language
designed to make mathematical logic speakable [Br75, pp. 272-279].
Fourteen of the possible truth tables were “implemented” in Loglan,
that is given corresponding words. The sentence forms

pPugq whether g, p
pnuuq whether p, q
pnougq whether q, not p

p nuunoi q whether p, not q

correspond to common forms in natural languages, where p and q
stand for any Loglan sentences and *'u”, “nuu”, “nuunoi” and *nou”
are Loglan words. For example, “Mi gotso u tu gotso.” is Loglan for
“I’m going whether you go ornot.” These four words also correspond
to the left and right functions of Dictionary APL and their negations.
The constant-valued predicates T: 1 and F': 0, applied to two argu-
ments, are the remaining two of the 16 possible Boolean functions.

Consider these expressions in Dictionary APL [Iv87] or SAX
APL, ordered by increasing complexity of results:

Table 1
Trivial expressions
+0 <+ DOMAIN ERROR
21 e
'l
- =
(me0) w «+ m
a (m°0) w «+ m
W e+ W
AW «+ W
QW «= o
fwesmfw
fmweswsfm
O fcwesrwfa
fgg W > f g w
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The arguments @ and w are scalars in the third and fourth
examples and the monadic rank of g in the 1ast example is unbounded.
In each case the answer is no more than we started with, or even less.
Since they accomplish nothing we can properly say that these
expressions are trivial (sense 1).

What is gained by writing the expression on the left in place in
the value it produces on the right? Well—by itself, nothing. But then,
what is the value of writing any computer program if you already
know its results? Who, for example, writes 2+2 in APL as anything
but a trivial exercise to introduce APL to novices? Who writes 0v1?
We write programs to produce results that are more complicated or
atleast larger in volume than the program, or to carry out calculations
100 tedious to do by hand.

So where do these functions and operators produce results that
are not trivial? In combination with other functions and operators or
features that have or induce side effects. For example, v by itself
prints avalue, and v+w suppresses printing. So —v+wdoes something
different, both assigning and displaying the value. Naturally this can
also be done as [Jev«w.

The purpose of this paper is to examine this set of trivial APL
functions and operators. They have been neglected because their op-
erations were thought to be trivial (sense 1) and not worthimplement-
ing. Some have been discussed in various papers, especially (Iv87]
and [Iv89], and some have been implemented, notably the commute
operator ~ in Dyalog APL [Dy82], and some Dictionary APL
primitives or variations in versions of Sharp APL [Sh89]. Iverson has
remarked on their individual utility but not on the general principal
of triviality in mathematics, which underlies their importance.

TRIVIALITY IN APL
For our purposes triviality can be defined thus:

Definition 3. An APL function or operator is completely trivial if it
can be completely defined by the shortest possible identity c++ezxp,
where ¢ is null, anerror, an expression of asingle character, oraname
ordescription of asingle APL object, and exp is of the simplest kind,
suchasa f w, Alesstrivialclass allows simple expressions on either
side of the definition, but not the use of any other functions.

This is not a mathematically precise definition, but a precise
definition could be made if there were good reason for it. Coarse
distinctions suffice since it is the trivial functions themselves that
concern us and not their exact degree of triviality on some necessar-
ily arbitrary scale.

The extreme form of triviality for functions consists in produc-
ing results that do not depend on the values of arguments (constants
or null), and a slightly less trivial class returns an argument un-
changed. The most trivial function of all was described in [Ar83]—
aniladic function without result. In direct definition, such a function
can be written n£1 f: &' ', It is exactly Dijkstra's skip. An almost
equally trivial function is fa<:+0, which implements Dijkstra's
abort.

An ambivalent nil function with arguments, ¢ : £0Pw (or the
monadic stop function in SAX APL, written -w), the constant zilde
§++10 in some dialects, the constant logical functions £:4 or £:0
and other constant-valued functions are the next most trivial, fol-
lowed closely by the identity function + (we—+w), the identity
operator f++f id and the left and right functions < (a«ra-w)
and + (w+—aw), These are completely trivial as defined here.

The somewhat less trivial class includes the swap operator,
definedas a fc wew f a [Iv87] and the analogous commute
operator of Dyalog APL. Subscripting and other selection functions
are not trivial because, although they return unchanged elements of
one argument, they select them based on the other argument. Struc-
tural functions in APL are far from triviality but also derive much of
their importance from simple identities. For example ¢ and & both
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satisfy the relation x+—=# f . However neither is defined by that
identity. The mathematical functions are the least trivial primitives,
and system functions are in general totally non-trivial.

MATHEMATICAL TRIVIA

Mathematics is the study of the complex results of trivial definitions.
Building the loftiest structures firmly on the slightest possible
supports has been a goal of practitioners since well before Euclid.
The attempt to reduce all of mathematics to the trivial, i. e. to axioms
and rules of inference which could be accepted as obvious, was a
major part of mathematics from Euclid to Hilbert. The program has
failed in its grand goal of proving the truth or at least the consistency
of mathernatics, but it has succeeded admirably in demonstrating the
importance of trivia. Trivia such as identity elements and empty sets
occupy an important and honored place in the foundations of set
theory and in algebraic structures including groups, rings and fields.

The definition of primitive recursive functions by Kurt Gédel
shows a masterful grasp of the trivial [G&31]. Two families of trivial
functions (the constant 0-valued functions of one or more variables,
and the projection functions whichreturn one of the arguments), plus
the minimal non-trivial arithmetic function s:a4+1 suffice as a
foundation for all of mathematics together with substitution and
Tecursion.

The branch of mathematics that makes the most of trivia is
Curry’s combinatory logic [Cu58]. A combinator is, approximately,
atrivial operator. The primitive combinators are defined by the trivial
relations listed in Table 2. These also suffice to define all of
mathematics. In particular Curry showed that any computable func-
tion can be expressed entirely in this set of combinators with no
variables.

Each of these combinators corresponds somewhat to a Diction-
ary APL function or operator, as also shown in Table 2, although
combinators are more general. A combinator can be applied to any
combinator expression, whereas an APL function can only be ap-
plied to an expression that returns an array value. Even in the most
liberal APL product there are no operators that apply to operators to
create new operators, although the idea has been tried in experimen-
tal versions such as [Gf89].

Table 2

Primitive combinators
Name Definition Description APL analog
I Ia=a identity e
K Kab=a left Qw0
C Cabc=ach swap a fcwew fa
B B(ab)c=abc composition Bgw—fgw
A\ Wab=abb duplicate fSwe—wfw

Another useful technique from combinatory logic is to attach an
argument to a dyadic function to produce a monadic function, as in
lines 9 and 10 in Table 1, using Iverson’s with operator. This
operation is called currying, after combinatory logic founder Haskell
Curry. The most familiar use of currying to APLers is the definition
of the trigonometric functions as special cases of O using functions
snalogous to SIN: 10w.

USES OF TRIVIALITY

The assumption that trivial functions are useless comes as we have
seen from viewing them in isolation. A trivial function or operator
adds nothing to asimple expression. But in combination they become
quite powerful, just ascombinators are trivial individually but suffice
for all of mathematics.

APL9S0



The simplest use of trivial functions is in conjunction with side
effects of expressions, especially assignment and display. Thus

Fa+exp

which Iverson used extensively in the Dictionary, or

+a+exp
(if complex arithmetic is not implemented) are equivalent to
O«a~exp

As Iverson noted in the Dictionary, the left and right functions
can be used to provide the benefits of the non-functional comment
and statement separator notations, but with greater flexibility and
right-to-left execution. Reading left as “where” it is possible to
unravel quite complex expressions into sequences of short, digest-
ible, idiomatic APL, and incidentally to remove parentheses to any
degree desired. [Ch89a] points out that the left function and direct
definition allow any computable function to be expressed in one line
of APL.

Here is the substitute for the diamond separator

iy 8 1-Hz+«®y

and the next example is the substitute for comment. It requires quote
marks, but it also allows comments in the middle of a line.

z+'comment'rexp

An indication that a trivial function is needed is the frequent
idiomatic use of some other useless expression such as

0 OPexpl,OPexp2

which could be written more clearly with the monadic nil and dyadic
left functions as

cexpl-exp?
or with dyadic nil as

expleexp2

Other idioms have been used in place of the nil function, such as
assigning a value to a variable and never using it. This is wasteful of
storage and confusing to readers and optimizing compilers.

There is a class of new operators that apply their function
operand in some characteristic pattern, where itmay be useful tohave
the pattern and in effect no function. Cut, defined in the Dictionary
of APL [Iv87] and implemented in SAX APL [Sh89] is a good
example. It breaks a vector into subvectors and applies its operand to
each, but sometimes breaking the vector is sufficient. For example:

T4%<'This i8 a test!
Thie 18 a test
T4%+'This i8 a test
This
is
a
test

In the first case the box function is applied, resulting in a vector
of boxed vectors. In the second, using an identity function, a
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rectangular array results when the vectors are catenated after being
brought to the same shape.

Trivial operators will come into their own when arrays of
functions and operators as in Functional Programming [Ba78],
NIAL [Je85] or Sharp Australia’s APL/HP [Ho86] are accepted, or
when more general operators are implemented (such as a LISP-like
AorLandaeta’s lift elevator[La86, La88]), and the expressive power
of compound operator expressions is thereby greatly increased. Pro-
posals for functions arrays go back to Iverson’s first book [Iv62] and
have been renewed by Benkard, Bunda and others.

The possibilities for operators with function vector arguments or
operator vector arguments are far more varied than for operators
limited to two single operands. Consider a simple example. We take
two arguments, & and @, together with the monadic function £ and the
dyadic functions g and h. There is no problem at all in forming the
array (£ a)(w g a)(a h w),writtenhere in strand notation, in
any nested APL, although syntaxes differ. There is also no problem
writing a function that takes the two arguments and returns this result:

foo: (f a)(w g a)(a A w)

But we cannot, in most APLs, write an expression for such a
function. Let us suppose then that we have a syntax for function
vectors (and here I choose to use strand notation again) and define the
trivial Left operator

Va fLw
[1] fa
v

Now the function vector (f L) (g <) h does just what
we want, where ¢ is the swap or commute operator :

a (f L) (ge) how
(a L wi(agew(ah w)
(f a)(w g a)(a h w)

A Right operator is equally trivial and equally useful. Indeed the
operator analogues of all of the trivial functions are immediately
useful.

Other Trivial Functions and Operators

Itis auseful exercise to write outtables of all trivialrelations and then
play around with some of them. Another useful exercise is to see how
such primitives have been used in other areas, especially combina-
tory logic and functional programming. The completely trivial
functions with null or simple result have mostly been put to use in
some APL dialects, but & few remain unexplored and unexploited.

The constant functions have been particularly neglected. One
advantage of defining a function with a constant value is that it cannot
be changed by assignment. Recognition of the constant function
idiom permits efficient evaluation without function call overhead,
and can also allow pre-evaluation of functions that will always return
the same answer. This is known as “constant folding” in the design
of optimizing compilers (sec [Bu88)). A few frequently-used con-
stantsarepf :01,es*d,mazx:L/10,min:/10,andzi1de: 1 0.

This finishes off the gaps in the completely trivial function table
for functions with null or minimally complex values. The next level,
operators returning trivial combinations of their operands and argu-
ments, has not been thoroughly explored in APL, but some guidance
is available from combinatory logic and from the few cases that have
been tried.

Here is a table of the simplest cases. Uses for many of these
combinations are unknown today but may be discoveredlater, just as
uses for many of the 441 inner products of the old APL appeared
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many years after the general concept was defined, and many other
inner products are being discovered in nested APLs. The possibilities
are many, for monadic or dyadic functions as operands to monadic
or dyadic operators and producing monadic or dyadic functions as
results. For each column, results in some columns to the left are also
possible and many more complicated expressions are ignored.

Table 3
Trivial operators

fopw afopw fopgw afopgw
w fa gw @ fguw
J w afa rfgw fogw
W fw a fw grlfw agfow
rffw wfa wfgw gaofw
wffw affw wgisfw wfga

fwgw fwga

gwfw wgfa

wfwgw gwJra

wgwfw afaguw

o
3}

Iverson and McDonnell have found two combinators,
Sfgx=fx(gx) and dfghx=f(gx)(hx) to be valuable enough to suggest
implementing them as extensions to APL syntax, without any opera-
tor symbol {Iv89]. The defining identities, in APL infix notation
rather than the prefix notation of combinators, would be

(r g)w -

a(f glw
(f g hWw
a(f g hlw

w f g w
- a fgw
~— (fw) ghw
«— (a0 fuwgaohuw

The second of these (called dyadic hook) is the most trivial in ap-
pearance. Itallows expressions like ( -+ ) \wfor continued fractions.
The first (monadic hook) permits (+ v/)w,1 for generating
rational approximations to real numbers, where Vv is the greatest
common divisor function as in Sharp APL. Thus (+ v/).75 1is
.75 1+.250r3 4. A trivial hook operator can be defined as
Hook:: a fgw : 0=(ne'a' : w fgw
in an extension of direct definition with formal operands f and g.

The third and fourth forms (monadic and dyadic fork) create
function vectorsinthe form+, -, x , + (with multiple applications of
the same syniax), or compound functions such as <v= for £, or with
currying >"'0 A <""100. These forms are extremely useful and
cannot be represented directly using APL operators, since there isno
way to supply three operands. It would be necessary to write an
operator corresponding to each central function, supplying that
function implicitly. But this is multiplying entities beyond necessity
[Oc30]. Other notations for function vectors, hyper-operators and the
like abound in the APL literature. [Iv62, Ho86, Gf86, Je85] are
among the most notable.

Assuming aclass of objects that accepts functions and returns an
operator, which can be called a transform, we define a trivial fork
transform

Fork::: (o fw) Fagw : 0=DOne'a’ @ (w fw) F
wgw

in a further extension of direct definition. Here the fork transform

applies to the function H to produce a dyadic operator which in turn
creates an ambivalent function.
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Itis obvious that we do not want to implement all possible trivial
operators as primitives, if only because there are so many. Butitis
notnecessary to. The forms corresponding to the usual combinators,
and perhaps a few of the more complicated but powerful combina-
tors, would give a basis for producing any of the forms listed here and
alsomuch more complicated expressions. The trick is toidentify a set
which combines ease of learning (implying 2 small set of conceptu-
ally simple and regular forms) with expressive power (implying
theoretical completeness and a sufficient selection to make expres-
sions concise, as in other aspects of APL notation). These conflicting
criteria indicate that a period of investigation and trial are needed to
pick a reasonable set.

Alternatives

Trivial functions are trivial to implement in any APL. The
various nested array APLs with user-defined operators make it easy
to define a set of trivial operators and try them out. So there is no need
to rush into implementation. The operators can also be simulated in
flat APL using the technique of [Ch89b).

As usual, there is a tradeoff between cluttering up the workspace
with defined functions and operators and cluttering the reference
manuals, and there are serious questions of efficiency. Also as usual,
the problem of efficient implementation will be resolved when these
functions come into widespread use.

Proposals have sometimes been made for extensions to APL
syntax that would avoid the invention of new symbols, functions or
operators. Strand notation is a well-known example. The fork and
hook constructs of [Iv89] are others. [Bk90] gives references to
several more, including a notation for currying in the form (2+) as
implemented in NIAL, and a variety of suggestions for function
arrays. It also suggests a notation in which expressions involving
functions with the @ and w symbols can be treated as definitions of
*“nonce functions”. In the function vector example given earlier, the
function could be applied directly to its arguments in the form

A(fa)(wg a)ahw W

Nonce function vectors would save most applications of explicit
trivial operators. For example currying coud be done in the form
(2+w)w. This style would take some time to learn to read and is in-
consistent with direct definition, but the concept could be imple-
mented in some other syntax.

implementation

Several trivial functions and operators can be implemented so that
there is no time or space penalty for using them. In particular there
is no need to incur the overhead of a function call for functions such
as nil, left or right, or for identity functions and operators. Of course
most APLs use reference counts for arrays, so that array arguments
do nothave to be copied, but in these cases even the incrementing and
decrementing of reference counts can be avoided. Similarly a com-
mute or swap operator can be implemented in the interpreter logic
rather than as an operator call. These cases are just like the recogni-
tion of other idioms such as PP or / 1 P for which intermediate values
do not have to be materialized in the workspace.

The first function I define in any new I-APL workspace is left.
Thave begun to add right and nil, which I use less often. I don’t bother
to define fork, since it is as much work to use it as a simulated defined
operator as to write out the expressions it generates. Butif it were part
of the syntax, as Iverson has proposed, or even a primitive, I would
use it constantly.

Although there were several votes against them, the right and left
functions have been accepted in the working draft for the second APL
standard [1S090].
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Conclusions

The move toward adoption of left and right functions, and the begin-
nings of user-defined operators, in the proposed new standard is a
step in the right direction toward full support of APL trivia. The
trivial operators can be left as defined operators until there is more ex-
perience with them and with other alternatives, and with their inteer-
actions with function arrays. The stop function () of SAX APL or
a monadic nil (ew), together with dyadic nil (aew) would be
extremely useful additions to APL that would make many programs
more readable.
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