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Everything is either trivial or undecidable.-Mathematician’s joke. 

ABSTRACT 

APLderives great expressive power from seemingly trivial features, 
such as empty arrays, but there is still resistance to the irnplementa- 
tion of the elementary trivial functions including left /stop -I and 
right/pass t--, which perform no calculations. This paper defines 
functional triviality; describes trivial functions and operators and 
their uses; discusses the mathematical basis of their expressive 
power; and defines new trivial functions and operators. It urges im- 
plementation of several of these functions as primitives for reasons 
of efficiency and expressiveness, and considers their efficient im- 
plementation via idiom recognition. 

Introduction: Trivia and Triviality Defined 

Definition 0. The defmitive collection of APL Trivia is the Trivial 
pursuit card deck produced for APL86 [Zi86]. For example, in the 
General category, card 78: “According to the draft IS0 APL stan- 
dard, what is thename for the function in the expressionR+W?“The 
answer is “conjugate”, and in APLs without complex arithmetic it is 
a trivial function, the identity function with domain all real numbers. 
It is this sort of trivial function that we are pursuing here-functions 
and operators that do neither arithmetic nor array manipulation. 

Definitions 1 and 2. “trivial 1. Of little importance or significance. 
2. Ordinary; commonplace.” [Am821 

Donald McIntyre has frequently drawn attention to the impor- 
tance of certain trivial features of APL [McI83]. Comparing the use 
of empty arrays with the conceptual advance represented by the 
invention of the 0 in India, he has gone on to praise even more APL’s 
ability to return not merely a 0 or an empty answer, but nothing at all 
as the result, for example, of I * *. 

Edsger Dijkstra placed a real value on the trivial programs skip 
and aborr in [Di76]. The first succeeds for any input that is 
acceptable as output simply by doing nothing. In his notation for the 
weakest precondition wp(skip.R)=R. which is to say that any propo- 
sition that is true before a skip remains true afterwards. The second 
fails on all input. Aborting the program cannot result in any statement 
about the computation becoming true, so (wp(ubort,R)=F). In other 
words, if there is an Abort statement anywhere in a program then 
correct execution is guaranteed only if that statement can never be 
executed. Implementations of skip and abort appear below. 
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At first sight the functions to be discussed here appear to be 
useless in progr amming, and of slight value in teaching, fulf~ling 
deftition 1. For example, several authors list all 16 possible truth 
tables for two variables, and point out that six of them are trivial and 
have no corresponding function in APL, while the other ten are all 
important, and are represented by the four logical and six comparison 
functions. [Be871 is a recent example. This paper is a contribution to 
fulfillingdeftition2byencouragingtheimplementation androutine 
use of these and other trivial functions and operators. 

The determination of what is trivial in sense 1 is based on 
expectations of usage, not just on the mathematical deftitions. For 
example a similar analysis of the logical primitives produced asome- 
what different result in the construction of Loglan, a language 
designed tomakemathematicallogicspeakable[Br75,pp.272-279]. 
Fourteen of the possible truth tables were “implemented” in Loglan, 
that is given corresponding words. The sentence forms 

Puq whether q, p 
pnuuq whether p, q 
pnouq whether q. not p 
p mnmoi q whether p, not q 

correspond to common forms in natural languages, where p and q 
stand for any Loglan sentences and ‘It”, “nuu”, ‘huunoi” and “nou” 
are Loglan words. For example, “Mi gotso u tu gotso.” is Loglan for 
“I’m going whether you go ornot.“These four words also correspond 
to the left and right functions of Dictionary APL and their negations. 
The constant-valued predicates !Z’ : 1 and F: 0, applied to two argu- 
ments, are the remaining two of the 16 possible Boolean functions. 

Consider these expressions in Dictionary APL [Iv871 or SAX 
APL, ordered by increasing complexity of results: 

Trbk 1 
Trivial expressions 

+0 - DOWN ERROR 
AL'9 ++ 
+tt ++ 
-K&l- 

(mb'0) OJ - m . . a (moo) w - m 
t-U-0 

au4 - 0 
aa - a 

m”f fd - m f w 
f**m w - 0 f m 

afco-ofa 
f"'s w -fQW 
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The arguments a and w are scalars in the third and fourth 
examplesandthemonadicrankofginthelastexampleisunbounded. 
In each case the answer is no more than we started with, or even less. 
Since they accomplish nothing we can properly say that these 
expressions are trivial (sense 1). 

What is gained by writing the expression on the left in place in 
the value it produces on the right? Well-by itself, nothing, But then, 
what is the value of writing any computer program if you already 
know its results? Who, for example, writes 2+2 in APL as anything 
but a trivial exercise to introduce APL to novices? Who writes 0~17 
We write programs to produce results that are more complicated or 
at least larger in volume than the program, or to carry out calculations 
too tedious to do by hand. 

So where do these functions and operators produce results that 
ate not trivial? In combination with other functions and operators or 
features that have or induce side effects. For example, u by itself 
ptintsavalue,andu+~suppressesprinting.So+uciJdoessomething 
different. both assigning and displaying the value. Naturally this can 
also be done as Lb-vu. 

The purpose of this paper is to examine this set of trivial APL 
functions and operators. They have been neglected because their op- 
erations were thought tobe trivial (sense 1) andnot worthimplement- 
ing. Some have been discussed in various papers, especially [Iv871 
and [Iv89], and some have been implemented, notably the commute 
operator 5 in Dyalog APL (Dy82], and some Dictionary APL 
primitives or variations in versions of Sharp APL [Sh89]. Iverson has 
remarked on their individual utility but not on the general principal 
of triviality in mathematics, which underlies their importance. 

TRIVIALITY IN APL 

For our purposes triviality can be defined thus: 

Definition 3. An APL function or operator is completely trivial if it 
can be completely defined by the shortest possible identity cvezp. 
where c is null, an error, an expression of a singlecharacter. or aname 
or description of a single APL object, and ezp is of the simplest kind, 
suchasa f w.Aless trivialclass allowssimpleexpressionsoneither 
side of the definition, but not the use of any other functions. 

This is not a mathematically precise definition, but a precise 
definition could be made if there were good reason for it. Coarse 
distinctions suffice since it is the trivial functions themselves that 
concern us and not their exact degree of triviality on some necessar- 
ily arbitrary scale. 

The extreme form of triviality for functions consists in produc- 
ing results that do not depend on the values of arguments (constants 
or null), and a slightly less trivial class returns an argument un- 
changed. The most trivial function of all was described in [Ar83]- 
a niladic function without result. In direct deftition, such a function 
can be written nitf: A1 (. It is exactly Di$stra’s skip. An almost 
equally trivial function is fait : +O. which implements DiJitra’s 
abort. 

An ambivalent nil function with arguments, Q : AOPW (or the 
monadic stop function in SAX APL, written a), the constant zilde 
9-l 0 in some dialects, the constant logical functions t : 1 or f: 0 
and other constant-valued functions are the next most trivial fol- 
lowed closely by the identity function I- (w-w), the identity 
operator f-f 3d and the left and right functions -1 (a--KJ) 
and + (wt-~). These are completely trivial as defined here. 

The somewhat less trivial class includes the swap operator, 
defined as a fc w++w f a lIv87] and theanalogous commute 
operator of Dyalog APL. Subscripting and other selection functions 
are not trivial because, although they return unchanged elements of 
one argument, they select them based on the other argument. Struc- 
tural functions in APL are far from triviality but also derive much of 
their importance from simple identities. For example Q and B both 

satisfy the relation z++f f 2. However neither is defmed by that 
identity. The mathematical functions are the least trivial primitives, 
and system functions are in general totally non-trivial. 

MATHEMATICAL TRIVIA 

Mathematics is the study of the complex results of trivial definitions. 
Building the loftiest structures fumly on the slightest Possible 
supports has been a goal of practitioners since well before Euclid. 
The attempt to reduce all of mathematics to the trivial, i. e. to axioms 
and rules of inference which could be accepted as obvious, was a 
major part of mathematics from Euclid to HiIbert. The program has 
failed in its grand goal of proving the truth or at least the consistency 
of mathematics, but it has succeeded admirably in demonstrating the 
importance of trivia. Trivia such as identity elements and empty sets 
occupy an important and honored place in the foundations of set 
theory and in algebraic structures including groups, rings and fields. 

The definition of primitive recursive functions by Kurt Code1 
shows a masterful grasp of the trivial [Go3 11. Two families of trivial 
functions (the constant O-valued functions of one or more variables, 
and the projection functions whichretumone of the arguments), plus 
the minimal non-trivial arithmetic function 8:(3cl suffice as a 
foundation for all of mathematics together with substitution and 
recursion. 

The branch of mathematics that makes the most of trivia is 
Curry’s combinatory logic [CUSS]. A combinator is. approximately, 
atrivialoperator.Theprimitivecombina.torsaredefinedby thetrivial 
relations listed in Table 2. These also suffice to defme all of 
mathematics. In particular Curry showed that any computable func- 
tion can be expressed entirely in this set of combinators with no 
variables. 

Each of these combiiators corresponds somewhat to a Diction- 
ary APL function or operator, as also shown in Table 2, although 
combiiators are more general. A combinator can be applied to any 
combinator expression, whereas an APL function can only be ap- 
plied to an expression that returns an array value. Even in the most 
liberal APL product there are no operators that apply to operators to 
create new operators, although the idea has been tried in experimen- 
tal versions such as [Gf89]. 

Table 2 
Primitive combinators 

Name Definition 

: 
Ia=a 
Kab=a 

E 
Cabc=acb 
B(ab)c=abc 

W Wab=abb 

Description APL analog 

identity I-a-a 
left aiu-a 
swap apcwc+wfa 
composition ft5g-+fgw 
duplicate fWWfuJ 

Another useful technique from combinatoty logic is to attach an 
argument to a dyadic function to produce a monadic function, as in 
lines 9 and 10 in Table 1. using Iverson’s with operator. This 
operation is caBed currying, after combinatoty logic founder Haskell 
Curry. The most familiar use of currying to APLers is the definition 
of the trigonometric functions as specisl cases of 0 using functions 
analogous to SIN: low. 

USES OF TRIVIALITY 

The assumption that trivial functions are useless comes as we have 
seen hm viewing them in isolation. A trivial function or operator 
adds nothing to a simple expression. But in combination they become 
quite powerful, just as combinators are trivial individually but suffice 
for all of mathematics. 
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The simplest use of trivial functions is in conjunction with side 
effects of expressions, especially assignment and display. Thus 

rectangultu array results when the vectors are catenated after being 
brought to the same shape. 

t-acexp 

which Iverson used extensively in the Dictionary, or 

+a+exp 

(if complex arithmetic is not implemented) are equivalent to 

Trivial operators will come into their own when arrays of 
functions and operators as in Functional Programming fBa781, 
NML [Je85] or Sharp Australia’s APUHP [Ho861 are accepted, or 
when more general operators are implemented (such as a LISP-like 
k or Landaem’s lifi elevator[la86. La88]). and the expressive power 
of compound operator expressions is thereby greatly increased. Pro- 
posals for functions arrays go back to Iverson’s first book [Iv621 and 
have been renewed by Benkard, Bunda and others. 

ll+a+exp 

As Iverson noted in the Dictionary, the left and right functions 
can be used to provide the benefits of the non-functional comment 
and statement separator notations, but with greater flexibility and 
right-to-left execution. Reading left as “where” it is possible to 
unravel quite complex expressions into sequences of short, digest- 
ible, idiomatic APL, and incidentally to remove parentheses to any 
degree desired. [Ch89a] points out that the left function and direct 
defmition allow any computable function to be expressed in one line 
of APL. 

Thepossibilitiesforoperators withfonctionvectorargumentsor 
operator vector arguments are fat more varied than for operators 
limited to two single operands. Consider a simple example. We take 
twoarguments. a andw.togetherwiththemonadicfunction)andthe 
dyadic functions g and h. There is no problem at all in forming the 
array(f a>(w g a>(a h w),writtenhereinstrandnotation,in 
any nested APL, although syntaxes differ. There is also no problem 
writing a function that takes the two arguments and returns this result: 

foe: (f a)(u g @(a h ~1 

Here is the substitute for the diamond separator 

x14 8 l-r++@y 

But we cannot, in most APLs, write an expression for such a 
function. Let us suppose then that we have a syntax for function 
vectors(and hereIchoosetousestrandnotationagain)anddefinethe 
trivial Left operator 

and the next example is the substitute for comment. It requires quote 
marks, but it also allows comments in the middle of a line. 

VafLw 
Cl1 f a 

V 

An indication that a trivial function is needed is the frequent 
idiomatic use of some other useless expression such as 

Now the function vector (j’ L) (g c) h does just what 
we wans where c is the swap or commute operator : 

0 OPexpl,OPexpP 
a (P L) (g C) h w 
(a f L W(a g = +(a h ~1 
(f a)(w g a)(a h ~1 

which could be written more clearly with the monadic nil and dyadic 
left functions as 

oexpliezp2 

A Right operator is equally trivial and equally useful. Indeed the 
operator analogues of all of the trivial functions are immediately 
useful. 

or with dyadic nil as 
Other Trivial Functions and Operators 

explo exp2 

Other idioms have been used in place of the nil function, such as 
assigning a value to a variable and never using it. This is wasteful of 
storage and confusing to readers and optimizing compilers. 

There is a class of new operators that apply their function 
operand in some characteristic pattern, where it may be useful to have 
the pattern and in effect no function. Cut, defined in the Dictionary 
of APL [Iv871 and implemented in SAX APL [Sh89] is a good 
example. It breaks a vector into subvectors and applies its operand to 
each. but sometimes breaking the vector is sufficient. For example: 

Itis ausefulexerciseto writeouttables of alltrivialrelations andthen 
play around with some of them. Another useful exercise is to see how 
such primitives have been used in other areas, especially combina- 
tory logic and functional programming. The completely trivial 
functions with null or simple result have mostly been put to use in 
some APL dialects, but a few remain unexplored and unexploited. 

-ib’<‘Thi8 $8 U te8t' 

mi8 i8 4 te8t 

The constant functitms have been particularly neglected. One 
advantage of defining a function with a constant value is that it cannot 
be changed by assignment. Recognition of the constant function 
idiom permits efficient evaluation without function call overhead, 
and can also allow pre-evduation of functions that will always return 
the same WWQ. This is known as “constant folding” in the design 
of optimizing compilers (see pu88]). A few frequently-used con- 
stantsart~:01,e:*l,mcu::L/~0,~n:F/~O,andsZtde: ro. 

-1%'Thi8 58 a test 
!t%i8 

$8 

a 
test 

This finishes off the gaps in the completely trivial function table 
for functions with null or minimally complex values. The next level, 
operators returning trivial combiiations of their operands and argu- 
ments, has notbeen thoroughly explored in APL, but some guidance 
is available from combinatory logic and from the few cases that have 
been tried. 

Jrt the first case the box function is applied resulting in a vector 
of boxed vectors. In the second, using an identity function, a 

Here is a table of the simplest cases. Uses for many of these 
combinations areunknown today but may be discoveredlater, just as 
uses for many of the 441 inner products of the old APL appeared 
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many years after the general concept was defined, and many other 
inner products are being discovered in nested APLs. The possibilities 
are many, for monadic or dyadic functions as operands to monadic 
or dyadic operators and producing monadic or dyadic functions as 
results. For each cohtrnn, results in some columns to the left are also 
possible and many more complicated expressions are ignored. 

Table 3 
Trivial operators 

f op w afoPw foPgw afopgw 

w fa uw afgw 
feJ afa fQW fauw 
WfW of& QfW ogfw 
ffW wfa wfgw gofw 
wffw offw wgfw wfua 

fwgw fwga 
gwfw wgfa 
wfwuw uwffa 
wgwfw afagw 

etc. 

Iverson and Mc&mnell have found two combinators, 
Sfgx=fx(gx) and afghx=f(gx)(hx) to be valuable enough to suggest 
implementing them as extensions to APL syntax, without any opera- 
tor symbol fIv89]. The defining identities, in APL infix notation 
rather than the prefix notation of combinators, would be 

(f gbJ - c&J f g w 
a(f g)w - a f g 0 

(f g h)W - (f WI g h w 
a(f g hW - (a f w)g a h u 

Thesecondofthese (calleddyadic hook) isthemost trivial in ap- 
pearance. Itallowsexpressionslike ( -+ )\wforcontinuedfractions. 
The first (monadic hook) permits ( + v/) W, I for generating 
rational approximations to real numbers, where v is the greatest 
common divisor function as in Sharp APL. Thus ( + v/) .75 1 is 
.75 I+. 25 or 3 4. A trivial hook operator can be defined as 

Hook: : a f g w : o=bofaf : w f g w 

in an extension of direct definition with formal operands f and 0. 
The third and fourth forms (monadic and dyadic fork) create 

function vectors in the form + , - , X , + (withmultipleapplicationsof 
the same syntax), or compound functions such as <v= for 5, or with 
currying >“O A &‘lOO. These forms are extremely useful and 
cannot be represented directly using APL operators, since there is no 
way to supply three operands. It would be necessary to write an 
operator corresponding to each central function, supplying that 
function implicitly. But this is multiplying entities beyond necessity 
[Oc30]. Other notations for functionvectors. hyper-operators and the 
like abound in the APL literature. [Iv62, Ho86. Cf86, Je85] are 
among the most notable. 

Assuming a class of objects that accepts functions andreturns an 
operator, which can be called a transform, we define a trivial fork 
transform 

Fork::: (a f w) A a g w : o=Onofaf : (w f wl A 
wuw 

The fust function I define in any new I-APL workspace is left. 
I have begun to add right and nil, which I use leas often. I don’t bother 
to defme fork, since it is as much work to use it as a simulated defined 
opaatorastotiteouttex~ressionsitgenerates.Butifitwerepart 
of the syntax, as Iverson has proposed or even a primitive. I would 
use it constantly. 

in a further extension of direct deftition. Here the fork transform Althoughtherewereseveralvotesagainstthem,therightandleft 
applies to the function H to produce a dyadic operator which in turn funct.ionshavebeenacceptedintheworkingdraftforthesecondAPL 
creates an ambivalent function. standard pSO90]. 

It is obvious that we do not want to implement all possible trivial 
operators as primitives, if only because there are so many. But it is 
not necessary to. The forms corresponding to the usual combinators, 
and perhaps a few of the more complicated but powerful combina- 
tom, would give a basis for producing any of the forms listed here and 
alsomuchmorecomplicatedexpressions. Thetrickis toidentify aset 
which combines ease of learning (implying a small set of conceptu- 
ally simple and regular forms) with expressive power (implying 
theoretical completeness and a sufficient selection to make expres- 
sions concise, as in other aspects of APLnotation). These conflicting 
criteria indicate that a Period of investigation and trial are needed to 
pick a reasonable set. 

Altemathtes 

Trivial functions are trivial to implement in any APL. The 
various nested array APLs with user-defined operators make it easy 
to define a set of trivial operators and try them out. So there is no need 
to rush into implementation The operators can also be simulated in 
flat APL using the technique of [Ch89b]. 

As usual. there is a tradeoff between cluttering up the workspace 
with defined functions and operators and cluttering the reference 
manuals, and there are serious questions of efficiency. Also as usual, 
the problem of efficient implementation will be resolved when these 
functions come into widespread use. 

Proposals have sometimes been made for extensions to APL 
syntax that would avoid the invention of new symbols, functions or 
operators. Strand notation is a well-known example. The fork and 
hook constructs of [Iv891 are others. [Bk90] gives references to 
several more, including a notation for currying in the form (2+) as 
implemented in NIAL, and a variety of suggestions for function 
arrays. It also suggests a notation in which expessions involving 
functions with the a and w symbols can be treated as definitions of 
“nonce functions”. In the function vector example given earlier, the 
function could be applied directly to its arguments in the form 

A (f a)(# g al(a h W) W 

Nonce functionvectors would save most applications of explicit 
trivial operators. For example currying coud be done in the form 
(2~) W. This style would take some time to learn to read and is in- 
consistent with direct definition, but the concept could be imple- 
mented in some other syntax. 

Implementation 

Several trivial functions and operators can be implemented so that 
there is no time or space penalty for using them. In particular there 
is no need to incur the overhead of a function call for functions such 
as nil, left or right, or for identity functions and operators. Of course 
most APLs use reference counts for arrays, so that array arguments 
do not have to be copied, but in these cases even the incrementing and 
decreanenting of reference counts can be avoided. Similarly a com- 
mute or swap operator can be implemented in the interpreter logic 
rather than as an opaator call. These cases are just like the recogni- 
tionofothaidiomssuchasPPar/~Pforwhichintermediatevalues 
do not have to be materialized in the workspace. 
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Conclusions 

The move toward adoption of left and right functions, and the bcgin- 
nings of user-defined operators, in the proposed new standard is a 
step in the right direction toward full support of APL trivia. The 
~vialoperatoncanbeleftasdefinedoperatorsu thereismoreex- 
perience with them and with other alternatives, and with their inteer- 
actions with function arrays. The stop function (4) of SAX APL or 
a monadic nil (ow), together with dyadic nil (sow) would be 
extremely useful additions to APL that would make many pograms 
more readable. 
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