APL TEACHING BUGS

Howard A. Peelle
School of Education
University of Massachusetts

Amherst,

MA 01003 USsa

(413) 545 - 0496

) Murray Eisenberg
Department of Mathematics and Statistics
University of Massachusetts
Amherst, MA 01003 USa
(413) 545 - 2859

Abstract

This paper discusses "APL teaching
bugs", in three senses: (l) issues inher-
ent in the teaching of APL that confront
the instructor with difficult choices; (2)
potential mistakes sometimes made by in-
structors teaching APL; and (3) problemat-
ic aspects of the design of APL that are
especially difficult to explain. These
teaching bugs are presented as provocative
questions, but the "answers"™ are left to
individual instructors. By facing these
questions, teachers may make APL more com-
prehensible and hence foster its accep-
tance and growth.

Introduction
How should one teach APL, especially to

novices? Advice on teaching APL is hardly
lacking, whether it be statements of pre-

cepts (e.g., [2], (6], [8], [12], [13]) or
actual examples of APL pedagogy (e.g.,
{71, (81, [14], [17]). Such advice typi-

cally carries an explicit or implicit mes-
sage that the author's approach is the
correct way, at least for the particular
audience being taught. Before accepting
or rejecting any such advice, it would be
wise first to examine undogmatically some
of the issues involved.

In the first part of this paper, we
address a number of teaching issues (fo-
cusing on APL, of course) and the gquanda-

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

® 1985 ACM 0-89791-157-1/85/005/0086 $00.75

APL TEACHING BUGS

86

ries--or "bugs"--they present to students
and teachers alike. 1In the second part,
we expose some common practices that are
or, if carried to extremes, could be mis-
takes--"bugs"--in the ways instructors
teach APL. In the third part, we mention
a few problematic aspects of the design of
APL itself--"bugs"?--that pose substantial
difficulties to instructors who try to ex-
plain them.

While we pose problems and elucidate
potential flaws and pitfalls in teaching
APL, we do not recommend specific remedies
in this paper. For the students' sake it
may not even matter greatly which way some
of these problems are resolved by an indi-
vidual instructor! Perhaps what really
matters is that the instructor follow some
coherent approach. In any case, each in-
structor at least needs to be cognizant of
these issues and to confront them openly,
in order to debug and refine his or her
own approach,

Issues Inherent in Teaching APL

Let us begin with some general educa-
tional issues--not specific to APL, but
pertinent to teaching any programming lan-
guage (and, indeed, many other subjects).
For emphasis we express these and the oth-
er issues as dichotomies, whereas in real-
ity they entail entire continua of possi-
bilities. Not included here are issues
contingent upon audience or time alloca-
tion, much less any c¢laim about what is
"natural"™ to learn or teach.

Tutorial vs. Discovery:

Which overall pedagogical
appropriate?
directly (based
wisdom and

approach is
Present factual information

on what the instructor's
experience deem best for stu-

H. PEELE AND M. EISENBURG

dents to know)--or--let students explore
freely, experience errors, and develop
their own debugging techniques?

Logical Sequence vs. Ad-hoc Learning:

In what order should material be cov-
ered? Always build on previously mastered
material--or--present an overview first,
allow skipping around, give sneak pre=-
views, etc.? Is there any one best way to
learn how to program--or--are there multi-
ple, alternative learning paths, differing

from student to student? And, how much
does it matter where one starts?
For example, is it effective to begin

teaching about defined functions in APL by
showing briefly that they may take argu-
ments and return results, but defer thor-
ough coverage of that until after students
learn the mechanics of function editing?
Answers vs. Learning Skills:

Tell students the answers they want
when they ask--or--avoid giving direct
answers to their questions but encourage
them to develop 1learning skills, that is,
learn how to 1learn what they need when
they need it (cf. [(8]1)? Correct students'
programs for them (showing them shorter,
faster, or "better" ways) and thereby en-
sure success for them--or--just support
what they have done, as is, and let them
take responsibility for their own work?

Instructor Errors:

errors made
while teaching
dental, incidental, or contrived)--or--
strive for perfection, showing only the
best model of how it should be done?

Openly acknowledge
instructor

by the
(whether acci-

Use of References:

Have students avoid reference manuals
(which are usually not well-designed for
learning)--or--encourage students to learn
to use a reference manual (as in [8]) or
other sources? One pundit has said,
"S8chool is a textbook; life is a reference
manual." Should instructors then insulate
beginners from the rigors of using refer-
ence manuals--or--help them prepare for
the "real world" where a reference manual
may be the only printed information avail-
able?

Use of Computer:

Learn programming "hands-on", at a com-
puter or terminal-- or--acquire fundamen-
tals first by reading books and writing
programs (on paper or a blackboard)? Re-
call that APL was originally conceived as
a mathematical notation, not as an actual
computer programming language. Yet stu-
dents will eventually have to use APL on
real machines. Can postponing their first

APL TEACHING BUGS -87-

encounters with a computer mitigate the
distress of techno-phobic students?

Mathematics Background:

students' mathematical back-
ground--or--expect that programming (es-
pecially in APL) will help crystallize
their previous, perhaps muddled, mathemat-
ical understanding? Teach programming--or
--teach mathematics?

Rely on

Comparison with Mathematics:

Explicitly contrast the precedence-
free, unambiguous notation of APL with the
precedence-using, at times ambiguous nota-
tion of mathematics, perhaps denigrating
the latter--or--let APL notation speak for
itself, without reference to mathematics?

Comparison with Other Languages:

Deliberately compare APL with other
programming languages, e.g., BASIC, PL/I,
FORTRAN, Pascal, or LOGO, and connect to
the previous programming experience of
students~-or--tell them to forget what
they know about other languages and intro-
duce programming anew in APL?

Principles vs. Features:

Take a seemingly "theoretical" approach
by emphasizing the underlying principles
of the 1language, which guided its design
(APL. is array-oriented, variables have
shape as well as value, etc. [13])--or--be
"practical”™ by emphasizing the role of the
language's features and capabilities
(e.g., system functions} in getting quick
solutions to problems?

Algorithmic Efficiency vs. Creativity:

Pay careful attention to amounts of
time and space, symbol table size, etc.,
consumed by algorithms--or--suppress ques-—
tions of efficiency in favor of creative
algorithm development? Is it proper, for
example, to encourage a beginner to write
a recursive function for finding determi-
nants (using expansion by minors), when an
iterative solution (using row reduction)
executes more quickly? At a more basic
level, may a 1looping solution be tolerat-
ed, for example, to the problem of delet-
ing all blank rows of a matrix of names,
when a non-looping solution using compres-
sion is available? 1Is it true that "Inex-
perienced programmers should almost never
attempt to optimize"? [18]

Programming Style:

Teach elements of
style is inherently so idiosyncratic, let
it be developed individually? For exam-
ple, insist on a While-Do form, as in

style--or--because

H. PEELE AND M. EISENBURG

I+0
LOOP:+(N<I+I+1)/END

+LooP
END: ...
discern the

because one can more readily

loop's structure--or--permit a Repeat-
Until form, as in

I+l
Loop: ...

+(N2I+«I+1)/Lo0OP
when the novice prefers that for the prob-

lem at hand? (And, which of these two
forms should be introduced first?)

Next are a number of high-level teach-
ing issues which are especially signifi-
cant in relation to APL.

Variant and Enhanced Versions:

There are many different versions of
APL on the market, including several
microcomputer implementations and three

notable enhanced versions: IBM APL2, SHARP
APL, and STSC APL*PLUS, There are differ-
ences on many levels and of many kinds:
in underlying philosophies (e.g., floating
vs. grounded arrays), in functions and
operators available (e.g., a primitive
Each operator vs. a primitive Rank opera-
tor), in choice of symbols (e.g., Enclose
and Disclose), in system variables and
system functions (e.g., Execute Alternate
vs. Trap), in file handling (e.g., compo-~
nent files vs. shared variables), in no-
tation (e.g., Trace and Stop--[TRACE
'FNAME' in most versions, as in the draft
ISO standard, but still TAFNAME in some),
in whether a comment may appear on the
same line as an executable expression and
whether the statement separator ¢ is al-
lowed, and 1in specific forms and effects
of system commands (e.g., when to use
)SAVE WSNAME instead of just)SAVE), etc.

With so many differences, the gquestion
arises: Which APL should one teach? This
is. a real question which is usually re-
solved quickly by whichever one is avail-

able. Does this mean that APL must be
taught as a machine and implementation-

specific language (it wasn't designed that
way)--or--can some common core of APL be
taught? If your students are using one
particular version, should you stick ex-
clusively to that version to avoid confus-
ing them--or--should you expose students
to differences they will meet in case they
use other versions later? This issue cer-
tainly creates problems for APL students
and instructors (and especially for au-
thors of APL textbooks).

APL TEACHING BUGS

88

Array-Thinking:

"Thinking arrays" is often espoused as

desirable in APL programming (see [6],
e.g.). But, when should this be taught?

In the very first lesson--or--after the
student has seen non-array solutions and
can appreciate array-oriented solutions?
How should it be taught? Should students
be encouraged to devise a sequential solu-
tion first and then transform it into an
array-oriented solution ([l11] and ([13])?
Can array-thinking be taught--or only
learned? And just what 1is "array-think-
ing"? -

Readability vs. Efficiency:

. Define functions as c¢learly
ble, so that they may be read easily by
someone else (or yourself) later on--or--
define functions to run gquickly and econo~
mize on space? For example, should learn-
ers be réquired to use distinctive varija-
ble names, as in

as possi-

VAMOUNT+PERIODS COMPOUND RATE
--or--reuse conventional names, as in
VZ«A COMP B

to save space in the symbol table? And,
when should you explain the trade-offs
between readability and efficiency?

Idioms:

Furnish students with "cover functions"”
to name commonly used phrases--or--encour-
age recognition of "idioms"™ [12]? 1Intro-
duce such idioms early because they are so
useful, for example, ((VaV)=(1pV))/V to

select the unigue members of a
list--or--wait’ until students are in a
position to analyze the phrase into its
constituents? (See [8].)

Double~duty Symbols:

When should it be pointed out that many
symbols on the keyboard have dual mean-
ings? Introduce monadic and dyadic primi-
tive functions together from the start to
highlight the differences, even when some
might not be well-motivated or of immedi-
ately obvious utility (e.g., monadic + or
monadic |)--or--introduce monadic and dy-
adic forms well-separated in time, thereby
obscuring the connection between them?

Classifications:

APL has a rich
mixed functions,

taxonomy: scalar vs.
primitive vs. derived
functions, etc. (This has become even
more complex with enhanced versions--see
[1], e.qg.). When should such c¢lasses of
functions be distinguished: as soon as
examples appear--or--not until students

H. PEELE AND M. EISENBURG

have had the opportunity themselves to
experience what the distinctions mean?

Terminology:

APL terminology was carefully chosen,
in part to avoid computer jargon ([3],
(91). Should an instructor use official,
precise APL terms such as "function", "ar-
gument", "vector", and "matrix", which may
intimidate students who are not mathemati-
cally inclined--or--use colloquial, per-
haps less threatening terms such as "pro-
gram" (at least for niladic functions re-
turning no result), "input", "list"™, and
"table"? And what about all the esoteric
Greek and Latin terms, like "monadic" and
"dyadic" and "modulo"?

Some issues pervade the pedagogical
approach, that is, once an instructor de-
cides what to do and when, it has implica-
tions for the rest of his or her teaching.
(Such issues may be more critical in writ-
ing a book than in teaching a class!)

Higher-dimensional Arrays:

Introduce vectors, matrices, and higher
-dimensional arrays early to reveal their
underlying importance and thereby use them
in more powerful examples--or--postpone
higher-dimensional arrays until fundamen-
tal concepts and primitives are amply il-
lustrated with scalars? For example, in-
troducing vectors too early can have un-
toward consequences: 344 5 suggests 7 S
(see [4]); using matrices early forces the
issue of syntax with Reshape, as in (R,C)
pV as compared to 3 upV.

Direct Definition:

Introduce and use direct definition
form, because it is so concise, avoids the
complexities of the v-editor, and encour-
ages modular programming--or--don‘t, be-~
cause the a and w are additional, seeming-
ly cryptic, Greek symbols, because it just
adds another notation to learn, or because
the available system may not have DEF im-
plemented?

Comments:

Recommend generous use of comments in
all function definitions to instill good
habits of proper documentation and as an
aid to comprehension--or--encourage min-
imal or no commenting, because defined
functions are supposed to be short and
intelligible? Should students have to
learn to analyze functions without seeing
comments? Are comments in defined func-
tions crutches that fail to force extra
effort toward a clear style? Should an

APL function have to speak for itself?

APL Syntax:

APL TEACHING BUGS -89-

How early should APL syntax be formal-
ized? Should the instructor deliberately
hold off for as 1long as possible (as in
[14], e.g.), sgy by assigning intermediate
results to variables instead of forming
expressions with multiple functions, in
order to protect the student from disso-
nance with their former mathematical or
programming experience--or--get it over
with right away, admitting that APL is un-
usual but asserting that syntax is the
heart of APL?

Redundant Parentheses:

Encourage--or--discourage the wuse of
redundant parentheses in formulating APL
expressions? Redundant parentheses in ex-
pressions such as (4+B)x(C+D) can reduce
error and help readability by the uniniti-
ated. What about nested parentheses, as
in ((114pM)~1)¢M, which can be removed by
slight reformulation, as in (T1+114pM)OM?
Such extra parentheses might imply a lack
of APL sophistication. They entail a bit

of extra interpreter expense. Does the
maxim "Never teach what you (or someone
else) will later have to un-teach" (see

[2]) apply here?
Function Definition:

Which of the six forms of defined func-
tions should be introduced first? Niladic
functicns with no result because they are
simplest--or--functions with arguments and
explicit results because they are generic
and behave not only like APL primitive
functions, but also 1like mathematical
functions (cf. [13])? Does starting with
niladic functions with no result risk mis-
leading students into imitating that form,
or does trying to ameliorate the very real
difficulties involved in learning the
mechanics of function definition (see [4])
outweigh that risk? Does availability of
a friendly full-screen editor make initial
exposure to the v-editor wunnecessary and
affect the answers to these questions?

When should the concept of explicit
result be explained? Early because it is
important--or--later because it seems to
present a stumbling block for APL learners
(both neophytes and experienced program-
mers) .

Powerful Functions:

When should the especially complex and
powerful primitive functions, such as Ma-
trix Divide and Base Value, be introduced?
BEarly, to provide students with convenient
tools for getting the job done quickly--or
--only after they understand how they work
(and perhaps have themselves defined func-
tions to simulate them)? The same ques-
tion arises even for some simpler primi-
tives, such as Residue (which is handy,
for example, for parity checking or ex-
tracting the fractional part of a number).

H. PEELE AND M. EISENBURG

Operators:

When should
in the language
first use of
know what /

the presence of operators
be formalized? At the
+/ because students should
really is--or--later, perhaps

along with other operators, with all the
incumbent terminology and syntax?
Branching:

When should branching be introduced?

Show examples of branching first to moti-
vate the use of arrays--or-=-avoid branch-
ing as often and as long as possible?
Will delaying branching make students too
uneasy--especially those who already know
another programming language?

Nested Arrays:

If nested arrays are implemented in the
system being used, should the instructor
introduce them early, because they actual-
ly simplify solving many problems (for ex-
ample, by avoiding iterative solutions)--
or--wait, because APL is complicated
enough without them? If, to the contrary,
nested arrays are not available in the
system at hand, should they nonetheless be
mentioned early, because they represent an
important general concept which is expec-
ted to be included (in some form) in stan-
dard APL in the near future?

The final two issues are "local" in
that they primarily affect only the par-
ticular topic in which they occur.

Scalar Extension:

scalar extension before--or--
after parallel processing (as a special
case)? That is, start with something like
2+4 5 involving only one non-scalar array
(because, perhaps, it postpones the syn-~
tactical issue that arises when both ar-
guments are vector constants)--or--with
something like 2 3+4% 5 instead?

Present

Conditional Branch Form:

Which form of conditional branching
should be introduced first: using / or p
or x1 or + and ¢, or a defined cover func-
tion IF? Should just one be chosen and
used consistently (until much later)--or--

should several alternate forms be intro-
duced more or less together? Should mul-
tiple branching from a single statement

(e.g., »(L1,L2,L3)[I]) be introduced right
away?

Common Mistakes in Teaching APL

Some of the approaches already mention-
ed can, if pushed to the extreme, become
blatant mistakes. Suppose, for example,
that comparing APL notation with conven-
tional mathematical notation should turn

APL TEACHING BUGS -90-

into insistently denigrating the latter.
Then the student may, in effect, be con-
fronted with an uncomfortable choice be-
tween, on the one hand, rejecting the fa-
miliar ground of traditional mathematiecs
from which he or she might build toward
the unfamiliar and, on the other hand, re-
jecting APL with its "peculiar" new nota-
tion altogether. Such an approach is evi-
dently counterproductive.

Here are more practices that are mis-
takes to a lesser or greater degree, de-
pending on how extreme their application.
They are expressed--for ireny, of course--
as imperatives.

Snow the Student:

Present as much of APL as possible, all
at once.

Teach "Logically":
Present all the primitive

then, show how to apply them.
the dyadic

functions;
Present all
functions first, then the mo-
nadic ones; or all the scalar functions,
then all the mixed ones. Make sure they
are presented in a totally organized and
logical order (e.g., alphabetically!). In
other words, take the approach of a refer-
ence manual.

Here are some mistakes that manifest
APL "cultism" [16],., They concern instruc-
tor attitudes that can "turn off" students
and thereby interfere with learning.

APL Elitism:

Be condescending. Instill a sense of
inferiority in 98% of the students by
continually implying that one has to be

intellectually erudite or at least "mathe-
matically minded” in order to 1learn APL.
Warn, "Only a few of you will become true
APLers," as 1if to imply, "After all,
APLers are better people.”

Brainwash:

Say, "APL requires a completely new way
of thinking." Insist that there is no
hope of connecting APL comfortably with
what students already know.

"APL is Superior" Syndrome:

Tell the students the sort of thing you
sometimes hear at APL conferences: "APL
is superior to all other programming lan-
guages (for any purpose). APL is the way.
And, the acronym really should be TPL (The
Programming Language) ."

I Love APL:
Make students feel inadequate by com-

parison with the instructor's enthusiasm
for APL. Don an "I .APL“ button.

H. PEELE AND M. EISENBURG

The next three mistakes involve ter-

minological warfare.

Babel:

Don't teach Jjust the APL 1language
itself, but from the start emphasize an
entire meta-language for describing the

new concepts, new symbols, and new terms.
Be sure to insist on careful distinctions,
as between "statement™ and "expression”.
Introduce as many unfamiliar and esoteric
terms as possible: "token", "identifier",
etc.

"Right-to-Left™ Rule:

Mislead the students by characterizing
APL syntax as the "right-to-left rule".
(If students do not understand that "“right
-to-left" concerns just the order in which
functions are executed, then they some-
times think it means that 8+#+4 is 0.5. Or,
they wonder why, after A4+110, the value of
Al3] isn't 8, or why scan works from left
to right.)

Names of Symbols vs. Names of Functions:

Confuse the names of symbols with the
names of functions they denote. Call |
"absolute value" or "residue" instead of
"stile" (or "vertical bar") when you first
introduce it for one of those two func-
tions, so that students are perplexed when
they see it again, for the other function.
Note that instructors as well as students
sometimes mistakenly call [/ "ceiling re-
duction"-~-perhaps because [has two names
or perhaps because [/ itself is monadic,
or because they don't know the unfamiliar
name "up-stile™ for [.

Finally, we have one serious strategic
blunder and several tactical trip-ups.

Code First, Think Later:

Insist that students define a complete

function to solve a problem as soon as
possible, rather than encourage them to
start by exploring the problem (whether

with computer, paper and pencil, or brain

alone) and developing a solution piece-by-

piece (on the computer, in immediate exe-

cution mode).

Ambiguous or Unhelpful Examples:
Unwittingly select examples like

V<5 8 3 16
2¢v

(which fails to distinguish positive from
negative direction of rotation). Or,

43 1 5 2 4

(which has the same
1234 5), Or,

result as 3 1 5 2 4

APL TEACHING BUGS -91-

Vei1 2 3 &
vi1+2]
3

(which could suggest adding up the first
two elements of V). Or--to serve as a
reminder of order of execution--

1=1A2=3

(which 1is egqguivalent to the expression
(1=1)A(2=3) that the naive student may
read it as). Or, (if you are especially
unlucky),

O+V+«52100
39 52 84 4 §

v
32154

(where the last result just happens to be

the same as 4YV, the rank order of ele-
ments of ¥V from largest to smallest).

Conceptual Morasses

Our third and last type of "“APL teach-
ing bugs" concerns specific aspects of the
design of APL that are hard to explain,
especially in short order.

Order of Execution:

Why does APL execute from right to
left? Why not from left to right (as in
NIAL)? Do pragmatic reasons really justi-
fy that, or is there, in the final analy-

sis, only an arbitrary choice?
Explicit Result:

What exactly
anyway?

is an explicit result,

Bracket Notation:

Is []

a function? It requires two
symbols,

which act as delimiters. &And
what are the semicolons when they appear
inside Dbrackets? (See (5] and [15].)
Bracket notation seems to be popular for
indexing, yet students get 1into some
trouble when using it, e.g., in not seeing
why (pM¥)[2]) does not need to be surrounded
with parentheses when part of a larger ex-
pression. Should this anomalous notation,
despite 1its familiarity from mathematics
or other programming 1languages, be dis-
placed by Il or { or other consistent nota-
tion (see [1]) and [10])7? Moreover, what
about indexed reassignment 4[J«...? And
is [] also an operator (as in Sharp APL)?

Assignment:

What, exactly, is +? Is it actually a
function (as it is designated in APL2 [1,
pp. 15, 17]), or is it an "operation" of a
type wholly unlike any primitive or de-
fined function?

H. PEELE AND M. EISENBURG

Branch-to-null:

How does one explain
+10 causes execution to continue with the
next line of a defined functiocn, whereas
+0 exits the function? Or why +0 does not
cause execution to resume from the top of
the function?

convincingly why

Index-of:

In LR, why 1is [restricted to be a
vector (see [4]1)7? Why is the universe of
values there on the left and the "control"
on the right, whereas in most mixed func-
tions (e.g., L/R) it is the reverse (cf.
[13)])?

Strand Notation:

Strand notation seems deceptively sim-
Ple and useful, but does it create serious
problems for students' understanding of
APL (as well as problems for language de-
signers)? (Cf. [2] and [4].)

For the future existence and growth of
APL, the most devastating APL teaching bug
is, of course, not to teach it at all!
Rather, one could offer an excuse: "“It's
not implemented on our computers...it's
different from what we wusually do...it
would be too difficult for us to change...
it would take too much time to learn...we
are supposed to train students for what
they will encounter in the 'real' world...
we can't take chances experimenting with
controversial languages or new approaches
to computing."

If APL is going to be taught in ways
likely to confuse or intimidate students,
then that could be a justifiable excuse
for not teaching APL at all. For that
reason, confronting APL teaching bugs is
important for the future of APL. Instruc-
tors can then do a better job teaching APL
at all levels: from elementary school
(where it is hardly taught at all) ¢to
business data processing training courses
(where APL is growing but still controver-
sial). Students can become sensitive to
the issues in the design of APL and ap-
preciate that there were reasons behind
design decisions. And developers of en-
hanced APL systems, or even more advanced
programming languages, can make design de-
cisions guided in part by a better under-
standing of how people teach and learn.

Acknowledgement

This paper is based in part upon work
of the second-named author supported by
the Local Course Improvement Program of
the National Science Foundation under
Grant No. SER-8160887.

APL TEACHING BUGS -92-

References

[1] APL2 Languade Manual, IBM Corp.,
1982.

{2] Paul Berry, "What the User Really

Learns", lecture
by I.
1983,

at APL83; reprinted
P. Sharp Associates, Toronto,

{3] Paul Berry, Gottfried Bach, Michel
Bouchard, Roland Pesch, Margerete
Buch, and Sachiko Berry, "Word, Image
and Metaphor to Name APL Concepts in
Many Tongues", in APL84 Conference
Proceedings, APL Quote Quad 14
(1984), no, 4, pp. 63-69.

[4] Murray Eisenberg and Howard A,
Peelle, "APL Learning Bugs", in APLS83
Conference Proceedings, APL Quote
Quad 13 (1983), no. 3, pp. l1l-l6.

[S] A. D. Falkoff, "Semicolon-Bracket
Notation: A Hidden Resource in APL",
in APL82 Conference Proceedings, APL

Quote Quad 13 (1982), no.
116,

r PP, 113-

[6] Garth H, Foster, "Motivating Arrays
in Teaching APL", in Proceedings of

the Fifth International APL Users'
Conference (May 15-18, 1973), APL
Technical Committee, 1973, PP.
3.1-3.8.

[7] Kenneth E. Iverson,

Introducing APL
to Teachers, APL Press, 1976.

[8] Kenneth E, Iverson, "The Inductive
Method of Introducing APL", in APL
Users Meeting (Toronto, October 6, 7,
8, 1980), I. P. Sharp Associates, pp.
211-220; reprinted in A Source Book
in APL, APL Press, Palo Alto, 1981,
pPp. 131-139.

[9} Kenneth E. Iverson, "APL Terminolo-
gy", report of talk at APL82 Inter-
national Conference, Heidelberg, re-
printed in 1I. P. Sharp Associates
Newsletter, vol. 10, no. 6, 1982,

[10] Kenneth E. Iverson, "Rationalized
APL", Sharp Research Reports, no. 1,
I. P. Sharp Associates, January,
1983.

[11] Robert C. Metzger, "APL Thinking--
Finding Array-Oriented Solutions", in
APL81 Conference Proceedings, APL
Quote Quad 12 (1981), no. I, pp. 212-
218.

[12] Alan J. Perlis and
"Programming with Idioms
APL79 Conference
Quote Quad 9
pp. 232-235.

Spencer Rugaber,
in APL", in
Proceedings, APL
(1979), no. 4-part 1,

H. PEELE AND M. EISENBURG

[13]

[14]

(15]

{16]

[17]

(18]

Raymond P. Polivka, "The Impact of
APL2 on Teaching APL", in APL84 Con-
ference Proceedings, APL Quote Quad

14 (1984), no. 4, pp. 263-269.

Allen J. Rose, "Making APL Palata-
ble", in APL in Practice, Allen J.
Rose and Barbara A. Schick, eds.,
Wiley, New York, 1980, pp. 312-322,

Karl Fritz Ruehr, "A Survey of Exten-
sions to APL", in APL82 Conference
Proceedings, APL Quote Quad 13
(1982), no. 1, pp. 277-314.

John R. Searle, "The Future of Pro-
gramming--Whither APL", in APL84 Con-
ference Proceedings, APL Quote Quad
14 (1984), no. 4, 291-296.

John E., Suwara, "APL Tutorial for
General Management", in APL in Prac-
tice, Allen J. Rose and Barbara A.
Schick, eds., Wiley, New York, 1980,
pp. 121-129.

Roy A. Sykes, Jr., "Optimization of
APL Code", in APL Users Meeting (To-

ronto, October 6, 7, 8, 1980), I. P.
Sharp Associates, pp. 309-314.

APL TEACHING BUGS

-g93-

H.

PEELE AND M. EISENBURG

