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This paper describes a version of APL based upon the dictionary 
[ 11, but significantly simplified and enhanced, and directly usable 
on any machine that provides ASCKI characters. It also describes 
salient features of a C implementation that has been tested on 
several machines, and is available as freeware. There have been 
four primary motivations for this work: 

1. To provide an APL system for use in teaching mathematics 
and related topics that is modern, free, and transportable. 

2. To devise a spelling scheme based on the ASCII alphabet that 
preserves the major advantages of the one-letter words based 
on the special alphabet commonly used in APL. 

3. To exploit the advantages of breaking from the strict con- 
formance with earlier APL that is normally obligatory in com- 
mercial systems. 

4. To explore an unusual style of C programming that makes 
heavy use of preprocessing facilities. 

Examples of the use of the language in a variety of topics are 
provided in an appendix. 

We are indebted to a number of colleagues for advice and help: 
Anthony Howe. David Steinbrook, Bob Bemecky, Mark Czer- 
winski, L.J. Dickey, Jiri Dvorak, James Hui. Eric Iverson, Paul 
Jackson, and Roland Pesch. 

A. ORTHOGRAPHY 

At the time of the first implementation of APL, the then-new 
IBM Selectric typewriter with its changeable type element offered 
a welcome escape from the limitations of the existing printers, 
which provided only a few symbols beyond a one-case alphabet, 
punctuation, and the decimal digits. The Selectric was exploited 
by designing an alphabet that provided single-character spelling 
of all words in the language (except for the literal names used for 
variables). 

This spelling scheme offered several advantages, due to the fact 
that the words were: 

1. Mnemonic, using the shapes of symbols to suggest the func- 
tions denoted, as in up- and dow:n-arrows for the functions fake 
and drop. 

2. Universuf, in avoiding mnemonic devices rooted in particular 
natural languages. 
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3. Disjoint from the literals used in variable names, SO a~ 
to a) avoid the introduction of reserved words, b) improve 
readability, and c) obviate required spaces around words. as 
in a 1 b instead of a mod b. 

However, special alphabets pose serious display problems, and it 
is desirable to have a spelling scheme based on a widely available 
computer alphabet. We have here attempted to design a spelling 
scheme based on the ASCII alphabet that retains the advantages 
cited above for the older spelling scheme. 

Words are spelled with one character or with two, the last of which 
is a period or a colon; words are formed by scanning from right 
to left, each colon or period (not in a number) combining with the 
character to its left to form a word. Any number of spaces may 
be used between words, but spaces are not required, except that 
in a number, a space or zero must precede a decimal point that is 
not preceded by a digit or negative sign. 

The spelling scheme is shown in the language summary of Table 
1, a study of which should clarify the application of the following 
guides used in its &sign: 

1. Adopt mathematical symbols (such as + - < > ! *), and 
symbols whose shape or usage somehow suggest the mathe- 
matical notions, as in the number sign # for number of items 
(in an argument, or selected in replication), and De Morgan’s 
use of A for power[2]. 

2. Use single characters for other primitives whose use should 
become common, as in & @ ; It _ and \ for composition, 
upon and defer, link, rank and under, negative sign, and scan 
and outer product. 

3. Use a dot or colon with a common mathematical character 
that suggests the function, as in <. and a. for min and max. 
and in =. and =: for local and global assignment. 

4. Use a dot with a letter that suggests a mathematical symbol 
or definition, as in o. for the family of circular functions, in e. 
for membership (because epsilon is used for it in mathematics), 
in i . for integers. and in o . and t/. for arguments (because 
of the analogous use of t and I/ in mathematics). 

5. Use related strings for related functions, as in A for expo- 
nential, A. for its inverse (natural log), and h: for root and 
square root; in # . for base value, and # : for its inverse; in + 
and * for plus and limes, and + . and * . for or and and (their 
analogs in logic); and in @ for a conjunction that permutes axes, 
and @ . and @ : for other permutations. 

6. Adopt mnemonic aids such as the three cases of $ (which 
suggests an S) for Shape, Sequence lisL, and Self-reference; and 
. . for the Dot or /nner product. This adoption of the double 
dot obviates the spaces previously needed around the dot in 
some cases. 
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Anyone who is familiar with earlier spelling of APi. words, or who 
is using earlier APL literature, may End it helpful to pronounce 
them in the traditionat way, as in iora for i.. 

The function /. CULS its list argument into words according to 
rules appropriate to an APL sentence, Thus, /. '+/3 4 5 
*i. 3 ’ yields the boxed list -t and / and 3 4 5 and * and 
2. and3. 

* : 

= NubClassify ; Equal 
< Box : LessThan 
> OPen ; GreaterThan 
_ KegativeSign/lnfiniryy 

+ Conjugate ; Plus 
* Signum ;Times 
- Negate : Minus 
X Reciprocal ; Divide 

A Exponential : Power 
$ ShapeOf ; Shape 
- 30th ; Cross 
1 Magnitude ; Residue 

. KOT USABLE 
: NOT USABLE 
, Ravel ;Chainltems 
: Table ;Link (+Box) 

ry Tally ; copy 
@ Atop-At 
/ lnsen : x\Vay Insert 
\ Scan ; Oulerl’roducl 

{ Catalog : From 
) .Merge 
n ConstCutRankL’nder 
dl Composition-With 

! Factorial ; OutOf 
7 Roll ; Deal 
( Open Parenthesis 
1 ClosePar-Label-Cmd 

Is (Local) Is (Global) 
Floor : Minimum Decrement ; LeOrEq 
Ceiling ; Maximum Increment : GtOrEq 

; GCD (Or) 
; LCM (And) 
Reverse ; Rotate 
Matrixlnv ; MDiv 

NaturalLog ; Log 
SequenceList 
No1 (l-) ; Less 

Det ; Do&cd 
Companion 

Boxltems ; Link 

Base2 ; Base 
Dir+ ; Permule 
Words 
Transpose 

Sub : Take 
Raze ; Drop 
Execute ;Execute 

Alphabet 
; Epsilon (Member) 
Integers ; IndexOf 
PiTimes : Circular 
First Argument 
Last Argument 
; hlemberOflnterva1 
External (Foreign) 

; Nor 
; h’and 
; Match 

SquareRoot : Root 
SelfReference 
Nubsieve ; NotEqual 
Custom 

Definition 
Itemiz : Laminate 

Antibase ; Antibase 
AtomPermute 
Craderp ; Son 
GradeDown ; Sort 

Right (Dex) 
Left (Lev) 
Format ; Format 

Table 1: LANGUAGE SUMMARY 

B. MAJOR CELLS, REPLICATE, RESHAPE, and 
OUTERPRODLCT 

Because of the importance of major cells, we will adopt the terms 
km and ~fom for the major cells and the scalars. We will also 
adopt the symbol % for the ifem cow21, or rally; #b is 1 if b is an 
atom, and is otherwise equal to O{$ b. 

The dyadic case n#b is similar to the replicate function previously 
provided (for historical reasons) by the derived function n/; the 
successive atoms of n specify the number of repetitions of succes- 
sive items of b to be selected. The reshape ($) is also redefined 
to apply to items rather than aLoms; the old behaviour is obtained 
by ravelling the right argument. 

Catenation of the items of A and B by the expression A comma-bar 
B is more useful than the catenation of l-cells provided by the 

comma; in particular, the catenation of l-cells can be provided 
by comma-bar of rank 1. Consequently, we will use the comma 
for catenation of items (that is, catenation along the leading axis), 
and drop the symbol comma-bar. For similar reasons, the / and 
\ will be adopted for the meanings that were assigned LO /-bar 
and \-bar, and the latter pair of symbols will be dropped. 

The table function (previously provided by the monadic case of 
the comma-bar) will be provided by the semi-colon. iu dyadic 
use being assigned Lo the link function. Thus, a; b is defined by 
(<a> ,b, with the right argument b automatically boxed if it is 
open. 

The expression jot.f for outer product uses (for historical reasons) 
a conjunclion where an adverb would serve. We will adopt the 
dyadic case of f\ for this purpose, and the jot and the noration 
jot.f will be dropped. 

C. USER-DEFIXED VERBS, ADVERBS 
and COSJUNCTIOSS 

The conjunction denoted in the dictionary by the inverted Greek 
Delta will be denoted by the double colon, and the right-arrow and 
$ used to denote the sequence control’and self-reference will be 
replaced by $. and $:. The forms m: :d and 1: :a and 2: :a 
will be otherwise adopted. 

As in the dictionary, assignment provides dynamic localization; for 
example, the first execution of a=.g a in a function f applies 
g to the global value of a, but produces a local copy. Unlike the 
dictionary definition, the Iocalization is strict, so that a local copy 
is not available to user-defined functions that are invoked in f. 
Global assignment is provided by the copula =: . 

Strict localization provides significant advantages over the herita- 
ble localization of earlier APL. and is now practicable because of 
the ease of passing parameters in boxed arguments. Direct deti- 
nitions are easily provided by a simple cover function employing 
theformsm::” and “::d. 

D. FROM, IOTA, and BASE 

The monadic case of i . is defined like monadic iota, but extended 
to list arguments as follows: i. 8 is ( 1 s)$+\O , ( */ 18 )$l, but 
reversed along each axis for which the corresponding element of 
8 is negafve; the result for an empty argument is the scalar 0. 
For example: 

i. 2 3 i. 2 -3 i. '1 i. -4 
012 210 0 3210 
345 543 

A new monadic case of base-value is defined as the base-2 value; 
that is, # . v is equivalent Lo 2 # . u,. An infinite rank monadic case 
of anti-base is defined as ( &2 ) # : a, where n is the maximum 
of the minimum lengths required to represent the (integer) atoms 
of a. 

E. PERMUTATIONS 

The words \. and -. will be used for transposition and for 
leading-axis reverse and rotale, the lines in the spelling indicating 
the axes involved, as they did in the old symbols for these func- 
tions. Other permutations (modelled upon, and replacing, Lhose in 
[he dictionary called cycle. mix, and miz i&es) will be repre- 
sented by @. and @:. 

Standard Direct and Cycle Representations. If p is a permu- 
tation of the atoms of i. n. then p is said to be a permulalion 
vecfor of order n, and if n=#b. then pib is a permutation of Ihe 
items of b. 

The expression @ . p yields a list of boxed lists of the atoms of 
i . #p called the srandard cycle represenlation of p. If (as in the 
example in the dictionary) p=. 4 5 2 1 0 3, then @.pyields 

APL QUOTE QUAD Hui, Iverson, McDonnell, Whitney 



2 ;4 0 ; 5 3 1 because the permutation p moves to position 2 
the item 2. to 4 the item 0, to 0 the item 4, to 5 the item 3, to 
3 the item 1, and to 1 the item 5. The monad @ . is self-inverse; 
when applied to a standard cycle representation it produces the 
corresponding direcf representation. 

A given permutation could be represented by cycles in a variety 
of ways, and the standard form is made unique by the following 
restrictions: 

The cycles are disjoint and exhaustive (that is, the atoms of 
the boxed elements together form a permutation vector); each 
boxed cycle begins with its largest element (possible because 
any rotation of a single cycle represents the same permutation); 
and the boxed cycles are arranged in ascending order on their 
leading elements (possible because the cycles are disjoint). 

n’on-Standard Representations. If d and c are direct and cycle 
representations of order Ib, then d@ . b and c@ .b produce the 
corresponding permutations of the items of b. More generally, 
since the item count of b determines the order of the permutation, 
the arguments d and c may be non-standard in ways to be defined. 
In particular, elements belonging to (i .2*#b) -#b are permitted, 
and are treated as their residues modulo Ub. 

If q is not boxed, and if the elements of ( #b) 1 q are distinct, then 
q@ . b is equivalent to d@ . b, where d is the standard form of q 
given by a=.( (i.n)-.nlq),nlq, where n is #b. In other 
words, positions occurring in q are moved to the tail end. 

If q is boxed, then the elements of ( Ib) I> j{ q must be distinct 
for each j, and the boxes are applied in succession. For exam- 
ple, (2 I;3 0 l)@.i.5 is equivalent to (x2 I)@,(<3 0 
1) 6. i. 5. and the result of either is the standard direct permu- 
tation 1 2 3 0 4. 

Atomic Rcprcscntation. If T is the table of all !n permutations 
of order n arranged in lexical order (that is, / :T is i . ! #T), then 
k is said to be the atomic representation of the permutation k{T. 
Moreover, k@ : b permutes items of b by the permutation of order 
#b whose atomic representation is ( ! %b) 1 k. For example, I@ :b 
transposes the last two items of b, and -l@ : b reverses the items, 
and 3@: b and 4@: b rotate the last three items of b. Finally, 
( i . ! n) I : i . n produces the ordered table of all permutations of 
order n, as does the fork 131 used in the expression ( i . & ! @ : i . ) 
n. 

The transformation between direct and cycle representations pro- 
vided by the monad 6. is extended to non-negative non-standard 
cases by treating any argument q as a representation of a permu- 
tation of order l+>, /) .q. Similarly, the monad @: applied to 
any cycle or direct permutation yields its atomic representation. 
Forexample,@:O 3 2 lis5,asare@:3 2 land@:0;2;3 
1 and r?:<3 1. 

F. TRANSPOSITIONS and SECTIOSS 

The symbol @ will replace the hoof, with the noun cases of the 
conjunction (Defer and Prefer) modified so that ~@n defers axes 
n of the right argument before applying u, and n@u defers axes 
of the left. Consequently, the expression a nO@u@nl b defers 
axes of both arguments before applying u. The monadic cases of 
U&I and n@v are identical. 

If the number of elements of n equals the rank of U, then U@YI 
applies v to the cells selected by the axes specified by the atoms 
of Y, and u&-r can therefore be said to apply u uf n, as suggested 
by the name of the symbol @. 

Because ( : is an identity function, transposition alone can be 
obtained by using { : @n. 

A boxed argument n provides sectioning, grouping the axes spec- 
ified by a single box into a single result axis. For example, if b 

has the shape i. 6 and n=.2;4 l;O, then the shape of { :@n 
bis3 5 2 10. 

C. FORMAT 

The dyadic case of format (” :) is defined with both ranks 1, and 
with each element e of the left argument controlling the rep- 
resentation of the corresponding element of the right argument as 
follows: 

w= . < . 1 e specifies the total width allocated; if this space is 
inadequate, the entire space is filled with asterisks. 

d= .< .lO*( 1 e) -ti specifies the number of digits following 
the decimal point (which is itself included only if d is not 
zero.) 
Any negative sign is placed just before the leading digit. 

If e>: 0. the result is right-justified in the space L) 

If e<O. the result is pm in exponential form (with one digit be- 
fore the decimal point) and is left-justified except for two fixed 
spaces reserved on the left (including the one for a possible 
negative sign) 

The monadic rank of It : is infinite, and the result is equivalenl 
to the application of the dyadic definition with a left argument 
chosen to provide a minimum of one space between columns. 
Default output is equivalent to the use of the monadic case. 

H. EXTERSAL COWVUNICATION 

Communication with the keyboard, screen, and operating system 
files is provided by the conjunction X . , whose many arguments 
provide considerable flexibility. 

1. SO%IE IMPLICATIONS FOR TEACHING 

The mere introduction of lists, scan, and outer product allows a 
wealth of interesting explorations, as in +\a=. 0 1 2 3 4 5 
for the triangular numbers, in +\l+a+a to see that the odd num- 
bers sum to squares, and in various outer products such as a+\~ 
and cz*\ca to see addilion, multiplication, remainder, divisibility 
and other tables, including the binomial coefficients (Pascal’s Tri- 
angle) provided by a ! \a. 

Lists are easily explained as the use of collective nouns, and the 
scan is easily explained as an adverb. Unfortunately, the simple 
and important notion .of a function table required, in traditional 
APL, not just a further use of an adverb, but the use of a conjunc- 
tion whose first argument could only be explained as an historical 
anomaly. The present use of an adverb for outer product avoids 
this difficulty. 

Expressions such as pr= . +X provide a simple introduction of the 
notion of function definition (and of the hook[3]), and expres- 
sions such as pr\l 2 2 2 2 2 2 and pr\3 7 15 1 show 
interesting uses of such a defined function in producing successive 
approximations to interesting quantitites. 

Expressions such as 8wn=. +/ and sqrt= , A& 0.5 and 1 og= . 
10&A. and neq=.-. B= provide simple and interesting uses of 
adverbs and conjunctions. Moreover, the general form of defini- 
tion provided by the : : conjunction permits a simple introduction 
to the use of iteration and recursion. 

The generally useful notions of classification can be introduced by 
using the outer product a< : Ib in expressions for producing bar- 
charts and graphs, and can be explored further using the expression 
I : i .2hn to produce the complete classification table of order 
n. Thus if CCT=.#:i,2Alu=.P 3 5, then u+. .*CCT and 
v*. . ACCT produce the sums and products over all subsets of u. 

In a more specialized area, the functions 6. and @: provide 
powerful facilities for the discussion of permutations. Thus, 



( i . ! 4) @: i .4 displays a complete table of permutations, and 
an expression such as @. 4 3 0 1 2 can provide an introduc- 
tion to cycles and to the use of the LCM (* .) of their lengths 
to determine the power of a permutation. For examples in further 
topics, see the appendix. 

J. THE C MPLEMESTATIOX 

The system is implemented in C, because it is an adequate lan- 
guage available on a wide variety of machines. The implemen- 
tation is guided by two principles: clarity, and exploitation of 
underlying facilities. Efficiency is not a main objective, 

Clarity does not mean the micro (and relatively insignificant) 
clarity of individual C statements, but the macro clarity of being 
close to the APL or mathematical definitions. The C code is 
written to be understandable by an APL-knowledgeable reader. 

Facilities already available in the environment are exploited: for 
memory management, the C library functions ~UOC t) and fr.0 t) 
are used. the underlying virtual memory facilities being presumed 
to be adequate; for session management, the system reads from 
standard input and writes to standard output. This, together 
with the ASCIl spelling, makes it possible to use any of sev- 
eral widely-available session managers, such as EMACS or Sun- 
View/OpenLook. 

Organi-Lation. The system is organized along the lines suggested 
by the dictionary, in particular. by the parser [l. p. 381. The 
parsing rules are expressed in C as follows: 

#define RXS (NOUN+VERetADV+CONJ) 
/define EDGE @lAP.KtASGNtLPAR) 

static mtruct {I c[4];AF f;I b,~;)c~sos[] - ( 

EDCEiNwtVERB, v=-, NOUN, ANY, v.rb,l, 2, 
CONJ, NOUN, VERB, NOUN, v*rb,2, 3, 
EDGEtADVtVERBtNOUN,NOON, VERB, NOUN, verb.1, 3, 
tiGE+NX'tVERBtNOUN,NOUNtVERB,ADV, ANY, adv, 1, 2, 
EDGEtALWtVERBtNOU?I,NOUNtVERB,CONJ. NOUNtVERB,conj,l, 3, 
CDCEtALJVtVERB+NOQN,VSRE, VERB, VERB, fom,l, 3, 
EDGE, VERB, VERB, ANY, fom,l, 2, 
mxt, =a, RNS, ANY, i*, 0, 2, 
==+, us, RPAR, ANY, P~C,O, 2, 
ANY, my, Am. =-, mov9,0,-1, 

); 

A sentence to be parsed is placed on a left stack, and as execution 
proceeds words are moved from the tail of the left stack to the 
front of a right stack. When the first four words of the right stack 
match a pattern (columns 0 to 3 of the table), the corresponding 
action (4) is triggered and applied to the indicated words (5, 6), 
with the result replacing these words. 

Data Structures. The fundamental data structure is the APL array, 
that is. the C structure: 

typ-d-f long I; 
typodaf l truct (I t,c,n,r,a[l];)*A; 

t t) e 
P c re erence count 

; ;;urber of atoms in the ravelled array 

l shape list 
v atoms of the ravelled array (immediately following m) 
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All objects, whether numeric, literal, or boxed, whether noun, 
verb, adverb, conjunction, or punctuation, are represented by this 
structure. Most C functions in the system accept APL arrays a~ 
arguments and return them as results. 

Definitions and macros. Extensive use is made of C preprocessor 
definitions and macros; to augment the expressive power of C. 
to enforce uniformity, and to increase readability. Example: An 
“APL function” is a function which accepts one or two APL array 
arguments, and returns an APL array result. The macros Fl and 
F2 encapsulate this convention: 

#dofin* rl(f) A f (w,sdf)A w,mlf: 
#define r2 (f) A f (a,v,@4f)~ a,~, l rlf; 

(=elf is a pointer to function parts - rank, inverse, etc.) 

A compact but readable programming style results from using 
such definitions. The implementation of , :Y (ifemize) and X, :Y 
(fuminole) are cases in point: 

Itemize: , :y adds a single unit axis to y, making the shape 1, $y. 

rl (laminl) (R reahq. (over (on*, chap ) , r81*1 (w) ) ; ) 

Laminate: If the shapes of I and y are equal, then X, :y is defined 
by (, :I), (, :y). If one is an atom a, it is first replaced by’ ~$8, 
where l is the shape of the other. 

F2(lamin2) (R ovw (~,r~~h~p~(ovrr(on~,~~~(AR(w) ?~:a)) 
,rav*l(M)):) 

Statistics. Analysis of the C implementation as it stands on 1990 
2 22 yields the following statistics. (Header files and variables 
without functions are excluded.) 
C Fns 240 Lines 1345 
Lines 1345 +/ Line lengths 44722 
Average lines/fn 5.6 Average chars/line 33.3 
Min 1 Min 1 
M&X 40 Max 89 
Median 1 Median 32 
One-liners 125 One-character lines 91 

181 of the 240 functions are APL functions. 

Therefore, the implementation consists of a large number of short 
functions, having short lines, with a well-defined uniform inter- 
face. These are characteristic of an APL programming style. 
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APPENDIX 

The forty-Eve frames in the following appendix show examples 
of use of the system in a variety of topics. All were actually 
executed on the system in March 1990. 
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ALPHABET A SPELLING B URAMMARC 
s R. sentence=.'Cndes=. u.~.~~CLA'~~ 

256 
fahrenheit =. 50 

j=. a. i. tad' 
(fahrenheit - 32) * 6 % 9 

/-sentence 10 
.I 

97 65 
pr%ces =. 3 1 4 2 

indez =. a. 5. 'CrA' orders =. 2 0 2 1 
j+\t. 9 

97 98 99 100 101 102 103 104 105 
orders * prb28 

6082 
65 66 67 60 69 70 71 72 73 S /-sentence 

(i+\i.3O){a. 
t/ order8 * prZce8 

5 16 
PbcdefghijkZmnopqrstuvwtye( I j- +\12345 
ABCDEFGHIJKLMNOPQRSTWWXYZC\3~ >/.sentence I 3 6 10 15 

a.(-j-t\%.30 index 23*\12345 
abcdefghijklmnopqrstuvwzyz(I}- =. 246 010 
ABCD~~~HIJKLMNOPQRS~XYZ~\~A 0. 3 6 9 12 15 

3 + 125 * 6 X 100 2. dear=. - d 1 
10.5 'al' deer -1 0 I 2 3 

2. 2 5 -2 -I 0 I 2 
01234 sentence PARTS OF SFElXli 
56789 97”65 50 fahrenhest Nouns/Pronouns 

*\-Ojl -1 Of-1 1 + - * X deer Verb8/PrOVerbS 
-1 W-l 1 Ojl 'CbC =. 3 14 2' 

3 i-4 2 
/\ Adverb8 

09-l 1 Ojl oj3 8 Conjunction 
I 0.71 -1 RbC =. Verb-to-be 

Ojl -1 Oj-1 1 3142 ( 1 Punctuation 

TABLES Da TABLES Db TABLES DI 
prices=. 3 1 4 2 n=. 0 1 2 3 :\ ‘" 1+c. 5 
orders=. 2 0 2 1 n t\ n 00000 

0123 10101 
prices * order8 1234 12012 

6082 2345 12301 
prices *\ orders 3456 12340 

6063 
2021 *\ - n t/ o= I\ - j=. 1-e. 15 
8084 0 0 0 0 122324243426244 
4042 0123 2=+/o=:\ - j 

0246 0i1010100010100 
TO REXD A TABLE, 0369 (2=+/O=:\- j) I j 
BORDER IT BY ITS 2 3 5 7 11 13 
ARGUMENTS: A\-%. 4 

100 0 =\-4. 4 
* I 2021 111 1 1000 
~_------_-- 124 8 0100 

: 16063 12021 13927 +.\- 0 1 0010 0 0 0 1 
418084 i: <:\-4. 4 
2 l4042 1111 

+:\- 0 I 0111 
10 0011 
0 0 0001 

TABLES Dd CLASSIFICATION Ea CLASSIFICATION El 
text=. 1 % Sing Of OlRf ' x=.1234567 x=.1234567 
text=. text,'gLad and big' g=. (r-3) * (z-5) g=. (s-3) * (z-5) 

Rtph=. 1 abcdefghijktmo' 8!0_1036 8!iO-1036 
atph=. aZph,'pqrstuwxyzl 

'Ol'{-lO{.atph=\tezt 
range=. m-2. I+(m=. >./y)-C./y rcmge=. m-C. >:(m=. Z./y)-<./& 
range range 

1010000100100001000010001000 876543210-I 876543210-l 
0000000000000100001001000000 
0000000000000000000000000100 bc=. range <:\ L/ 
0000000000000000000000000000 bc 

Es=; runge <:\ g 
' *' 

0000000000000000000100010000 1000001 * * 
0000000000000000000000000000 1000001 * * 
0000000001000010000000000000 1000001 * * 
0000001000000000100000000001 1000001 * * 
0000000000000000000000000000 1000001 * t 
0100100000000000000000000010 1100011 ** ** 

1100011 ** ** 
2 13$+/"1 atph=\tezt 1100011 ** ** 

7310202303002 1110111 *** *** 
0220001000000 1111111 ******* 

<\ 0 0 0 10 110 1 
000100000 
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bc 
CLASSIFICATION: graphs EC CLASSIFICATION: graphs Ed CLASSIFICATION +,* on eubeete Ee 

<UC 
1000001 1000001 0=.00001111 
1000001 0000000 b=. 00110011 
1000001 0000000 c=.01010101 
1000001 0000000 
1000001 0000000 cct=. a.b,,:c 
1100011 0100010 cct 
1100011 0000000 00001111 
1100011 0000000 00110011 
1110111 0010100 01010101 
1111111 0001000 

2 3 5 +..* cct 
<\ bc ' *' {- <vc 053027510 

1000001 * * 2 3 5 *..A cct 
0000000 1 5 3 15 2 10 6 30 
0000000 
0000000 +/act 
0000000 01121223 
0100010 * l 

0000000 
o ~:f2=.(2=+/cctf#"l cot 

0000000 101 
0010100 * * 110 
0001000 * 235>...*c2 

553 

CLASSIFICAl'ION dot products Ef SZRVCTVRES: box Fa STRVClVRES: each FL 
tezt text 

2351 OS3627510 
4211 

C sing of otaf glad and bCg S sing of otaf @ad and big 
01234567 

______;_____-___---_____ -. text uords=. /. text 
100001111 
~00110011 

gib dna dalg fato fo gnCs i 
< 'glad' uorde 

0 01010101 

row0 =. 2 3 5 1: cot5=. 1 0 1 I 
t7ld i sing of otaf gtad and big 

row0 * co15 
2 0 5 

+/ row0 * cotS 
7 

u=. (<'gtcrd').(<'cmd'),<'bCg' 

+i+qq 

1 0 2 3 ( words 

pqq-qGsing[i 

row0 +..* cct 
0 5 3 827 510 

row0 *..A cct 1 5 3 15 2 10 6 30 

row0 A cot5 
215 

*/ row0 A 0015 
10 

-. w > 1 0 2 3 ( words 

(gnislilfolfalol 

-18*< text 

i sing of oZaf glad and big 

Sl'RUCl'URES open Fc PROGRAMS: sZmpte Da PRGGRAMS: conditional G2 
root=. 'y. A X2'::'y. A Xx.4 p=. '$.=. l+y.<o' 

words root 64 
'u- A x2' 0 z . "'DOMAIN ERROR'q' 

i sing of otaf glad and bZg 3 root 64 
4 conditional=. (p;~;r)::~' 

rPr=. IX y.'::'z. + X I/.' 
tt=. > words 3 rPr 4 conditional -49 
tt 3.25 DOMAIN ERROR 

i rPr/l222222 
sing I.4142 conditionat 49 
of rPr\12222 7 
olaf 1 1.5 1.4 1.41667 1.41379 
gtad rPr \ 3 7 15 toaero= .(p;'y.-l';'y.+l')::" 
and 3 3.14206 3.14151 
big triple=. '3*~/.'::~~ tosero 3 

tripte 2.5 2 
s tt 036922 to2ero -3 

74 3 triple 6 2 
domain error toxero "0 C-2 -1 0 1 2 3) 

tr=. '3*y.'::* -1 0 -1 0 1 2 
tr i. 5 

036912 
357tri.3 

0 5 I4 
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PROGRAMS: iterative Cc PRGGRAMS: recursive Gd 
a=. 'r=. 
b=. 

1 ): $.=. I/. Y 1' 
PROGRAMS: recursive Ge 

*a-=. r * l+ # $.I 
a=. I$.=. 2-O=y.' ; '1' a=i'$.=.l+ocn=.x.-I' 

* $: U.-l' b=.' ,:2j.y.' 

factoriaZ=. (o:b)::" 
~&%aZ=. (a.<b)::fj factoriat 5 ;=.;:n.s:o 2 1(y.),(l$:y.),' 

factoriaZ 5 =."::(a;b;c,'n$:-.y.') 120 

120 
factoriaZ1vO i * 6 

2 hano% 'ABC' 
d=. 1 1 2 6 24 120 '(r,O)+O,r=. $: y.-1' 
binomiat=. (a&d)::" % 
binomiat 4 CB 

> a;b 
r=. 1 1: $.=. I/. I 1 

14641 \. 4 haoi 0 12 
002011002212002 

r=. r * I+ Y $. f-. 211202211001211 
C?=. 'r=. (0.r) + (r,O)' 

'r,+/(-2)( .r=. S: y.4' 

binomiaZs=. (a;c)::'l 
fibonacci=. (a,<f)::" 

binomiats 4 
ffbonacos 10 1. 'ABC'<- 4 hanoi 0 1 2 

1 1 2 3 5 8 13 21 34 55 89 
14641 

AACABBAACCBCAAC 

fib=.(a;'r= 
CBBCACCBBAARCBB 

.r,+/(-2)(.rt)::" 
fib 10 iTi= 

'S.=. 2-O=z.' ; 'I' 
=. 1 1 2 3 5 8 13 21 34 55 89 'y.*s.%Yc.$:d<:y. 

d=. 'r=. 1 }: $.=. 2. % 1' 
outof=. "::(g,<h) 

a=.~r=.O#S.=.y.#l+n=.O' 
d=.lr=.r,(n=.l+n),rl 

e=. 'r=. (r*l+y.=.y.-l)Xl+#$.' 
outof"O\-C. 4 h=.(c;d)::" 

1 1 1 1 h4 
outof=. "::(d;e) 0123 3 0utof 5 0 

013 
1~~312141213121 

10 0001 1213121 

PROGRAMS: recursive Of 
crb;:a=.3 3$'abcdefghi' 

GEOMETRY: 2-space Ha GEOMETRY: 3-space Ht 
Zength=. ‘/t:+/y./Q’::” tri.1 
Zength 12 5 347 

def 13 004 
ghi i: tri=. 7 2 3 $ 9 111 

(f=.f-. "1 0 f=.i.SU) a 347 
12 

2%~ det tri,l 
004 2 

02 1 -."I tri 
0 1 

2% det 1 0 2 ("1 tri,l 
473 

<'I2 (minors=.f ( lB}."l) a 
2 

040 (: tetrahedron=. O,"l =\* i. 3 
ml hi ef bc hi bc ef 1 j:Zsides=.Zength t: 5 5.65685 semiper=. 2 k tri-1-."I +/Zsides tri 0 0010 0 1 0 0 0 1 0 

5.82843 
p=.'$.=. l+l=#y.' }: r=.JO{,~.' area=. 
q=.'CO{"l y.)-..*$:I'2 minors 2/.' 

h:*/semiper-0,Zsides voZwne=. det&(,dl) X !&Y 
area 

(:b=.?3 3$9 2 votwne tetrahedron 
164 tri,l -0.166667 
410 347 
668 004 (: $ tet=. 7 3 4 9 

(det=.(p;q;r)::") b 111 6030 
-112 3658 
s=.l(O{fT1 y.)+..*$:"2 minors y.' 2 X- det tri,l 7405 

(permanent=.(p;s;r)::") b 2 VoZwne tet 
320 11.5 

CONNEC2IONS: arcs Ia CONNEC2IGNS: corm. matrix Ib .CONNECTIONS: family Ic 

arcs=. 7 22 2 $ 0 8 '01234567' (- \. arcs 1 TO 10 10 0 
8 {. arcs 1315740400574556026276 10000010 

16 6405360533460372557155 01000100 
34 b=. '(i.,-t.)e.' 00001000 
I 0 
55 

cmFarcs= . "::(b,'~.+..*t., 1') 10000110 
00011101 

73 cm=. 8 c7nFarcs arcs 00100101 
46 00010110 
0 0 1 To 10 10 0 
45 10000010 points=. 1 0 0 0 0 0 0 1 

01000100 
\. n=.arcsinodes=. tABCDEFGHT 00001000 points i. . . *. cm 

BDBFHEAEUFHEFFGACGCHG 10000110 10010110 
GEAFDGAFDDEGADHCFFHBFF 00011101 

00100101 
6(. bares=. <"I n 

points+.points+. . . l .cm 
00010110 10010111 

BG DE BA FF HD EC +/cm cmmfam=. 31132632 "::'x.+.x.f...*.~.' 

+/+/cm 
points immfam cm 

10010111 
15 <. , arcs 21 fam=.":: 163410557346004 'hnfam&y...(Wy.)x. 

points fam cm 
11111111 
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CONNECTIONS: closure Id CONNECTIONS: adjacency Ie SORTINO Ja 
{: cm2=. 0=?8 8 S 5 a=.OOQOll11 

10000000 b=.00110011 t=.'i sing of olaf gtad and big’ 
00100010 c=. 01010101 {: tt=. > /. t 
00000010 $d=. a,b,,:c c 
10000000 3 sing 
10001100 
00000000 

yj=. 'l=y. +..-: \. Il.‘::” of 
. e=. adj 1. d otaf 

00000000 01101000 
00110010 10010100 %Y 

10010010 
points=. 1 0 0 0 0 0 0 1 

big 
01100001 

points fam cm2 10000110 /: tt 
10110011 01001001 5640231 

00101001 
cm2 fam cm2 00010110 tt /: tt 

10000000 e{' *' and 
00100010 ** l big 
00000010 * ** glad 
10000000 * * * i 
10001100 ** * of 
00000000 * ** otaf 
00000000 * * * sing 
10110010 ** * 

* ** 

SYMBOLICS: reduction and scan Ka COMPOSITIONS: and (1) La COMPOSITIONS: atop (@I Lt 
o=.'(' }: c=.')' }: s=. 1-f A82 c=. l-G.4 c :e- \ c=. 1+ i. 4 
minus=. '~::'o,x.,c,s,y.~ 14916 0123 
'a' minus 'b' 2&A c 1012 

(al-b 24816 2101 
tist=.'defg' poL)=. hS2::A 3210 
minus / list pow c pow c 

cd)-(e)-(f)-g 1.16 729 65536 db=. 2c4*::* 
minus\tist c +&z c tr=. 3cf*::* 

d 2 1 0.666667 0.5 
cd)-e tr=. 38*::* db e tr \ - c 
cd)-(e)-f &=. 2.3*::* 2 4 6 8 
Cd)-(e)-(f)-g ctr&dbc 4 B 12 16 

d,e,f.g=.<:f=.c:e=.<:d=.h 4 16 36 64 6 12 18 24 
4321 cdb&trc 0 16 24 32 

" minus / list . 9 36 01 I44 db&tr\-c 
2 c +&A. c 9 10 27 36 

11 minus \ list . 0 1.30629 2.19722 2.77259 10 36 54 72 
4132 A C +&A. C 27 54 81 108 

times=. rr::~0,2.,~,~~*~~,~.~ 14916 36 72 108 144 
list times'10 -. list db d tr \- c 

(d)*g 9 18 27 36 
I$*i 

CgGd 

18 27 36 54 01 54 108 72 

36 72 108 144 

COMPOSITIONS: under (") Lc COMPOSITIONS: fork (f g h) Ld COMPOSITIONS: hook (g h) LE 
+.\ a=. 001011000 CC+ * -Id=.-.c=. Z. 4 a=.5 6 7 8 

001111111 -9 -3 3 9 b=.l 2 3 4 
+.\ -, a q=.+*- lg\ (*>:I b lg\ 

000111111 cq\c /f h 2 6 12 20 2 h 
-. +.\ -. a 0 -1 -4 -9 A a (*>:I b \ 

111111000 1 0 -3 -8 z Y= I/ 10 18 28 40 
+.\ n -. a 4 3 o-5 

u 

111111000 9 8 5 0 a (*>:I\ b /g\ 
b=. 1 2 3 4 J: c=. 3 4 5 6 

0 T-4 -9 
lB\ 10 15 20 25 v h 

b +&A. c f h 12 10 24 30 \ 
1.09861 2.07944 2.70805 3.17805 r=. -,+ I4 21 20 35 Li 

A b +&A. c crd L/ L/ 16 24 32 40 
3 0 15 24 -3 3 (+%I/ 12 2 2 2 2 2 

b +“A. c -1 3 1.4142 
3 0 15 24 13 (+z)\ 12 2 2 2 

{:text=.1i';1sing';'ofT;'oZaf9 3 3 1 1.5 1.4 1.41667 1.41379 

-1 db=. tr=. 2a*::* 38*::* 3 3.14206 (+%I\ 3 7 3.14151 15 
(db+tr) c (+%I\ 11 11 1 

-.I'> text 0 5 10 15 1 2 1.5 1.66667 1.6 
(db*tr) c C-Z)\ 12 2 2 2 2 

0 6 24 54 1 0.5 0.333333 0.25 0.2 0.166667 
(cib*db+tr) c *- (+!G)/ 1 ) 12 $ 12 

0 10 40 90 3 
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FVNC!UONAL PRGGRAMMING Ma SETS: propositions Na SETS: relations Nb 
bc=. Od, + ,dO {: a=. 2% i. 11 S=.C.0 l: bc 1 0 0.5 11.5 2 2.5 3 3.5 4 4.5 5 betongsto=. r;.', ; y,11 

(2d<: *. <d5) a i betongsto p 
, 

11 
bc bc 1 00001111110 00110101 

121 ((2dc: *. cd51 a) Y a e=. betongsto 
bc bc bc 1 2 2.5 3 3.5 4 4.5 pei 

1331 ((2dc: *. <dS) Y (:I a 11110 
F- 'S.=.l,y.Y2' 2 2.5 3 3.5 4 4.5 c=. -.Qv=. ed'aetou' 
r=. ‘f=. {:’ ; ‘j=. t.df’ ((: I- 2d<: *. <d5) a rabcdefghCjktmno' 
pouer=. 2: :(q;r) 

atph=. 
2 2.5 3 3.5 4 4.5 

bc power 3 (1) 
aZph=. aZph,'pqrstuvwzys' 

2nt=. = (. (v atph)#atph 
1331 Cnt a aeCou 

bc . . 3 (1) 10101010101 (U- cl atph 
1331 ((2d<: *. Snt) a) I a 

c3= (Od,+,dO) . . 3 
bcdfgh,fktmnpqrstvwxys 

c3 i 2345 
(j: Y- 2d<: *. Cnt) a 

1331 2345 
2a* . . 3"O z. 5 (W- 2dc: l . Cnt) a 

0 0 16 24 32 2345 
2d+ . . 3"O c. 5 

678910 
F- **: :- 
5884 

21 

SETS: union, etc. NC FAMILIES OF FVNCl'IONS 00 FAMILIES OF FUNCl'IONS O.? 
(even=. Od=d(281))a=. C. 16 z=.l 2 3 4 5 6 7 c=. 4 2 -3 2 1 

1010101010101010 02 vandermonde 
prime=.V2=+/0=y.:-4+i.y.T::q~~0 1 4 9 16 25 36 49 111 11 1 1 

prime a th3 123 4 5 6 7 
0011010100010100 10 27 64 125 216 343 1 4 9 16 25 36 49 

(prime a) % a (4*rA2) + (-3*sA3) 1 0 27 64 125 216 343 
2 3 5 7 11 13 1 -0 -45 -128 -275 -504 -833 1 16 01 256 625 1296 2401 

a#-(prCme*.even)a CSW INTER- *vandermonde 
2 SaTCl'IONl 2 3 A-\ 2 6 ;;'il8 348 014 1636 2958 

aHprime>even)a [SET 14 9 16 25 36 49 
3 5 7 11 13 DIFFERENCE3 1 8 27 64 125 216 343 poty=. "::'x.+ ..*\.&j*h\i.Yx.' 

tripZe=.Od=d(38:) 4 -3 +.. *2 3 A-"\X c poty t 
q=. even+.triple WEIT UNION1 1 -8 -45 -128 -275 -504 -833 6 28 110 348 814 1636 2950 
(q a) U a 

0 2 3 4 6 8 9 10 12 14 15 
r=. prime +. even *. triple e=. 0 1 2 3 4 
(ra) la vandermonde=. e h-1 x 

0 2 3 5 6 7 11 12 13 vandarmonde 
11111 : 1 

123 4 5 4: 1 4 9 16 25 36 
1 0 27 64 125 216 343 
1 16 01 256 625 1296 2401 

IWERSES AND DUALITY Pa INVERSES AND DVAZITY Pb INVERSES RND DUALIzW PC 
cFf=. '(y.-32) * 5X9'::" r=. 2 3 4 1: 8=. 2 4 5 f=. +d3 
fFc=. '32 + (g. * 925)'::" f?=* -63 
dc=. 40 -20 * i. 0 invtog (tog 2-1 + (tog 8) 
fFc dc 4 12 20 (: x=. c. 4 

-40 -4 32 68 104 140 176 212 Z-*8 0123 
cFf fFc dc 4 12 20 

-40 -20 0 20 40 60 80 100 
xx123 A (A. r) + (A. 8) 3x6 

123 4 12 20 
tog =. 'IO A.M.‘::” r +“A. 8 !f x 
invtog-. '10 A &.'::'* 4 12 20 6 24 120 720 
log F. 24 4 75 7 

1.38021 0.60206 1.87506 0.845098 r +"x 8 g!f 5 
+/ log u 1 1.71429 2.22222 3 21 117 717 

4.70243 X (Xr) + (2s) 
invlog +/ log M 1 1.71429 2.22222 !"f z 

50400 3 21 117 717 
+"X / r 

0.923077 !“(+d3) I 
X +/ X r 3 21 117 717 

0.923077 
!“(*dZ) I 

0.5 1 12 360 
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