
APL\?

Roger K. W. Hui

Kenneth E. Iverson

E. E. McDonnell

Arthur T. Whitney

This paper describes a version of APL based upon the dictionary
[11, but significantly simplified and enhanced, and directly usable
on any machine that provides ASCKI characters. It also describes
salient features of a C implementation that has been tested on
several machines, and is available as freeware. There have been
four primary motivations for this work:

1. To provide an APL system for use in teaching mathematics
and related topics that is modern, free, and transportable.

2. To devise a spelling scheme based on the ASCII alphabet that
preserves the major advantages of the one-letter words based
on the special alphabet commonly used in APL.

3. To exploit the advantages of breaking from the strict con-
formance with earlier APL that is normally obligatory in com-
mercial systems.

4. To explore an unusual style of C programming that makes
heavy use of preprocessing facilities.

Examples of the use of the language in a variety of topics are
provided in an appendix.

We are indebted to a number of colleagues for advice and help:
Anthony Howe. David Steinbrook, Bob Bemecky, Mark Czer-
winski, L.J. Dickey, Jiri Dvorak, James Hui. Eric Iverson, Paul
Jackson, and Roland Pesch.

A. ORTHOGRAPHY

At the time of the first implementation of APL, the then-new
IBM Selectric typewriter with its changeable type element offered
a welcome escape from the limitations of the existing printers,
which provided only a few symbols beyond a one-case alphabet,
punctuation, and the decimal digits. The Selectric was exploited
by designing an alphabet that provided single-character spelling
of all words in the language (except for the literal names used for
variables).

This spelling scheme offered several advantages, due to the fact
that the words were:

1. Mnemonic, using the shapes of symbols to suggest the func-
tions denoted, as in up- and dow:n-arrows for the functions fake
and drop.

2. Universuf, in avoiding mnemonic devices rooted in particular
natural languages.

permission to copy without fee all or part of this mat&al is granted provided that

the copies am not made or distributed for direct commercial advantage, the ACM

copyright notice and the title of the publication and its date appear, and notice
is given that copying Is by permisslon of the Association for Computing

Machlnety. To copy other&e, or to republish, requires a fe-e and/or spkffc

pW?lliSSiO~.

l 1wOACM ~97~1-371-x/eo/oooe/ole2...$1.~

3. Disjoint from the literals used in variable names, SO a~
to a) avoid the introduction of reserved words, b) improve
readability, and c) obviate required spaces around words. as
in a 1 b instead of a mod b.

However, special alphabets pose serious display problems, and it
is desirable to have a spelling scheme based on a widely available
computer alphabet. We have here attempted to design a spelling
scheme based on the ASCII alphabet that retains the advantages
cited above for the older spelling scheme.

Words are spelled with one character or with two, the last of which
is a period or a colon; words are formed by scanning from right
to left, each colon or period (not in a number) combining with the
character to its left to form a word. Any number of spaces may
be used between words, but spaces are not required, except that
in a number, a space or zero must precede a decimal point that is
not preceded by a digit or negative sign.

The spelling scheme is shown in the language summary of Table
1, a study of which should clarify the application of the following
guides used in its &sign:

1. Adopt mathematical symbols (such as + - < > ! *), and
symbols whose shape or usage somehow suggest the mathe-
matical notions, as in the number sign # for number of items
(in an argument, or selected in replication), and De Morgan’s
use of A for power[2].

2. Use single characters for other primitives whose use should
become common, as in & @ ; It _ and \ for composition,
upon and defer, link, rank and under, negative sign, and scan
and outer product.

3. Use a dot or colon with a common mathematical character
that suggests the function, as in <. and a. for min and max.
and in =. and =: for local and global assignment.

4. Use a dot with a letter that suggests a mathematical symbol
or definition, as in o. for the family of circular functions, in e.
for membership (because epsilon is used for it in mathematics),
in i . for integers. and in o . and t/. for arguments (because
of the analogous use of t and I/ in mathematics).

5. Use related strings for related functions, as in A for expo-
nential, A. for its inverse (natural log), and h: for root and
square root; in # . for base value, and # : for its inverse; in +
and * for plus and limes, and + . and * . for or and and (their
analogs in logic); and in @ for a conjunction that permutes axes,
and @ . and @ : for other permutations.

6. Adopt mnemonic aids such as the three cases of $ (which
suggests an S) for Shape, Sequence lisL, and Self-reference; and
. . for the Dot or /nner product. This adoption of the double
dot obviates the spaces previously needed around the dot in
some cases.

APL90

Anyone who is familiar with earlier spelling of APi. words, or who
is using earlier APL literature, may End it helpful to pronounce
them in the traditionat way, as in iora for i..

The function /. CULS its list argument into words according to
rules appropriate to an APL sentence, Thus, /. '+/3 4 5
*i. 3 ’ yields the boxed list -t and / and 3 4 5 and * and
2. and3.

* :

= NubClassify ; Equal
< Box : LessThan
> OPen ; GreaterThan
_ KegativeSign/lnfiniryy

+ Conjugate ; Plus
* Signum ;Times
- Negate : Minus
X Reciprocal ; Divide

A Exponential : Power
$ ShapeOf ; Shape
- 30th ; Cross
1 Magnitude ; Residue

. KOT USABLE
: NOT USABLE
, Ravel ;Chainltems
: Table ;Link (+Box)

ry Tally ; copy
@ Atop-At
/ lnsen : x\Vay Insert
\ Scan ; Oulerl’roducl

{ Catalog : From
) .Merge
n ConstCutRankL’nder
dl Composition-With

! Factorial ; OutOf
7 Roll ; Deal
(Open Parenthesis
1 ClosePar-Label-Cmd

Is (Local) Is (Global)
Floor : Minimum Decrement ; LeOrEq
Ceiling ; Maximum Increment : GtOrEq

; GCD (Or)
; LCM (And)
Reverse ; Rotate
Matrixlnv ; MDiv

NaturalLog ; Log
SequenceList
No1 (l-) ; Less

Det ; Do&cd
Companion

Boxltems ; Link

Base2 ; Base
Dir+ ; Permule
Words
Transpose

Sub : Take
Raze ; Drop
Execute ;Execute

Alphabet
; Epsilon (Member)
Integers ; IndexOf
PiTimes : Circular
First Argument
Last Argument
; hlemberOflnterva1
External (Foreign)

; Nor
; h’and
; Match

SquareRoot : Root
SelfReference
Nubsieve ; NotEqual
Custom

Definition
Itemiz : Laminate

Antibase ; Antibase
AtomPermute
Craderp ; Son
GradeDown ; Sort

Right (Dex)
Left (Lev)
Format ; Format

Table 1: LANGUAGE SUMMARY

B. MAJOR CELLS, REPLICATE, RESHAPE, and
OUTERPRODLCT

Because of the importance of major cells, we will adopt the terms
km and ~fom for the major cells and the scalars. We will also
adopt the symbol % for the ifem cow21, or rally; #b is 1 if b is an
atom, and is otherwise equal to O{$ b.

The dyadic case n#b is similar to the replicate function previously
provided (for historical reasons) by the derived function n/; the
successive atoms of n specify the number of repetitions of succes-
sive items of b to be selected. The reshape ($) is also redefined
to apply to items rather than aLoms; the old behaviour is obtained
by ravelling the right argument.

Catenation of the items of A and B by the expression A comma-bar
B is more useful than the catenation of l-cells provided by the

comma; in particular, the catenation of l-cells can be provided
by comma-bar of rank 1. Consequently, we will use the comma
for catenation of items (that is, catenation along the leading axis),
and drop the symbol comma-bar. For similar reasons, the / and
\ will be adopted for the meanings that were assigned LO /-bar
and \-bar, and the latter pair of symbols will be dropped.

The table function (previously provided by the monadic case of
the comma-bar) will be provided by the semi-colon. iu dyadic
use being assigned Lo the link function. Thus, a; b is defined by
(<a> ,b, with the right argument b automatically boxed if it is
open.

The expression jot.f for outer product uses (for historical reasons)
a conjunclion where an adverb would serve. We will adopt the
dyadic case of f\ for this purpose, and the jot and the noration
jot.f will be dropped.

C. USER-DEFIXED VERBS, ADVERBS
and COSJUNCTIOSS

The conjunction denoted in the dictionary by the inverted Greek
Delta will be denoted by the double colon, and the right-arrow and
$ used to denote the sequence control’and self-reference will be
replaced by $. and $:. The forms m: :d and 1: :a and 2: :a
will be otherwise adopted.

As in the dictionary, assignment provides dynamic localization; for
example, the first execution of a=.g a in a function f applies
g to the global value of a, but produces a local copy. Unlike the
dictionary definition, the Iocalization is strict, so that a local copy
is not available to user-defined functions that are invoked in f.
Global assignment is provided by the copula =: .

Strict localization provides significant advantages over the herita-
ble localization of earlier APL. and is now practicable because of
the ease of passing parameters in boxed arguments. Direct deti-
nitions are easily provided by a simple cover function employing
theformsm::” and “::d.

D. FROM, IOTA, and BASE

The monadic case of i . is defined like monadic iota, but extended
to list arguments as follows: i. 8 is (1 s)$+\O , (*/ 18)$l, but
reversed along each axis for which the corresponding element of
8 is negafve; the result for an empty argument is the scalar 0.
For example:

i. 2 3 i. 2 -3 i. '1 i. -4
012 210 0 3210
345 543

A new monadic case of base-value is defined as the base-2 value;
that is, # . v is equivalent Lo 2 # . u,. An infinite rank monadic case
of anti-base is defined as (&2) # : a, where n is the maximum
of the minimum lengths required to represent the (integer) atoms
of a.

E. PERMUTATIONS

The words \. and -. will be used for transposition and for
leading-axis reverse and rotale, the lines in the spelling indicating
the axes involved, as they did in the old symbols for these func-
tions. Other permutations (modelled upon, and replacing, Lhose in
[he dictionary called cycle. mix, and miz i&es) will be repre-
sented by @. and @:.

Standard Direct and Cycle Representations. If p is a permu-
tation of the atoms of i. n. then p is said to be a permulalion
vecfor of order n, and if n=#b. then pib is a permutation of Ihe
items of b.

The expression @ . p yields a list of boxed lists of the atoms of
i . #p called the srandard cycle represenlation of p. If (as in the
example in the dictionary) p=. 4 5 2 1 0 3, then @.pyields

APL QUOTE QUAD Hui, Iverson, McDonnell, Whitney

2 ;4 0 ; 5 3 1 because the permutation p moves to position 2
the item 2. to 4 the item 0, to 0 the item 4, to 5 the item 3, to
3 the item 1, and to 1 the item 5. The monad @ . is self-inverse;
when applied to a standard cycle representation it produces the
corresponding direcf representation.

A given permutation could be represented by cycles in a variety
of ways, and the standard form is made unique by the following
restrictions:

The cycles are disjoint and exhaustive (that is, the atoms of
the boxed elements together form a permutation vector); each
boxed cycle begins with its largest element (possible because
any rotation of a single cycle represents the same permutation);
and the boxed cycles are arranged in ascending order on their
leading elements (possible because the cycles are disjoint).

n’on-Standard Representations. If d and c are direct and cycle
representations of order Ib, then d@ . b and c@ .b produce the
corresponding permutations of the items of b. More generally,
since the item count of b determines the order of the permutation,
the arguments d and c may be non-standard in ways to be defined.
In particular, elements belonging to (i .2*#b) -#b are permitted,
and are treated as their residues modulo Ub.

If q is not boxed, and if the elements of (#b) 1 q are distinct, then
q@ . b is equivalent to d@ . b, where d is the standard form of q
given by a=.((i.n)-.nlq),nlq, where n is #b. In other
words, positions occurring in q are moved to the tail end.

If q is boxed, then the elements of (Ib) I> j{ q must be distinct
for each j, and the boxes are applied in succession. For exam-
ple, (2 I;3 0 l)@.i.5 is equivalent to (x2 I)@,(<3 0
1) 6. i. 5. and the result of either is the standard direct permu-
tation 1 2 3 0 4.

Atomic Rcprcscntation. If T is the table of all !n permutations
of order n arranged in lexical order (that is, / :T is i . ! #T), then
k is said to be the atomic representation of the permutation k{T.
Moreover, k@ : b permutes items of b by the permutation of order
#b whose atomic representation is (! %b) 1 k. For example, I@ :b
transposes the last two items of b, and -l@ : b reverses the items,
and 3@: b and 4@: b rotate the last three items of b. Finally,
(i . ! n) I : i . n produces the ordered table of all permutations of
order n, as does the fork 131 used in the expression (i . & ! @ : i .)
n.

The transformation between direct and cycle representations pro-
vided by the monad 6. is extended to non-negative non-standard
cases by treating any argument q as a representation of a permu-
tation of order l+>, /) .q. Similarly, the monad @: applied to
any cycle or direct permutation yields its atomic representation.
Forexample,@:O 3 2 lis5,asare@:3 2 land@:0;2;3
1 and r?:<3 1.

F. TRANSPOSITIONS and SECTIOSS

The symbol @ will replace the hoof, with the noun cases of the
conjunction (Defer and Prefer) modified so that ~@n defers axes
n of the right argument before applying u, and n@u defers axes
of the left. Consequently, the expression a nO@u@nl b defers
axes of both arguments before applying u. The monadic cases of
U&I and n@v are identical.

If the number of elements of n equals the rank of U, then U@YI
applies v to the cells selected by the axes specified by the atoms
of Y, and u&-r can therefore be said to apply u uf n, as suggested
by the name of the symbol @.

Because (: is an identity function, transposition alone can be
obtained by using { : @n.

A boxed argument n provides sectioning, grouping the axes spec-
ified by a single box into a single result axis. For example, if b

has the shape i. 6 and n=.2;4 l;O, then the shape of { :@n
bis3 5 2 10.

C. FORMAT

The dyadic case of format (” :) is defined with both ranks 1, and
with each element e of the left argument controlling the rep-
resentation of the corresponding element of the right argument as
follows:

w= . < . 1 e specifies the total width allocated; if this space is
inadequate, the entire space is filled with asterisks.

d= .< .lO*(1 e) -ti specifies the number of digits following
the decimal point (which is itself included only if d is not
zero.)
Any negative sign is placed just before the leading digit.

If e>: 0. the result is right-justified in the space L)

If e<O. the result is pm in exponential form (with one digit be-
fore the decimal point) and is left-justified except for two fixed
spaces reserved on the left (including the one for a possible
negative sign)

The monadic rank of It : is infinite, and the result is equivalenl
to the application of the dyadic definition with a left argument
chosen to provide a minimum of one space between columns.
Default output is equivalent to the use of the monadic case.

H. EXTERSAL COWVUNICATION

Communication with the keyboard, screen, and operating system
files is provided by the conjunction X . , whose many arguments
provide considerable flexibility.

1. SO%IE IMPLICATIONS FOR TEACHING

The mere introduction of lists, scan, and outer product allows a
wealth of interesting explorations, as in +\a=. 0 1 2 3 4 5
for the triangular numbers, in +\l+a+a to see that the odd num-
bers sum to squares, and in various outer products such as a+\~
and cz*\ca to see addilion, multiplication, remainder, divisibility
and other tables, including the binomial coefficients (Pascal’s Tri-
angle) provided by a ! \a.

Lists are easily explained as the use of collective nouns, and the
scan is easily explained as an adverb. Unfortunately, the simple
and important notion .of a function table required, in traditional
APL, not just a further use of an adverb, but the use of a conjunc-
tion whose first argument could only be explained as an historical
anomaly. The present use of an adverb for outer product avoids
this difficulty.

Expressions such as pr= . +X provide a simple introduction of the
notion of function definition (and of the hook[3]), and expres-
sions such as pr\l 2 2 2 2 2 2 and pr\3 7 15 1 show
interesting uses of such a defined function in producing successive
approximations to interesting quantitites.

Expressions such as 8wn=. +/ and sqrt= , A& 0.5 and 1 og= .
10&A. and neq=.-. B= provide simple and interesting uses of
adverbs and conjunctions. Moreover, the general form of defini-
tion provided by the : : conjunction permits a simple introduction
to the use of iteration and recursion.

The generally useful notions of classification can be introduced by
using the outer product a< : Ib in expressions for producing bar-
charts and graphs, and can be explored further using the expression
I : i .2hn to produce the complete classification table of order
n. Thus if CCT=.#:i,2Alu=.P 3 5, then u+. .*CCT and
v*. . ACCT produce the sums and products over all subsets of u.

In a more specialized area, the functions 6. and @: provide
powerful facilities for the discussion of permutations. Thus,

(i . ! 4) @: i .4 displays a complete table of permutations, and
an expression such as @. 4 3 0 1 2 can provide an introduc-
tion to cycles and to the use of the LCM (* .) of their lengths
to determine the power of a permutation. For examples in further
topics, see the appendix.

J. THE C MPLEMESTATIOX

The system is implemented in C, because it is an adequate lan-
guage available on a wide variety of machines. The implemen-
tation is guided by two principles: clarity, and exploitation of
underlying facilities. Efficiency is not a main objective,

Clarity does not mean the micro (and relatively insignificant)
clarity of individual C statements, but the macro clarity of being
close to the APL or mathematical definitions. The C code is
written to be understandable by an APL-knowledgeable reader.

Facilities already available in the environment are exploited: for
memory management, the C library functions ~UOC t) and fr.0 t)
are used. the underlying virtual memory facilities being presumed
to be adequate; for session management, the system reads from
standard input and writes to standard output. This, together
with the ASCIl spelling, makes it possible to use any of sev-
eral widely-available session managers, such as EMACS or Sun-
View/OpenLook.

Organi-Lation. The system is organized along the lines suggested
by the dictionary, in particular. by the parser [l. p. 381. The
parsing rules are expressed in C as follows:

#define RXS (NOUN+VERetADV+CONJ)
/define EDGE @lAP.KtASGNtLPAR)

static mtruct {I c[4];AF f;I b,~;)c~sos[] - (

EDCEiNwtVERB, v=-, NOUN, ANY, v.rb,l, 2,
CONJ, NOUN, VERB, NOUN, v*rb,2, 3,
EDGEtADVtVERBtNOUN,NOON, VERB, NOUN, verb.1, 3,
tiGE+NX'tVERBtNOUN,NOUNtVERB,ADV, ANY, adv, 1, 2,
EDGEtALWtVERBtNOU?I,NOUNtVERB,CONJ. NOUNtVERB,conj,l, 3,
CDCEtALJVtVERB+NOQN,VSRE, VERB, VERB, fom,l, 3,
EDGE, VERB, VERB, ANY, fom,l, 2,
mxt, =a, RNS, ANY, i*, 0, 2,
==+, us, RPAR, ANY, P~C,O, 2,
ANY, my, Am. =-, mov9,0,-1,

);

A sentence to be parsed is placed on a left stack, and as execution
proceeds words are moved from the tail of the left stack to the
front of a right stack. When the first four words of the right stack
match a pattern (columns 0 to 3 of the table), the corresponding
action (4) is triggered and applied to the indicated words (5, 6),
with the result replacing these words.

Data Structures. The fundamental data structure is the APL array,
that is. the C structure:

typ-d-f long I;
typodaf l truct (I t,c,n,r,a[l];)*A;

t t) e
P c re erence count

; ;;urber of atoms in the ravelled array

l shape list
v atoms of the ravelled array (immediately following m)

AFL QUOTE QUAD 195

All objects, whether numeric, literal, or boxed, whether noun,
verb, adverb, conjunction, or punctuation, are represented by this
structure. Most C functions in the system accept APL arrays a~
arguments and return them as results.

Definitions and macros. Extensive use is made of C preprocessor
definitions and macros; to augment the expressive power of C.
to enforce uniformity, and to increase readability. Example: An
“APL function” is a function which accepts one or two APL array
arguments, and returns an APL array result. The macros Fl and
F2 encapsulate this convention:

#dofin* rl(f) A f (w,sdf)A w,mlf:
#define r2 (f) A f (a,v,@4f)~ a,~, l rlf;

(=elf is a pointer to function parts - rank, inverse, etc.)

A compact but readable programming style results from using
such definitions. The implementation of , :Y (ifemize) and X, :Y
(fuminole) are cases in point:

Itemize: , :y adds a single unit axis to y, making the shape 1, $y.

rl (laminl) (R reahq. (over (on*, chap) , r81*1 (w)) ;)

Laminate: If the shapes of I and y are equal, then X, :y is defined
by (, :I), (, :y). If one is an atom a, it is first replaced by’ ~$8,
where l is the shape of the other.

F2(lamin2) (R ovw (~,r~~h~p~(ovrr(on~,~~~(AR(w) ?~:a))
,rav*l(M)):)

Statistics. Analysis of the C implementation as it stands on 1990
2 22 yields the following statistics. (Header files and variables
without functions are excluded.)
C Fns 240 Lines 1345
Lines 1345 +/ Line lengths 44722
Average lines/fn 5.6 Average chars/line 33.3
Min 1 Min 1
M&X 40 Max 89
Median 1 Median 32
One-liners 125 One-character lines 91

181 of the 240 functions are APL functions.

Therefore, the implementation consists of a large number of short
functions, having short lines, with a well-defined uniform inter-
face. These are characteristic of an APL programming style.

REFERE!WES

1. Iverson, K.E., A Dictionary of APL, APL Quore-Quad, Volume
18, Number 1. September 1987, pp 5-40.

2. Cajori, Florian, A History ojM&emarical Notations, The Open
Court Publishing Co., 1928. Volume I, Paragraph 313.

3. McDonnell, E.E., and K.E. Iverson. Phrasal Forms, APL @me-
Quad, Volume 19. Number 4. August 1989, pp 197-199.

APPENDIX

The forty-Eve frames in the following appendix show examples
of use of the system in a variety of topics. All were actually
executed on the system in March 1990.

Hui, Iverson, McDonnell, Whitney

ALPHABET A SPELLING B URAMMARC
s R. sentence=.'Cndes=. u.~.~~CLA'~~

256
fahrenheit =. 50

j=. a. i. tad'
(fahrenheit - 32) * 6 % 9

/-sentence 10
.I

97 65
pr%ces =. 3 1 4 2

indez =. a. 5. 'CrA' orders =. 2 0 2 1
j+\t. 9

97 98 99 100 101 102 103 104 105
orders * prb28

6082
65 66 67 60 69 70 71 72 73 S /-sentence

(i+\i.3O){a.
t/ order8 * prZce8

5 16
PbcdefghijkZmnopqrstuvwtye(I j- +\12345
ABCDEFGHIJKLMNOPQRSTWWXYZC\3~ >/.sentence I 3 6 10 15

a.(-j-t\%.30 index 23*\12345
abcdefghijklmnopqrstuvwzyz(I}- =. 246 010
ABCD~~~HIJKLMNOPQRS~XYZ~\~A 0. 3 6 9 12 15

3 + 125 * 6 X 100 2. dear=. - d 1
10.5 'al' deer -1 0 I 2 3

2. 2 5 -2 -I 0 I 2
01234 sentence PARTS OF SFElXli
56789 97”65 50 fahrenhest Nouns/Pronouns

*\-Ojl -1 Of-1 1 + - * X deer Verb8/PrOVerbS
-1 W-l 1 Ojl 'CbC =. 3 14 2'

3 i-4 2
/\ Adverb8

09-l 1 Ojl oj3 8 Conjunction
I 0.71 -1 RbC =. Verb-to-be

Ojl -1 Oj-1 1 3142 (1 Punctuation

TABLES Da TABLES Db TABLES DI
prices=. 3 1 4 2 n=. 0 1 2 3 :\ ‘" 1+c. 5
orders=. 2 0 2 1 n t\ n 00000

0123 10101
prices * order8 1234 12012

6082 2345 12301
prices *\ orders 3456 12340

6063
2021 *\ - n t/ o= I\ - j=. 1-e. 15
8084 0 0 0 0 122324243426244
4042 0123 2=+/o=:\ - j

0246 0i1010100010100
TO REXD A TABLE, 0369 (2=+/O=:\- j) I j
BORDER IT BY ITS 2 3 5 7 11 13
ARGUMENTS: A\-%. 4

100 0 =\-4. 4
* I 2021 111 1 1000
~_------_-- 124 8 0100

: 16063 12021 13927 +.\- 0 1 0010 0 0 0 1
418084 i: <:\-4. 4
2 l4042 1111

+:\- 0 I 0111
10 0011
0 0 0001

TABLES Dd CLASSIFICATION Ea CLASSIFICATION El
text=. 1 % Sing Of OlRf ' x=.1234567 x=.1234567
text=. text,'gLad and big' g=. (r-3) * (z-5) g=. (s-3) * (z-5)

Rtph=. 1 abcdefghijktmo' 8!0_1036 8!iO-1036
atph=. aZph,'pqrstuwxyzl

'Ol'{-lO{.atph=\tezt
range=. m-2. I+(m=. >./y)-C./y rcmge=. m-C. >:(m=. Z./y)-<./&
range range

1010000100100001000010001000 876543210-I 876543210-l
0000000000000100001001000000
0000000000000000000000000100 bc=. range <:\ L/
0000000000000000000000000000 bc

Es=; runge <:\ g
' *'

0000000000000000000100010000 1000001 * *
0000000000000000000000000000 1000001 * *
0000000001000010000000000000 1000001 * *
0000001000000000100000000001 1000001 * *
0000000000000000000000000000 1000001 * t
0100100000000000000000000010 1100011 ** **

1100011 ** **
2 13$+/"1 atph=\tezt 1100011 ** **

7310202303002 1110111 *** ***
0220001000000 1111111 *******

<\ 0 0 0 10 110 1
000100000

APL\? 196 APL90

bc
CLASSIFICATION: graphs EC CLASSIFICATION: graphs Ed CLASSIFICATION +,* on eubeete Ee

<UC
1000001 1000001 0=.00001111
1000001 0000000 b=. 00110011
1000001 0000000 c=.01010101
1000001 0000000
1000001 0000000 cct=. a.b,,:c
1100011 0100010 cct
1100011 0000000 00001111
1100011 0000000 00110011
1110111 0010100 01010101
1111111 0001000

2 3 5 +..* cct
<\ bc ' *' {- <vc 053027510

1000001 * * 2 3 5 *..A cct
0000000 1 5 3 15 2 10 6 30
0000000
0000000 +/act
0000000 01121223
0100010 * l

0000000
o ~:f2=.(2=+/cctf#"l cot

0000000 101
0010100 * * 110
0001000 * 235>...*c2

553

CLASSIFICAl'ION dot products Ef SZRVCTVRES: box Fa STRVClVRES: each FL
tezt text

2351 OS3627510
4211

C sing of otaf glad and bCg S sing of otaf @ad and big
01234567

______;_____-___---_____ -. text uords=. /. text
100001111
~00110011

gib dna dalg fato fo gnCs i
< 'glad' uorde

0 01010101

row0 =. 2 3 5 1: cot5=. 1 0 1 I
t7ld i sing of otaf gtad and big

row0 * co15
2 0 5

+/ row0 * cotS
7

u=. (<'gtcrd').(<'cmd'),<'bCg'

+i+qq

1 0 2 3 (words

pqq-qGsing[i

row0 +..* cct
0 5 3 827 510

row0 *..A cct 1 5 3 15 2 10 6 30

row0 A cot5
215

*/ row0 A 0015
10

-. w > 1 0 2 3 (words

(gnislilfolfalol

-18*< text

i sing of oZaf glad and big

Sl'RUCl'URES open Fc PROGRAMS: sZmpte Da PRGGRAMS: conditional G2
root=. 'y. A X2'::'y. A Xx.4 p=. '$.=. l+y.<o'

words root 64
'u- A x2' 0 z . "'DOMAIN ERROR'q'

i sing of otaf glad and bZg 3 root 64
4 conditional=. (p;~;r)::~'

rPr=. IX y.'::'z. + X I/.'
tt=. > words 3 rPr 4 conditional -49
tt 3.25 DOMAIN ERROR

i rPr/l222222
sing I.4142 conditionat 49
of rPr\12222 7
olaf 1 1.5 1.4 1.41667 1.41379
gtad rPr \ 3 7 15 toaero= .(p;'y.-l';'y.+l')::"
and 3 3.14206 3.14151
big triple=. '3*~/.'::~~ tosero 3

tripte 2.5 2
s tt 036922 to2ero -3

74 3 triple 6 2
domain error toxero "0 C-2 -1 0 1 2 3)

tr=. '3*y.'::* -1 0 -1 0 1 2
tr i. 5

036912
357tri.3

0 5 I4

APL QUOTE QUAD 197 Hui, Iverson, McDonnell, Whitney

PROGRAMS: iterative Cc PRGGRAMS: recursive Gd
a=. 'r=.
b=.

1): $.=. I/. Y 1'
PROGRAMS: recursive Ge

*a-=. r * l+ # $.I
a=. I$.=. 2-O=y.' ; '1' a=i'$.=.l+ocn=.x.-I'

* $: U.-l' b=.' ,:2j.y.'

factoriaZ=. (o:b)::"
~&%aZ=. (a.<b)::fj factoriat 5 ;=.;:n.s:o 2 1(y.),(l$:y.),'

factoriaZ 5 =."::(a;b;c,'n$:-.y.') 120

120
factoriaZ1vO i * 6

2 hano% 'ABC'
d=. 1 1 2 6 24 120 '(r,O)+O,r=. $: y.-1'
binomiat=. (a&d)::" %
binomiat 4 CB

> a;b
r=. 1 1: $.=. I/. I 1

14641 \. 4 haoi 0 12
002011002212002

r=. r * I+ Y $. f-. 211202211001211
C?=. 'r=. (0.r) + (r,O)'

'r,+/(-2)(.r=. S: y.4'

binomiaZs=. (a;c)::'l
fibonacci=. (a,<f)::"

binomiats 4
ffbonacos 10 1. 'ABC'<- 4 hanoi 0 1 2

1 1 2 3 5 8 13 21 34 55 89
14641

AACABBAACCBCAAC

fib=.(a;'r=
CBBCACCBBAARCBB

.r,+/(-2)(.rt)::"
fib 10 iTi=

'S.=. 2-O=z.' ; 'I'
=. 1 1 2 3 5 8 13 21 34 55 89 'y.*s.%Yc.$:d<:y.

d=. 'r=. 1 }: $.=. 2. % 1'
outof=. "::(g,<h)

a=.~r=.O#S.=.y.#l+n=.O'
d=.lr=.r,(n=.l+n),rl

e=. 'r=. (r*l+y.=.y.-l)Xl+#$.'
outof"O\-C. 4 h=.(c;d)::"

1 1 1 1 h4
outof=. "::(d;e) 0123 3 0utof 5 0

013
1~~312141213121

10 0001 1213121

PROGRAMS: recursive Of
crb;:a=.3 3$'abcdefghi'

GEOMETRY: 2-space Ha GEOMETRY: 3-space Ht
Zength=. ‘/t:+/y./Q’::” tri.1
Zength 12 5 347

def 13 004
ghi i: tri=. 7 2 3 $ 9 111

(f=.f-. "1 0 f=.i.SU) a 347
12

2%~ det tri,l
004 2

02 1 -."I tri
0 1

2% det 1 0 2 ("1 tri,l
473

<'I2 (minors=.f (lB}."l) a
2

040 (: tetrahedron=. O,"l =* i. 3
ml hi ef bc hi bc ef 1 j:Zsides=.Zength t: 5 5.65685 semiper=. 2 k tri-1-."I +/Zsides tri 0 0010 0 1 0 0 0 1 0

5.82843
p=.'$.=. l+l=#y.' }: r=.JO{,~.' area=.
q=.'CO{"l y.)-..*$:I'2 minors 2/.'

h:*/semiper-0,Zsides voZwne=. det&(,dl) X !&Y
area

(:b=.?3 3$9 2 votwne tetrahedron
164 tri,l -0.166667
410 347
668 004 (: $ tet=. 7 3 4 9

(det=.(p;q;r)::") b 111 6030
-112 3658
s=.l(O{fT1 y.)+..*$:"2 minors y.' 2 X- det tri,l 7405

(permanent=.(p;s;r)::") b 2 VoZwne tet
320 11.5

CONNEC2IONS: arcs Ia CONNEC2IGNS: corm. matrix Ib .CONNECTIONS: family Ic

arcs=. 7 22 2 $ 0 8 '01234567' (- \. arcs 1 TO 10 10 0
8 {. arcs 1315740400574556026276 10000010

16 6405360533460372557155 01000100
34 b=. '(i.,-t.)e.' 00001000
I 0
55

cmFarcs= . "::(b,'~.+..*t., 1') 10000110
00011101

73 cm=. 8 c7nFarcs arcs 00100101
46 00010110
0 0 1 To 10 10 0
45 10000010 points=. 1 0 0 0 0 0 0 1

01000100
\. n=.arcsinodes=. tABCDEFGHT 00001000 points i. . . *. cm

BDBFHEAEUFHEFFGACGCHG 10000110 10010110
GEAFDGAFDDEGADHCFFHBFF 00011101

00100101
6(. bares=. <"I n

points+.points+. . . l .cm
00010110 10010111

BG DE BA FF HD EC +/cm cmmfam=. 31132632 "::'x.+.x.f...*.~.'

+/+/cm
points immfam cm

10010111
15 <. , arcs 21 fam=.":: 163410557346004 'hnfam&y...(Wy.)x.

points fam cm
11111111

198 APL90

CONNECTIONS: closure Id CONNECTIONS: adjacency Ie SORTINO Ja
{: cm2=. 0=?8 8 S 5 a=.OOQOll11

10000000 b=.00110011 t=.'i sing of olaf gtad and big’
00100010 c=. 01010101 {: tt=. > /. t
00000010 $d=. a,b,,:c c
10000000 3 sing
10001100
00000000

yj=. 'l=y. +..-: \. Il.‘::” of
. e=. adj 1. d otaf

00000000 01101000
00110010 10010100 %Y

10010010
points=. 1 0 0 0 0 0 0 1

big
01100001

points fam cm2 10000110 /: tt
10110011 01001001 5640231

00101001
cm2 fam cm2 00010110 tt /: tt

10000000 e{' *' and
00100010 ** l big
00000010 * ** glad
10000000 * * * i
10001100 ** * of
00000000 * ** otaf
00000000 * * * sing
10110010 ** *

* **

SYMBOLICS: reduction and scan Ka COMPOSITIONS: and (1) La COMPOSITIONS: atop (@I Lt
o=.'(' }: c=.')' }: s=. 1-f A82 c=. l-G.4 c :e- \ c=. 1+ i. 4
minus=. '~::'o,x.,c,s,y.~ 14916 0123
'a' minus 'b' 2&A c 1012

(al-b 24816 2101
tist=.'defg' poL)=. hS2::A 3210
minus / list pow c pow c

cd)-(e)-(f)-g 1.16 729 65536 db=. 2c4*::*
minus\tist c +&z c tr=. 3cf*::*

d 2 1 0.666667 0.5
cd)-e tr=. 38*::* db e tr \ - c
cd)-(e)-f &=. 2.3*::* 2 4 6 8
Cd)-(e)-(f)-g ctr&dbc 4 B 12 16

d,e,f.g=.<:f=.c:e=.<:d=.h 4 16 36 64 6 12 18 24
4321 cdb&trc 0 16 24 32

" minus / list . 9 36 01 I44 db&tr\-c
2 c +&A. c 9 10 27 36

11 minus \ list . 0 1.30629 2.19722 2.77259 10 36 54 72
4132 A C +&A. C 27 54 81 108

times=. rr::~0,2.,~,~~*~~,~.~ 14916 36 72 108 144
list times'10 -. list db d tr \- c

(d)*g 9 18 27 36
I$*i

CgGd

18 27 36 54 01 54 108 72

36 72 108 144

COMPOSITIONS: under (") Lc COMPOSITIONS: fork (f g h) Ld COMPOSITIONS: hook (g h) LE
+.\ a=. 001011000 CC+ * -Id=.-.c=. Z. 4 a=.5 6 7 8

001111111 -9 -3 3 9 b=.l 2 3 4
+.\ -, a q=.+*- lg\ (*>:I b lg\

000111111 cq\c /f h 2 6 12 20 2 h
-. +.\ -. a 0 -1 -4 -9 A a (*>:I b \

111111000 1 0 -3 -8 z Y= I/ 10 18 28 40
+.\ n -. a 4 3 o-5

u

111111000 9 8 5 0 a (*>:I\ b /g\
b=. 1 2 3 4 J: c=. 3 4 5 6

0 T-4 -9
lB\ 10 15 20 25 v h

b +&A. c f h 12 10 24 30 \
1.09861 2.07944 2.70805 3.17805 r=. -,+ I4 21 20 35 Li

A b +&A. c crd L/ L/ 16 24 32 40
3 0 15 24 -3 3 (+%I/ 12 2 2 2 2 2

b +“A. c -1 3 1.4142
3 0 15 24 13 (+z)\ 12 2 2 2

{:text=.1i';1sing';'ofT;'oZaf9 3 3 1 1.5 1.4 1.41667 1.41379

-1 db=. tr=. 2a*::* 38*::* 3 3.14206 (+%I\ 3 7 3.14151 15
(db+tr) c (+%I\ 11 11 1

-.I'> text 0 5 10 15 1 2 1.5 1.66667 1.6
(db*tr) c C-Z)\ 12 2 2 2 2

0 6 24 54 1 0.5 0.333333 0.25 0.2 0.166667
(cib*db+tr) c *- (+!G)/ 1) 12 $ 12

0 10 40 90 3

APL QUOTE QUAD 199 Hui, Iverson, McDonnell, Whitney

FVNC!UONAL PRGGRAMMING Ma SETS: propositions Na SETS: relations Nb
bc=. Od, + ,dO {: a=. 2% i. 11 S=.C.0 l: bc 1 0 0.5 11.5 2 2.5 3 3.5 4 4.5 5 betongsto=. r;.', ; y,11

(2d<: *. <d5) a i betongsto p
,

11
bc bc 1 00001111110 00110101

121 ((2dc: *. cd51 a) Y a e=. betongsto
bc bc bc 1 2 2.5 3 3.5 4 4.5 pei

1331 ((2dc: *. <dS) Y (:I a 11110
F- 'S.=.l,y.Y2' 2 2.5 3 3.5 4 4.5 c=. -.Qv=. ed'aetou'
r=. ‘f=. {:’ ; ‘j=. t.df’ ((: I- 2d<: *. <d5) a rabcdefghCjktmno'
pouer=. 2: :(q;r)

atph=.
2 2.5 3 3.5 4 4.5

bc power 3 (1)
aZph=. aZph,'pqrstuvwzys'

2nt=. = (. (v atph)#atph
1331 Cnt a aeCou

bc . . 3 (1) 10101010101 (U- cl atph
1331 ((2d<: *. Snt) a) I a

c3= (Od,+,dO) . . 3
bcdfgh,fktmnpqrstvwxys

c3 i 2345
(j: Y- 2d<: *. Cnt) a

1331 2345
2a* . . 3"O z. 5 (W- 2dc: l . Cnt) a

0 0 16 24 32 2345
2d+ . . 3"O c. 5

678910
F- **: :-
5884

21

SETS: union, etc. NC FAMILIES OF FVNCl'IONS 00 FAMILIES OF FUNCl'IONS O.?
(even=. Od=d(281))a=. C. 16 z=.l 2 3 4 5 6 7 c=. 4 2 -3 2 1

1010101010101010 02 vandermonde
prime=.V2=+/0=y.:-4+i.y.T::q~~0 1 4 9 16 25 36 49 111 11 1 1

prime a th3 123 4 5 6 7
0011010100010100 10 27 64 125 216 343 1 4 9 16 25 36 49

(prime a) % a (4*rA2) + (-3*sA3) 1 0 27 64 125 216 343
2 3 5 7 11 13 1 -0 -45 -128 -275 -504 -833 1 16 01 256 625 1296 2401

a#-(prCme*.even)a CSW INTER- *vandermonde
2 SaTCl'IONl 2 3 A-\ 2 6 ;;'il8 348 014 1636 2958

aHprime>even)a [SET 14 9 16 25 36 49
3 5 7 11 13 DIFFERENCE3 1 8 27 64 125 216 343 poty=. "::'x.+ ..*\.&j*h\i.Yx.'

tripZe=.Od=d(38:) 4 -3 +.. *2 3 A-"\X c poty t
q=. even+.triple WEIT UNION1 1 -8 -45 -128 -275 -504 -833 6 28 110 348 814 1636 2950
(q a) U a

0 2 3 4 6 8 9 10 12 14 15
r=. prime +. even *. triple e=. 0 1 2 3 4
(ra) la vandermonde=. e h-1 x

0 2 3 5 6 7 11 12 13 vandarmonde
11111 : 1

123 4 5 4: 1 4 9 16 25 36
1 0 27 64 125 216 343
1 16 01 256 625 1296 2401

IWERSES AND DUALITY Pa INVERSES AND DVAZITY Pb INVERSES RND DUALIzW PC
cFf=. '(y.-32) * 5X9'::" r=. 2 3 4 1: 8=. 2 4 5 f=. +d3
fFc=. '32 + (g. * 925)'::" f?=* -63
dc=. 40 -20 * i. 0 invtog (tog 2-1 + (tog 8)
fFc dc 4 12 20 (: x=. c. 4

-40 -4 32 68 104 140 176 212 Z-*8 0123
cFf fFc dc 4 12 20

-40 -20 0 20 40 60 80 100
xx123 A (A. r) + (A. 8) 3x6

123 4 12 20
tog =. 'IO A.M.‘::” r +“A. 8 !f x
invtog-. '10 A &.'::'* 4 12 20 6 24 120 720
log F. 24 4 75 7

1.38021 0.60206 1.87506 0.845098 r +"x 8 g!f 5
+/ log u 1 1.71429 2.22222 3 21 117 717

4.70243 X (Xr) + (2s)
invlog +/ log M 1 1.71429 2.22222 !"f z

50400 3 21 117 717
+"X / r

0.923077 !“(+d3) I
X +/ X r 3 21 117 717

0.923077
!“(*dZ) I

0.5 1 12 360

APL\? 200 APL90

