APL\?

Roger K. W. Hui
Kenneth E. Iverson
E. E. McDonnell
Arthur T. Whitney

This paper describes a version of APL based upon the dictionary
{1], but significantly simplified and enhanced, and directly usable
on any machine that provides ASCII characters. It also describes
salient features of a C implementation that has been tested on
several machines, and is available as freeware. There have been
four primary motivations for this work:

1. To provide an APL system for use in teaching mathematics
and related topics that is modern, free, and transportable.

2. To devise a spelling scheme based on the ASCII alphabet that
preserves the major advantages of the one-letter words based
on the special alphabet commonly used in APL.

3. To exploit the advantages of breaking from the strict con-
formance with earlier APL that is normally obligatory in com-
mercial sysiems.

4. To explore an unusual style of C programming that makes
heavy use of pre-processing facilities.

Examples of the use of the language in a variety of topics are
provided in an appendix.

We are indebted to a number of colleagues for advice and help:
Anthony Howe, David Steinbrook, Bob Bernecky, Mark Czer-
winski, L.J. Dickey, Jiri Dvorak, James Hui, Eric Iverson, Paul
Jackson, and Roland Pesch.

A. ORTHOGRAPHY

At the time of the first implementation of APL, the then-new
IBM Selectric typewriter with its changeable type element offered
a welcome escape from the limitations of the existing printers,
which provided only a few symbols beyond a one-case alphabet,
punctuation, and the decimal digits. The Selectric was exploited
by designing an alphabet that provided single-character spelling
of all words in the language (except for the literal names used for
variables).

This spelling scheme offered several advantages, due to the fact
that the words were:

1. Mnemonic, using the shapes of symbols to suggest the func-
tions denoted, as in up- and down-arrows for the functions lake
and drop.

2. Universal, in avoiding mnemonic devices rooted in particular
natural languages.

Permission to copy without fee ail or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the titie of the publication and its date appeas, and notice
is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission,

® 1990 ACM 085791-371-x/90/0008/0182...$1.50

APL\?

192

3. Disjoint from the literals used in variable names, so as
to a) avoid the intoduction of reserved words, b) improve
readability, and c) obviate required spaces around words, as
in a|b instead of a mod b.

However, special alphabets pose serious display problems, and it
is desirable to have a spelling scheme based on a widely available
computer alphabet. We have here attempted to design a spelling
scheme based on the ASCI alphabet that retains the advantages
cited above for the older spelling scheme.

Words are spelled with one character or with two, the last of which
is a period or a colon; words are formed by scanning from right
to left, each colon or period (not in a number) combining with the
character to its left to form a word. Any number of spaces may
be used between words, but spaces are not required, except that
in a number, a space or zero must precede a decimal point that is
not preceded by a digit or negative sign.

The spelling scheme is shown in the language summary of Table
1, a study of which should clarify the application of the following
guides used in iis design:

1. Adopt mathematical symbols (such as + - < > ! ~) and
symbols whose shape or usage somehow suggest the mathe-
matical notions, as in the number sign # for number of items
(in an argument, or selected in replication), and De Morgan’s
use of A for power(2].

2. Use single characters for other primitives whose use should
become common, asin & @ ; " _ and \ for composition,
upon and defer, link, rank and under, negative sign, and scan
and outer product.

3. Use a dot or colon with a common mathematical character
that suggests the function, as in <. and >. for min and max,
and in =, and =: for local and global assignment.

4. Use a dot with a letter that suggests a mathematical symbol
or definition, as in 0. for the family of circular functions, in e.
for membership (because epsilon is used for it in mathematics),
in . for integers, and in . and y. for arguments (because
of the analogous use of x and y in mathematics).

5. Use related strings for related functions, as in A for expo-
nential, A, for its inverse {(natural log), and A: for root and
square root; in #. for base value, and #: for its inverse; in +
and * for plus and times, and +. and *. for or and and (their
analogs in logic); and in @ for a conjunction that permutes axes,
and @. and @: for other permutations.

6. Adopt mnemonic aids such as the three cases of § (which
suggests an S) for Shape, Sequence list, and Self-reference; and

. for the Dot or Inner product. This adoption of the double
dot obviales the spaces previously needed around the dot in
some cases.

APL90



Anyone who is familiar with earlier spelling of APL words, or who
is using earlier APL literature, may find it helpful to pronounce
them in the traditional way, as in iota for €..

The function /. cuts its list argument into words according to
rules appropriate to an APL sentence. Thus, /. '+/3 4 5
*1.3' yields the boxed list + and / and 3 4 5 and * and
1. and 3.

.
’ (]

Is (Local) s {Global)
Floor ; Minimum  Decrement ; LeOrEq
Ceiling ; Maximum Incremem ; GtOrEq

= NubClassify ; Equal
< Box ; LessThan
> Open ; GreaterThan

- NegativeSign/Infinity

+ Conjugate ; Plus ; GCD (Or) ; Nor

* Signum ;Times ; LCM (And) ; Nand
- Negate ; Minus Reverse ; Rotate ; Macch

% Reciprocal ; Divide Matrixlnv ; MDiv

A Exponential ; Power NawrallLog ; Log  SquareRoot ; Root

$ ShapeOf ; Shape Sequencelist SelfReference

~ Both ; Cross Not (1-) ; Less Nubsieve ; NotEqual
| Magnitude ; Residue Custom

. NOT USABLE Det ; DotProd

+ NOT USABLE Companion Definition

, Ravel ;Chainltems
; Table ;Link (+Box)

[temize ; Laminate
Boxltems ; Link

# Tally ; Copy Base2 ; Base Antibase2 ; Antibase
€ Atlop-Al Dir-Cyc ; Permute  AtomPermute
/ Insen ; xWay Insen Words Gradelp ; Son

N\ Scan ; QuterProduct Transpose GradeDown ; Sort
{ Cawalog : From Nub ; Take Right (Dex)
} Merge Raze ; Drop Left (Lev)

" ConstCutRankUnder
& Composition-With

Execute ;Execute Format ; Format

! Factorial ; OutOf

? Roll ; Deal

{ Open Parenthesis

) ClosePar-Label-Cmd

Alphabet

; Epsilon (Member)
Integers ; IndexOf
PiTimes ; Circular
First Argument
Last Argument

; MemberOflnterval
Extemal (Foreign)

Table 1: LANGUAGE SUMMARY

B. MAJOR CELLS, REPLICATE, RESHAPE, and
OUTER PRODUCT

Because of the importance of major cells, we will adopt the terms
item and atom for the major cells and the scalars, We will also
adopt the symbol # for the item count, or tally; #bis 1 if b is an
alom, and is otherwise equal to 0{$ b.

MM H O WO R

The dyadic case m¥b is similar to the replicate function previously
provided (for historical reasons) by the derived function n/; the
successive atoms of » specify the number of repetitions of succes-
sive items of b 1o be selected. The reshape ($) is also redefined
to apply 1o items rather than atoms; the old behaviour is obtained
by ravelling the right argument.

Catenation of the items of 4 and B by the expression 4 comma-bar
B is more useful than the catenation of 1-cells provided by the

APL QUOTE QUAD 193

comma; in particular, the catenation of 1-cells can be provided
by comma-bar of rank 1. Consequently, we will use the comma
for catenation of items (that is, catenation along the leading axis),
and drop the symbol comma-bar. For similar reasons, the / and
\ will be adopted for the meanings that were assigned to /-bar
and \-bar, and the latter pair of symbols will be dropped.

The table function (previously provided by the monadic case of
the comma-bar) will be provided by the semi-colon, its dyadic
use being assigned to the link function. Thus, a;b is defined by
(<a),b, with the right argument b automatically boxed if it is
open.

The expression jot.f for outer product uses (for historical reasons)
a conjunction where an adverb would serve. We will adopt the
dyadic case of £\ for this purpose, and the jot and the notation
jor.f will be dropped.

C. USER-DEFINED VERBS, ADVERBS
and CONJUNCTIONS

The conjunction denoted in the dictionary by the inveried Greek
Delta will be denoted by the double colon, and the right-arrow and
& used to denote the sequence control and self-reference will be
replaced by $. and §:. The forms m: :d and 1::a and 2: :a
will be otherwise adopted.

As in the dictionary, assignment provides dynamic localization; for
example, the first execution of a=.g a in a function f applies
g to the global value of a, but produces a local copy. Unlike the
dictionary definition, the localization is strict, so that a local copy
is not available to user-defined functions that are invoked in f.
Global assignment is provided by the copula =3,

Strict localization provides significant advantages over the herita-
ble localization of earlier APL., and is now practicable because of
the ease of passing parameters in boxed arguments. Direct defi-
nitions are easily provided by a simple cover function employing
the formsm::'* and ''::d.

D. FROM, I0TA, and BASE

The monadic case of ¢ . is defined like monadic iota, but extended
10 list arguments as follows: £.gis ( | 8)$+\0, (*/]8)§1, but
reversed along each axis for which the corresponding element of
8 is negative; the resuh for an empty argument is the scalar ©.
For example:

. 23 . 2.3 <. " . _u
012 210 0 3210
3 48 54 3

A new monadic case of base-value is defined as the base-2 value;
that is, #.v is equivalent 1o 2# . v. An infinite rank monadic case
of anti-base is defined as (n$2) #:a, where n is the maximum
of the minimum lengths required to represent the (integer) atoms
of a.

E. PERMUTATIONS

The words \. and —. will be used for transposition and for
leading-axis reverse and rotate, the lines in the spelling indicating
the axes involved, as they did in the old symbols for these func-
tions. Other permutations {modelled upon, and replacing, those in
the dictionary called cycle, mix, and mix tndex) will be repre-
sented by @. and @:.

Standard Direct and Cycle Representations. If p is a permu-
lation of the atoms of ¢.n, then p is said to be a permutaiion
vector of order », and if n=#b, then p{b is a permutation of the
items of b.

The expression @.p yields a list of boxed lists of the atoms of
< . ¥p called the standard cycle representation of p. If (as in the
example in the dictionary)p=. 4 5 2 1 0 3, then @.p yields

Hui, Iverson, McDonnell, Whitney



2;4 0; 5 3 1 because the permutation p moves o position 2
the item 2, to 4 the item 0, to O the item U, to 5 the item 3, to
3 the item 1, and to 1 the item 5. The monad &. is self-inverse;
when applied to a standard cycle representation it produces the
corresponding direc! representation.

A given permutation could be represented by cycles in a variety
of ways, and the standard form is made unique by the following
restrictions:

The cycles are disjoint and exhaustive (that is, the atoms of
the boxed elements together form a permutation vector); each
boxed cycle begins with its largest element (possible because
any rotation of a single cycle represents the same permutation),
and the boxed cycles are arranged in ascending order on their
leading elements (possible because the cycles are disjoint).

Non-Standard Representations. If d and ¢ are direct and cycle
representations of order #b, then d@.b and c@.b produce the
corresponding permutations of the items of b. More generally,
since the item count of b determines the order of the permutation,
the arguments d and ¢ may be non-standard in ways to be defined.
In particular, elements belonging to (£ .2%#b) ~#b are permitted,
and are treated as their residues modulo #b.

If q is not boxed, and if the elements of ( #b) | q are distinct, then
q@.b is equivalent to d@.b, where 4 is the standard form of g
given by d=.((£.n)~.n|q),n|q, where n is #b. In other
words, positions occurring in g are moved o the tail end.

If q is boxed, then the elements of (#b) | >7{q must be distinct
for each J, and the boxes are applied in succession. For exam-
ple, (2 133 0 1)@.1.5 is equivalent to (<2 1)@.(<3 0
1)@.1. 5, and the result of either is the standard direct permu-
tation1 2 3 0 4.

Atomic Representation. If 7 is the table of all !» permutations
of order n arranged in lexical order (that is, /:T is €. ! #T), then
k is said to be the atomic representation of the permutation k{T.
Moreover, k@: b permutes items of b by the permutation of order
#b whose atomic representation is ( ! #b) | k. For example, 1@:b
transposes the last two items of b, and _1@:b reverses the items,
and 3@:b and 4@:b rotate the last three items of b. Finally,
(i.!n)@:7.n produces the ordered table of all permutations of
order n, as does the fork[3] used in the expression (£ .&!@:7.)
n.

The transformation between direct and cycle representations pro-
vided by the monad @. is extended to non-negative non-standard
cases by treating any argument g as a representation of a permu-
tation of order 1+>./}.q. Similarly, the monad @: applied to
any cycle or direct permutation yields its alomic representation.
For example, €:0 3 2 1is5,asare @:3 2 1 and 8:0;2;3
1 and @8:<3 1.

F. TRANSPOSITIONS and SECTIONS

The symbol @ will replace the hoof, with the noun cases of the
conjunction (Defer and Prefer) modified so that v@n defers axes
n of the right argument before applying v, and n@v defers axes
of the left. Consequently, the expression a n0@v@nl b defers
axes of both arguments before applying v. The monadic cases of
v@n and n@v are identical.

If the number of elements of » equals the rank of v, then vén
applies v to the cells selected by the axes specified by the atoms
of v, and v@n can therefore be said to apply v at n, as suggested
by the name of the symbol @.

Because {: is an identity function, transposition alone can be
obtained by using {:én.

A boxed argument » provides sectioning, grouping the axes spec-
ified by a single box into a single result axis. For example, if b

APL\?

194

has the shape £. 6 and n=.2;4 1;0, then the shape of {:@én
bis3 5 21 0.

G. FORMAT

The dyadic case of format (" :) is defined with both ranks 1, and
with each element e of the left argument controlling the rep-
resentation of the corresponding element of the right argument as
follows:

w=.<. | e specifies the total width allocated; if this space is
inadequate, the entire space is filled with asterisks.

d=.<.10%( |e)-w specifies the number of digits following
the decimal point (which is itself included only if d is not
zero.)

Any negative sign is placed just before the leading digit.
If e>:0, the result is right-justified in the space w

If e<G, the result is put in exponential form (with one digit be-
fore the decimal point) and is lefi-justified except for two fixed
spaces reserved on the left (including the one for a possible
negative sign)

The monadic rank of ": is infinite, and the result is equivalent
to the application of the dyadic definition with a left argument
chosen to provide a minimum of one space between columns.
Default output is equivalent to the use of the monadic case.

H. EXTERNAL COMMUNICATION

Communication with the keyboard, screen, and operating system
files is provided by the conjunction X ., whose many arguments
provide considerable flexibility.

1. SOME IMPLICATIONS FOR TEACHING

The mere introduction of lists, scan, and outer product allows a
wealth of interesting explorations, as in +\a=.0 1 2 3 4 5
for the triangular numbers, in +\1+a+a 1o see that the odd num-
bers sum to squares, and in various outer products such as at\a
and ax\a to see addition, multiplication, remainder, divisibility
and other tables, including the binomial coefficients (Pascal's Tri-
angle) provided by a!\a.

Lists are easily explained as the use of collective nouns, and the
scan is easily explained as an adverb. Unfortunately, the simple
and important notion of a function table required, in traditional
APL, not just a further use of an adverb, but the use of a conjunc-
tion whose first argument could only be explained as an historical
anomaly. The present use of an adverb for outer product avoids
this difficulty.

Expressions such as pr=. +% provide a simple introduction of the
notion of function definition (and of the hook[3)), and expres-
sions such as pr\1 2 2 2 2 2 2 and pr\3 7 15 1 show
interesting uses of such a defined function in producing successive
approximations 1o interesting quantitites.

Expressions such as swn=.+/ and sqrt=.A&0.5 and 1og=.
108A. and neq=.~.@= provide simple and interesting uses of
adverbs and conjunctions. Moreover, the general form of defini-
tion provided by the : : conjunction permits a simple introduction
to the use of iteration and recursion.

The generally useful notions of classification can be introduced by
using the outer producl a<:\b in expressions for producing bar-
charts and graphs, and can be explored further using the expression
#:7.2An to produce the complete classification table of order
n. Thus if CCT=.#:7.2A#v=.2 3 5, then v+..*xCCT and
v*. . ACCT produce the sums and products over all subsets of v.

In a more specialized area, the functions @. and @: provide
powerful facilities for the discussion of permutations. Thus,

APL90



(£.14)@:1,4 displays a complete table of permutations, and
an expression suchas €., 4 3 0 1 2 can provide an introduc-
tion to cycles and to the use of the LCM (%.) of their lengths
10 determine the power of a permutation. For examples in further
topics, see the appendix.

J. THE C IMPLEMENTATION

The system is implemented in C, because it is an adequate lan-
guage available on a wide variety of machines. The implemen-
tation is guided by two principles: clarity, and exploitation of
underlying facilities. Efficiency is not a main objective.

Clarity does not mean the micro (and relatively insignificant)
clarity of individual C statements, but the macro clarity of being
close to the APL or mathematical definitions. The C code is
written to be understandable by an APL-knowledgeable reader.

Facilities already available in the environment are exploited: for
memory management, the C library functions malloc () and free ()
are used, the underlying virtual memory facilities being presumed
to be adequate; for session management, the system reads from
standard input and writes to standard output. This, together
with the ASCII spelling, makes it possible to use any of sev-
eral widely-available session managers, such as EMACS or Sun-
View/OpenLook.

Organization. The system is organized along the lines suggested
by the dictionary, in particular, by the parser [1, p. 38]. The
parsing rules are expressed in C as follows:

#define RHS (NOUN+VERB+ADV+CONJ)
#define EDGE (MARK+ASGN+LPAR)

static struct (I c[4);AF £;1 b,e;)cases[] = {

EDGE+ADV+VERB, VERB, NOUN, ANY, verb,1, 2,
COoNT, NODN, VERB, NOUN, verb,2, 3,
EDGE+ADV+VERB+NOUN, NOUN, VERB, NOUN, verb,1l, 3,
EDGE+ADV4+VERB+NOUN, NOUN+VERB, ADV, ANY, adv, 1, 2,

EDGE+ADV+VERB+NOUN, NOUN+VERB, CONY, NOUN+VERB, conj,l, 3,

EDGE+ADV+VERB+NOUN, VERB, VERB, VERB, form,1, 3,
EDGE, VERB, VERB, ANY, form,1, 2,
NAME, ASGN, RHS, ANY, is, 0, 2,
IPAR, RHS, RPAR, ANY, pune,0, 2,
ANY, ANY, ANY, ANY, move,0, -1,

)i

A sentence to be parsed is placed on a left stack, and as execution
proceeds words are moved from the tail of the lefi stack to the
front of a right stack. When the first four words of the right stack
match a pattern (columns 0 to 3 of the table), the corresponding
action (4) is triggered and applied to the indicated words (5, 6),
with the result replacing these words.

Data Structures. The fundamental data structure is the APL array,
that is, the C structure:

typedef long I;
typedef struct (I t,c,n,z,8[1);}*A;

type

r{?erence count

number of atoms in the ravelled array

rank

shape list )
atoms of the ravelled array (immediately following a)

4d N3O

APL QUOTE QUAD 195

All objects, whether numeric, literal, or boxed, whether noun,
verb, adverb, conjunction, or punctuation, are represenied by this
structure. Most C functions in the system accept APL arrays as
arguments and return them as results.

Definitions and macros. Extensive use is made of C preprocessor
definitions and macros; to augment the expressive power of C,
to enforce uniformity, and to increase readability. Example: An
“APL function” is a function which accepts one or two APL array
arguments, and returns an APL array result. The macros F1 and
F2 encapsulate this convention:

#define Tl (f) A £(w,self)A w, self;
#define F2(f) A £(a,w,self)A a,w, self;

(se1£ is a pointer to function parts — rank, inverse, eic.)

A compact but readable programming style results from using
such definitions. The implementation of , :y (ilemize) and x, :y
(laminate) are cases in point:

Itemize: , :y adds a single unit axis to y, making the shape 1, $y.
rl(laminl) {R reshape (over (one,shape(w)), ravel{w));}

Laminate: If the shapes of x and y are equal, then x, :y is defined
by ¢, :x),(,:y). If one is an atom a, it is first replaced by ssa,
where s is the shape of the other.
F2(lamin2) {R over (a, reshape (over (one, shape (AR (W) ?w:a})
(ravel (w})};}

Statistics. Analysis of the C implementation as it stands on 1990
2 22 yields the following statistics. (Header files and variables
without functions are excluded.)

C Fns 240 Lines 1345
Lines 1345 +/ Line lengths 44722
Average lines/fn 5.6 Average chars/line 33.3
Min 1 Min 1
Max Lo Max 89
Median 1 Median 32
One-liners 125 One-character lines 91

181 of the 240 functions are APL functions.

Therefore, the implementiation consists of a large number of short
functions, having short lines, with a well-defined uniform inter-
face. These are characteristic of an APL programming style.

REFERENCES

1. Iverson, K.E., A Dictionary of APL, APL Quote-Quad, Volume
18, Number 1, September 1987, pp 5-40.

2. Cajori, Florian, A History of Mathematical Notations, The Open
Court Publishing Co., 1928, Volume 1, Paragraph 313.

3. McDonnell, E.E., and K.E. Iverson, Phrasal Forms, APL Quote-
Quad, Volume 19, Number 4, August 1989, pp 197-199.

APPENDIX

The forty-five frames in the following appendix show examples
of use of the sysiem in a variety of topics. All were actually
executed on the system in March 1990,

Hui, Iverson, McDonnell, Whitney



text=. text,'glad and big’

alph=. ' abedefghijklmno’
alph=. alph, 'pqrstuvvzyz'

101'{~104{.alph=\tezt
1010000100200002000010001000
0000000000000100001001000000
0000000000000000000000000100

y=. (z-3) * (2-5)
¥
830_1038

range=. m—i. 1+(m=. >./y)-<./y
range

8765432101

be=. range <:\ y

ALPHABET A SPELLING B GRAMMAR C
§ a. sentence=.'index=. a.i.''ad' "' fahrenheit =. 50
256 (fahrenheit ~ 32) * 5 % 9
J=. a. 1. tad! / .sentence 10
J prices =. 3 1 4 2
97 65 [indexl:lja.li.l'aA'l orders =. 2 0 2 1
J+tNN1. 8 orders * prices
97 98 99 100 101 2102 103 104 105 6 08 2
65 66 67 €68 69 70 71 72 73 § /.sentence +/ orders * prices
(J+\1.30){a. S 16
abedefghijkimmopqrstuvwzys{ |}~ +\123465
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]A >/ .sentence 136 10 15
a.{~3j+\1.30 index 23*\123456
abedefghijkimmopqrstuvwzyz{ !}~ =. 246 810
ABCDEFGHIJKLMNOPQRSTUVWXYZ\1A a. 369 12 1%
3 + 125 x 6 % 100 1. decr=. - & 1
10.5 'aA! deer _1 0123
1. 25 2 _1012
01234 v, gentence PARTS OF SPEECH
567889 97 65 50 fahrenheit Nouns/Pronouns
*AN\~041 _1 045_1 1 + - % % decr Verbs/Proverbs
~105.1 1 0j1 ", 'gbe =. 314 27 / \ Adverbs
0J_1 1 041 I 3142 P} Conjunction
1 041 _1 044 abe =, Verb-to-be
041  _1 04_1 1 314 () Punctuation
TABLES Da TABLES Db TABLES De
prices=, 3 1 4 2 n=. 0123 IN~21+4. 6
orders=. 2 0 2 1 n +\n 00000
0123 10102
prices * orders 1234 12012
& 08 2 2345 12301
prices *\ orders 3 456 12340
6 06 3
2021 *\ ~n +/ 0= I\ ~ J=. 1+1., 15
8 0 84 0000 122324243 426244
404 2 0123 2=+/0=i\ ~ J
0246 0411010120001 0100
T0 READ A TABLE, 0369 (2=+/0=}\~ J) #
BORDER IT BY ITS 2 357 11 13
ARGUMENTS'; AN~ 1T, 4
100 0 =\~1. 4
* . 2021 111 1 1000
——————————— 124 8 o100
3 160486 3 139 27 0010¢0
112021 +.\~ 0 1 0001
4 1 B 0 8 4 01 <:\~i. 4
204042 11 1111
+:\~ 0 1 0111
10 0011
00 00021
TABLES Dd CLASSIFICATION Ea CLASSIFICATION Eb
text=. ' 1 sing of olaf ! x=. 12 345¢867 x=. 1234567

y=. (2-3) * (z-5)
Y
830_1038
range=. m—i. >:(m=. >./y)-<./y
range

8786543210 _1

be=. range <:\ y

0000000000000000000000000000 be be { ' *x
0000000000000000000100040000 1000001 * *
0000000000000000000000000000 1000001 * *
0000000002000010000000000000 1000001 * *
0000001000000000100000000001 1000001 * *
0000000000000000000000000000 1000001 * *®
0100100000000000000000000010 110001211 *k *%
11000121 k% *k
2 138+/"1 alph=\text 11000121 *%k * %k
7310202303002 1110111 kkk dkokok
0220001000000 1111111 sk sk Kk ok ke

<\00010211202121
000100000
APL\? 196 APL90




CLASSIFICATION: graphs Ec

CLASSIFICATION: graphs Ed

CLASSIFICATION +,% on subsets Ee

be <\bec
1000001 1000001 az. 00001111
1000001 0000000 b=. 0012120011
1000001 00000OD00C0 e=. 010101021
1000001 0000000
1000001 0 00000O0CCOQ ect=. a,b,,:c
13100011 0100010 ect
1100011 0000O0O0CO 000021111
1100011 C0000O0QG0O0 001100112
11101211 0010100 01012021201
1111311 0001000
235 +..%x cot
<\ be t x' {~ <\bo 0538276510
10000012 * * 235 *%..A cet
0000000 15315 2 10 6 30
0000000
00600000 +/cct
000000C 01121223
0100010 * ok {:c2=.(2=+/cct)¥#"1 cct
0000O0O00D 011
0000O0O0CO 101
00102100 * * 110
0001000 * 235> * ¢2
55 3
CLASSIFICATION dot productg Ef STRUCTURES: box Fa STRUCTURES: each Fb
text text

235
421

05
01

N w
w

i
)
1 00
H ]
v 001

rowd =. 2 3 65 }:

rowd * cold
2065
+/ rowd * cols

rowd +..%x cct
053827%5 10

rowd *..A cet
153152 10 6 30

rowd A colb

i B8ing of olaf glad and big
-. text

i 8ing of olaf glad and big
words=., /. text

words

[Elffng,oflozaf]gladlandlbig]

102 3 { words
[;;ngli!ofloZafl
-, " >102 3 { words

lgnis|i|so

-1"< text

faZol

215
*/ rowd A colb glad m lqsinglof]olafngaﬂandlbigJ
10
STRUCTURES open Fe PROGRAMS: simple Ga PROGRAMS: conditional Gb
root=. 'y. A %2'::'y. A %z.’ p=. '§.=. 1+y.<0!
words root 64 =, 'y. A %2
8 r=. '''"DOMAIN ERROR'''
[f];;ng|oflolaflglad]andlbigl 3 root 64
conditional=. (p;qir)::t?
rPr=. '§ y.'ii'ze. + % y.!
tt=. > words 3 rPr 4 conditional -49
tt 3.25 DOMAIN ERROR
1 *Pr /1222222
8ing 1.4142 conditional 49
of rPr\12222 7
olaf 1 1.5 1.4 1.41667 1.41379
glad rPr \ 3 7 15 tozero=.(p;'y.=1';'y.+1'):: "
and 3 3.14286 3.14151
big triple=. '3%y.'::'! tozero 3
triple 1.5 2
§ tt 036912 tozero _3
74 3 triple 6 _2
domain error tozeroc "0 (_2 _1 01 2 3)
tr=. '3%ky.'ix% 10_.1012
tr i. 5
0369 12
3857 tri. 3
05 14
APL QUOTE QUAD 197 Hui, Iverson, McDonnell, Whitney




PROGRAMS: iterative Ge| PROGRAMS: recursive Gd PROGRAMS: recursive Ge
a=. 'r=. 1 }: $.=. y. # 2 a=. '$.=. 2-0=y." 11 a=.'$.=.1+0<n=,z.-1"'
b=. 'r=, r x 1+ ¥ §.° b=. 'y. * §: y.-1! b=.',:2{.y."’
factorial=. (a,<b)::"? e=."(n§:0 2 2{y.),(1%:y.),
factorial=. (a;b)::'! factorial § hanoi=.''::{a;b;c, 'n¥:-.y.")
factorial § 120
120 2 hanot 'ABC’
factorial"0 i. 6 d=. '"(r,0)+0,r=. §: y.-1' AC
1126 24 120 binomial=. (a,<d)::'"' AB
binomial 4 cB
> ajb 14641 \. 4 hanoi 0 1 2
r=.1):$.=.y.#1 0020110022212002
r=. rx 14+ ¥ §. f=. 'r,+/( 2){.r=. §: y.-1° 211202211001211
e=. 'r=, (0,r) + (r,0) Fibonacei=. (a,<f)::'!
binomials=. (a;e)::'"' fibonacei 10 \. '"ABC'{~ 4 hanoi 0 1 2
binomials 4 1123658 13 21 34 55 89 AACABBAACCBCAAC
14641 CBBCACCBBAABCEB
Fib=.(a;'r=.r,+/(_2){.r' ) g=. '$§.=. 2-0=x.' ; 1
fib 10 h=. 'y.xz.%x.§:8<:y."' c=.'r=,048.5.y. ¥1+n=.0"
112358 13 21 34 55 89 outof=. ''::(g,<h) d=.'r=.r,{(n=.14m) ,
d=. 'p=. 1 }: $.=, x. ¥ 21 outof"oN~t. 4 h=.(c;d)::"!
e=. 'r=, (rrit+ty.=.y.-1)%1+4$.'| 11 1 2 A4
outof=. ''::(d;e) 0123 121312141213121
3 outof 5 0013 h 3
10 0001 1213121
PROGRAMS: recursive Gf GEOMETRY: 2-space Ha GEOMETRY: 3-space Hb
{:a=.3 3$'abedefghi’ length=. 'At+/y.A27::1! tri,l
abe length 12 § 347
def i3 004
ght {: tri=. 2 23 8 9 111
(f=.f~."1 0 f=.1.4#) a 347 2%~ det tri,1
12 004 2
02 1 -."1 trd 2%~ det 1 0 2 {"1 tri,1
01 4 7 3 -
<"2 {minors=.f { 18}."1) a 040 : tetrahedron=. 0,"1 =\~ 1. 3
{:lsides=.length tri-1-."1 tri| 0 1 0 0
eflbe|be 1 5 5.65685 0010
hilhilef {: semiper=. 2 %~ +/lsides 0001
5.82843
p=.'8.=. 1+i=fy.' }: r=.'0{,y."' area=. A:kx/semiper—0,lsides volume=. detd(,81) % '&¥#
q=."'"(0{"1 y.)-..%§:"2 minors y.' area
{:p=.23 359 2 volume tetrahedron
164 tri,1 _0.166667
410 347
6 6 8 004 {: tet=. 72 3 4 8§ 9
(det=.(p;q;r)::"") b 111 6030
112 3658
8=.'(0{"1 y.)+..%x$:"2 minors y.' 2 %~ det tri,l 74068
(permanent=.{p;s;r)::'') b 2 volume tet
320 11.5
CONNECTIONS: arecs Ia CONNECTIONS: corm. matrix Ib CONNECTIONS: family Ic
em
arcs=. ? 22 2 $8 8 101234567 {~ \. arcs 1001310100
8 {. arcs 1315740400574556026276 10000010
16 6405360533460372557158 0100023200
3 4 b=. "(i1.,~x.)e." 00001000
10 emFarcs=. '':1:i(b,'y.+t..*x2.,1')| 1 0000110
55 000121101
7 3 em=. B emFarcs arcs 002100101
4 6 cm 000101130
00 10031013100
4 5 10000010 points=. 1 0 0 0 0 0 0 1
01000100
\. n=.arcs{ncdes=. 'ABCDEFGH'® 000021000 points +. .. *. ¢cm
DDBFHEAEAAFHEFFGACGCHG 10000210 10010110
GEAFDGAFDDEGADHCFFHBFF 0001311101
0021200101 points+.points+. .. *.cm
6{. barcs=. <"1 n 00010110 100310111
IBGIDE[BAJFFIHD[EGI +/cm immfam=. "Viitz.b.z.b..x.y.t
311326132 points immfam cm
+/+/cm 100101411
15 {, ,arecs 21 fam=.''::'{mmfamdy...(#y.)z."
1634105573460 0u4 points fam em
111111114

APL\?

198

APLS0O




CONNECTIONS: closure Id CONNECTIONS: adjacency Ie SORTING Ja
{: em2=. 0=78 8 § 5 a=. 00001111
10000000 b=. 0 0110012 -.'msmgofoZanZadandbzg
00100010 ce=. 01010101 {: tt=. > /. ¢
00000020 $d=. a,b,,:c
10000000 38 sing
1000212100 =, 'i=y. +o.~ \Loyatt? of
0000O0C0CGOO {. e=. adj \. 4 olaf
00000G0O0CO0 01101000 glad
0011200120 100101200 and
100120010 big
points=. 1 0 0 0 0 0 0 1 0121200001
points fam em2 100004410 /: tt
103110011 01001200121 56 4 0231
002010012
em2 fam em2 0003102110 tt /: tt
10000000 e{' *' and
00100010 *k ok big
00000010 * ok ok glad
10000000 x Kk % 7
10001100 *k * of
oo0co0o000COCCO * * % olaf
000000O0O0 LI sing
10112001210 * Kk k
* kx
SYMBOLICS: reduction and scan Ka COMPOSITIONS: and (&) La COMPOSITIONS: atop (@) Ib
o=.'"("' }: e=.') s=."'-! A82 e=. 1+1.4 c '@ \¢=. 1+ 2. &
minus=. ''::'0,x.,C,8,Y."' 14 9 16 0123
'‘a' minus 'b’ 28n ¢ 1012
(a)-b 2 4 8 16 2101
list=.'defg' pow=. A&2::A 3210
minus / list pow ¢ pow ¢
(d)-(e)-(fH)—-g 1.16 729 65536 db=. 2&x%::x
minus\list c +8% ¢ tr=. 3&*::%
2 1 0.6666887 0.5
(d)-e tr=, 38%::% db & tr \ ~ ¢
(d)-(e)-f db=. 2&%::% 2 4 6 8
(a)-te)~-(f-g ctr & dec 4 B 12 16
d,e,f,g=.<:f=.<:e=.<:d=.u4 4 16 36 64 6 12 18 24
4321 cdb & tr e 8 16 24 32
", minus / list 9 36 B1 1u4 db & tr \ ~ ¢
2 c téA. ¢ 9 18 27 36
v, minus \ list 0 1.38629 2.19722 2.77259 18 36 Sy 72
4 1 3 2 A c t8A. 27 54 81 108
times=. ''ii'o,z.,Cc,' TR,y 14 916 36 72 108 1uu
list times"0 ~. list db & tr \~ ¢
(d)xg g 18 27 38
(e)xf i8 36 54 72
(f)xe 27 54 81 108
(g)=d 36 72 108 144
COMPOSITIONS: under (") Le COMPOSITIONS: fork (f g h) Ld COMPOSITIONS: hook (g h) Le
+\Na=. 001011000 ce(+ * ~)d=.~.c=. ©. a=.56 7 8
004121111 9 .339 g p=.1 23 4 g
+.\ -. a q=.tk- / \ (*>:) b 7/ \
000211411211 cg\e f n 2 6 12 20 z h
- +.\~-. a 0.1 _4 _9 VANEEVAN a {(x>:) b \
111111000 1 0 _3 _8 T Yz y 10 18 28 40 17
+.\N" -, a 4 3 0 _5
111212212000 89 8 5 0 g a (*>:)\ b 7/ \
b=. 1234 }: e=. 34568 qc / N\ 10 15 20 25 v h
b +éAr. ¢ 0 _1 _4 _9 r h 12 18 24 30 \
1.09861 2.07944 2.70805 3.17805 =, —,+ H H 14 21 28 35 1
A Db +ér. ¢ crd 17 16 24 32 40
3 8 15 24 _33 (+%)/ 1 222222
b +"A, ¢ 13 1.4442
3 8 15 24 13 (+%)\ 1 2 2 2 2
{:text=.'1';'aing';'of"'; 'olaf’ 33 14.5 1.4 1.42667 1.41379
=, 24*::% (+%)\ 3 7 15
li[finglof[olaf tr=. 38%::% 3 3.14286 3.24151
(db+tr) ¢ (+Z)\ 1111 1
-."> text 05 10 15 12 1.5 1.66667 1.6
(db*tr) ¢ (-%)\ 122222
|-£ gnis fa]fazi] 0 B 24 54 1 0.5 0.333333 0.25 0.2 0.1666867
(dbxdb+tr) e *~ (+%)/ 1 , 12 $ 1 2
0 10 40 90 3
APL QUOTE QUAD 199 Hui, lverson, McDonnell, Whithey




FUNCTIONAL PROGRAMMING Ma SETS: propositions Na SETS: relations ND
be=. 04, + ,40 {: a=. 2%~ ©. 11 i=.4.8 }: p=. 2357 11
be 1 00.511.522.533.54u.585 belongsto=. +./"1 @ (=\)
11 (24<: *, <45) a 1 belongsto p
be be 1 0000123121110 001120101
121 ((24<: *x. <45) a) # a e=. belongsto
be be be 1 2 2.53 3.544.5 pei
1331 ((28<: %, <45) # {:) a 11110
g=. 'S.=.1,y.§2" 2 2.53 3.544.8 o=. ~.8v=. ed'aetou'
r=., 'f=. {:' ; 'f=, z.8F" ({: #~ 28<: %, <45) a alph= 'abedefghijkimmo’
power=. 2::(q;ir) 2 2.5 3 3.5 4 4.5 alph=. alph,'pqrstuvvzyz’
be power 3 (1) int=. = <. (v alph)¥alph
1331 int a aetou
be .. 3 (1) 101012010101 (#~ c) alph
1331 ((24<: %, int) a) # a bedfghfkimmpqrstvwxys
c3=, (04,+,40) .. 3 23465
e3 1 ({: #~ 24<: x, int) a
1331 2345
28% .. 3"0 1. 5 (¥~ 28<: %, int) a
0 8 16 24 32 234%5
24+ .. 3"0 1. S
6 789 10
g=. *vii—
S5ggu
e §
SETS: union, etc. Nec FAMILIES OF FUNCIIONS Oa FAMILIES OF FUNCIIONS Ob
(even=., 048=4(2&!))a=. 1. 16 z=.123 456867 c=. 42 321
101010101012 021010 A2 vandermonde
prime=.'2=+/0=y. i~l+i.y. 111110 14 9 16 25 36 49 11 1 1 i 1 1
prime a xA3 1 2 3 4 S 6 7
00121202120200010100 18 27 64 125 216 343 i 4 9 16 25 36 49
(prime a) ¥ a (4xzA2) + (_3%2A3) 1 8 27 64 125 216 343
2 357 11 13 1 .8 _45 _128 _275 _S04 _B33 1 16 81 256 625 1296 2401
a¥~(prime*.evenla (SET INTER- c+. . xvandermonde
2 SECTION] 23 Am\x 6 28 118 348 B14 1636 2958
a¥#~(prime>even)a [SET 14 916 25 36 K49
357 11 13 DIFFERENCE]} 1 8 27 64 125 216 343 poly=. ''i:'zT.4. RN\ Yy AN\ HXL!
triple=.04=4(34) 4 _3 +..%2 3 AM\Z e poly x
?z. ?ven+.triple [SET UNION]{ 1 _8 _u5 _128 _275 _504 _833 6 28 11B 348 814 1636 2958
qa) ¥a
0234689 10 12 14 15
r=. prime +. even *. triple e=. 01234
(r a) # a vandermonde=. e A~N\ z
02356 7 11 12 13 vandermonde
1 1 1 1 1 1 1
1 2 3 4 ] 6 7
1 4 9 18 25 36 49
1 8 27 64 125 216 343
1 16 81 256 625 1296 2401
INVERSES AND DUALITY Pa INVERSES AND DUALITY Pb INVERSES AND DUALITY Pc
cFf=. '"(y.-32) * 5%9':: " r=. 234 }: 8=.245 f=. +43
fFe=. '32 + (y. * 9%5)':: ! g=. —43
de=. 40 —~ 20 * ¢. B inviog (log r) + (log 8)
fFec de 4 12 20 {: z==. 1. 4
_40 _4 32 68 104 140 176 212 r*xes 0123
cFf fFec dec 4 12 20
40 _20 0 20 40 60 80 100 fz
% %123 A (A, pr) + (A 8) 345686
123 4 12 20
log =. 110 ALyt r +"A. 8 'f =z
inviog=. '10 A p.':i:'! 4 12 20 6 24 120 720
log y=.- 24 4 75 7
1.38021 0.60206 1.87506 0.845098 r +"% 8 'fx
+/ log y 1 1.71429 2.22222 3 21 117 717
4.70243 % (%r) + (%s)
inviog +/ log y 1 1.71429 2.22222 I"fx
50400 3 21 117 717
+"% / r
0.923077 19(+43) =
Z+/ % 3 21 117 717
0.923077
1" (%x42) x
0.5 1 12 360

APL\?

200

APL90




