
APLITC)S: An APL Development System

Carlo Alberto Spinicci
APL Italiana srl
via Eustachi, 11

20129 Milano
Italy

Abstract

In spite of its tremendous expressive power, APL lacks a

convenient environment for developing large, interactive

systems. The workspace structure prevents easy sharing of

code and the realization of user interfaces is at least as
difficult as in other languages. This paper describes an
integrated development environment that attempts to

overcome these limitations.

Introduction

APLITDS is the development system used by APL Italiana
for internal development. The awful name is an acronym

for the APL ITaliana Development System. We never
found a better name and eventually grew accustomed

Development of APLITDS started in mid-1987 as we tried

to organize the large number of utilities for file handling,

screen definition, reporting and graphics which we had

accumulated during the three previous years of
APL* PLUYPC usage. The first version of APLITDS was
released after a couple of months of programming in spare

time. From start to finish, the implementation ofAPLITDS
has been a one-man job - unfortunately, my own.

The main aims of APLITDS are the same as any system of
this kind: to reduce development efforts, to simplify main-

tenance, and to provide for uniform programming styles

and user interfaces.

The Workspace Problem

The standard APL environment, centered around the

workspace, is perfect for casual users, ad hoc solutions and

small personal applications, but it falls short for developers
of comple~ professional, systems. It is simply too difficult

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.
@1991 ACM 0-89791-441 -4/91 /0008/0307 ...$1 .50

to ensure that all the application workspaces use the same
(latest) version of the utilities. Further, it is not practical to

have a copy of all your development tools in every

workspace and)COPYing and)ERASEing everything
each time is slow and annoying. Thk problem has been
highlighted many times in the past [Ber84] [A1186] and
numerous solutions have been proposed.

APLITDS keeps programs in files (so that different ap-
plications can make direct use of them) and uses only one
(small) saved WS to boot the system.

Building User Interfaces

Probably most of the code written for large, interactive

systems is devoted to managing the user interface. In thk
respect APL doesn’t provide much more than any other

language. Screen tools included with most APL inter-

preters are at a rather basic level, as AP124, AP126, CIWIN,

and so forth. Even the more advanced tools such as
Dyadic’slJSM [Cur89] handle only the final part of the task.

A lot of code has to be written which has very little to do
with the application itself, and concerns itself with the

(graphic) input and output technology used.

One of the beauties of APL immediate execution mode is
that the user is at the very top of the hierarchy with all the
programs at his fingers. When using traditional interactive

programs written in APL or any other language, the user
is just a subroutine of the system and shejhe may only react

in ways foreseen by the programmer, This “inverted
hierarchy tends to produce user interfaces that frustrate

the user and promote clumsy programming. The solution
is perfectly highlighted in [Kro90]: “Instead of letting the

application call the tools, let the tools call the application”.
This is what we tried to do in APLITDS.

Structure of APLITDS

The main components of APLITDS are:

● a data dictionary, where all data variables used in the
application are described.

APL Quote Quad 307 Carlo Alberto Spinicci

. a screen edkor for both fall-the-blanks and spread-sheet
style forms (forms are fded on disk and retrieved at the
moment of execution). The definition of the variable part

of a form is dictionary driven.
c an overlay system for storing functions and variables, and

retrieving them when needed.

c a report generator.

c a business graphics generator.

● a set of utilities,

An APLITDS “screen” is not only the basic unit of inter-

action between the user and the application, but also the
fundamental element of APLITDS programming. This
“screen oriented” programming is typical of certain ap-
plication generators such as PRO-IV [McD88].

Interactive applications usually follow thk general patterm

●

b

●

●

●

●

Data is read from fdes.

Computations are performed to obtain all required in-

formation.
Data is formatted, merged with f~ed text, and presented

to the user.

Some code for managing the interaction with the user (as

CIWIN) is executed.
User input is validated.
After some final computation, data is written to file.

Pvtmario P.irmriodl =Iez. “hi
Em Entita’ Entlta’ Entlta’ Entiia’ mart . Y

— — .

0 m ass.gmta 6muanxm J
D! Z1CUP.R1OJ

se sele DIZ1GWR1O J
sd -Id D[Z1CW810 J
M ealdr DIzIcw%RIO J

15 DIZ_FNT_J sdJ - m]dj D17.1owRIO J

fig 1. List of tables

In APLITDS the above activities are defined in the data

dictionary. The activities are performed at the appropriate
moments when the user make use of the screen. Some of

the definitions are APL expressions, and thus the data
dictionary defines how APL functions are called from the
screen.

APLITDS screens give the user a great deal of freedom in
managing data: she/he can select and sort rows, aggregate

numeric data, define and print reports, and create graphs.
She/he can also control some aspects of the screen layout,
such as selecting and ordering columns of information to
appear on the screen from a predefine set. This works -
at a keystroke -on a thirty rows of a memory-resident table,
or on several thousand rows of data in a file.

Furthermore, all this is obtained without any application

code, it’s just a “fringe benefit” coming from the screen

deftition and the data dictionary.

APLITDS Data Dictionary

Variables are the basic objects described in the dictionary.

They can be APL workspace variables, or the results of

computation. They can reside in memory, or on a file (not
necessary an APL file, you can use any file system which

can be accessed from APL).

fig. 2 List of fields

For each variable, the dictionary contains the following
information:

●

●

●

●

●

●

●

✎

●

●

A short description of the variable.
The format (UFMT syntax).
The header to use in spread-sheet like forms and in

reports (it can be f~ed, or calculated at execution time).

The APL expression that calculates (or retrieves) the

value of the variable.
The APL expression that produces the external repre-

sentation of the variable from its internal value (e.g., from
internal date format to ‘yy-mm-dd’).
The APL statement used to accept input for the variable.

APLITDS itself supports several data types such as
character strings, numbers, dates or items selected from

a predefine set of values. If you have special require-
ments, the expression can do anything you need, even

opening a completely new screen.
The APL expression that validates input,
The APL statement that stores the input (e.g., assigning
it to a variable or writing it to disk).

How to sum values of this field. Certain fields (especially
calculated fields such as averages) cannot be totalled
using a simple plus reduction.

Various less important attributes.

Variables are organized in tables (very similar to relational
tables). For tables, the dictionary describes various opera-
tions on the table.

APLITDS 308 APL 91

The most important information recorded for a table is:

●

●

●

●

●

●

The APL statement that, when executed, adds anew item

(record) to the table.
The name of a variable to be used as a “selec~or” for the

table (it will contain the indication of which records of

that table are to be considered “selected”).
The name of a variable to be used as a pointer for the
table. The system will set the value to the indices of those
records which are involved in the current operation.

Most of the expressions which describe APLITDS vari-

ables will be sensitive to this value.
The {optional} name of a function, which does the setup

needed before referencing the table (such as opening

files).
The {optional} name of a function, which does the setup
needed before any operation on the currently active
items (such as reading from fdes).
A set of expressions that join this table with others. These
expressions compute the pointer of one table from the
pointer of another. They will be used by the system when
the same screen or report contains variables belonging

to different tables.

The dictionary also contains descriptions of standard for-

mats used through the application, and complementary
information regarding applications and their related data

and program directories. Dictionary maintenance is per-
formed using interactive APLITDS screens.

The Screen Editor

The screen editor of APLITDS enables the programmer

to define three types of objects:

● Fill-the-blanks screens. A fwed format screen with a

constant part and variable fields. The constant part of the

screen is designed by the programmer using an interac-

tive utility. The variables, described in the dictionary, are

then positioned on the screen using the same utility.

● Spread-sheet style screens. A collection of variables
(columns) for all the selected records (rows) of the main

table of the screen. Vertical and horizontal scrolling is
allowed. Constant parts (headers) are taken from the

— fI p LL]=: Ds ~ ~lTrJs r.lo 3L411/191 w

US Ckups &cup LitE ~

~ Lists AppllcazlOnl &@liIto Lul
-/09 2

Pffiizlm 7 2 s 3 htita’ PPfrMrla m -gnata ls:4s 59” ‘%33

COl%w’m •1
SeIezicrwz NC

tQtO.1.7 *r’=’m’ m

“Z’== El •1nigh gia’ No
w i dew iate? C.&wim

•1wrrm df Si
tcistieln

fig. 3 Screens editor

data dictionary as well as any information needed for

their handling. The developer is only requested to specify
which variables are to be included.

● Menus. A list of choices and related APL statements to

be executed. The menu is automatically formatted. The

user can activate one choice moving the cursor and
pressing the “enter” key or just pressing the first upper-
case character of the choice.

Both types of screens are fded in screen libraries. Menus

are kept as packages together with APL functions and

variables in the function libraries (see below). Edking of

screens is also performed using interactive APLITDS

editors.

Screens can have local variables and a local dictionary (we
have developed systems using APLITDS, which make no

use of the central application dictionary).

A set of APL statements can be defined so that they will be

executed at useful points such as during the initialization
of a screen, before or after the input of a field, or before
the display of a new item. Using these statements together

with dictionary statements it is possible to design applica-
tions where the flow of operations is completely controlled

by the screen definitions.

I?unction keys can be defined for screens and menus. The

APL statement to be executed and an optional text to be
displayed on the last line of the screen are recorded for

each function key. “Hot keys” (always active during an
application) are defined as specially named functions. In
this case, the informative text used to automatically create
the help screen - always avalaible through the PF1 key -is
kept in a public comment in the first line of the function.

At any moment privileged users can press a key to open an

“APL immediate execution” window and perform any

APL operation, The depression of another key resumes

normal APLITDS operations. Screens, PF-keys and error

trap definitions are preserved during the APL activity.
Another useful key (not active in the final runtime applica-

tions) enables editing and recompiling the currently active
screen, The application dictionary can be also updated “on
the fly”.

Function Libraries.

Programs and constants are collected in “groups” (pack-

ages). Groups are organized in “libraries” (APL files).
Library names are single characters. Group names are

three characters long. To refer to a group within a library,
you simply catenate the library name to the group name

(e.g., DWMB is the name of the group WMB inside the
library D)

Libraries with uppercase names are general libraries.

Libraries with lowercase, or numeric names are “applica-
tion libraries”. The actual file name for libraries is built

APL Quote Quad 309 Carlo Alberto Spinicci

from the letter that designates the library plus a freed part
for general libraries and an application dependent part for
application libraries. Screen libraries have the same
naming convention.

A single function “uG” does all the housekeeping of groups

and libraries. The statement uG’G DWMB’ defines the

group D WMB in the workspace, whale uG’S DWMB’

stores a modified version of the same group into the D
library. Other operations recognized by the UG function let

you list the contents of libraries and groups, create new

libraries and groups, etc.

—A P L 1 T D S — fIPLITDS ,,1,0 33/01/1591 c6:11

fig.4 List of the variables of a group

When a group is stored, the UG function adds, or updates

a standard comment in each function of that group that
specifies when the function was last changed, and who

changed it (changed functions are recognized through a
CRC code recorded in the same comment line). Manage-

ment of groups and libraries can be achieved directly
through the UG function, or through APLITDS screens.

Only the UG function, the package functions, and some
error handling tools are kept in the boot WS. All other

functions and variables are stored in libraries.

The Report Generator

At any moment, when using a spreadsheet screen, the user
can create and print reports. Reports are defined by just
selecting which columns are to be included. Partial totall-
ing is permitted. A number of parameters let you control
several aspects of the report such as suppression of detail

(i.e., print only totals) for all rows, or just for a selected
number of rows, printing attributes for totals, print destina-
tion (printer port or file), etc.

Escape sequences to drive the printer are fetched from a
configuration file and can be modified.

Graphics

At any moment, when using a spreadsheet screen, the user
can create and print charts. To obtain a graphic image of
the data, the user has only to specify the variable (or
variables) to plot, and the ordinate (one or two variables,

not necessarlynumeric), and then to select the kind of chart

she/he wants (line, points, bars, pies, percentage bars,
skyscrapers, liie3D, or points3D).

Graphics can be printing on impact and laser printers in
different orientations and dimensions. Charts are plotted
using the IJG* functions supplied with APL* PLUS/PC.

Utilities

A wide set of utilities, ranging from development tools to

DOS interfaces, have been added to APLITDS.

The following list summarizes some of the activities that are

possible through those utilities:

*
●

●

●

●

●

●

●

●

●

●

●

●

●

Searching APLITDS libraries.
Editing help files.
Capturing a TIFF image from the screen (both graphic
and text screens) for documentation purposes (all figures
- with the exception of fig.5 - in this document were

created using this tool).
Creating a TIFF image that graphically shows which

sequence of menu selections and PF keys the user has to
follow to activate a certain function of an application (we

use this option when writing manuals, see fig.5).
Creating “auto demo” versions of an application to be
used during exhibitions.
Maintenance of our proprietary data bases.

Issuing a DOS command on a selected list of tiles.
File (decompression and archiving using PKZIP from
PKWARE.

Housekeeping of APL files.

Controlling various printers.
Changing screen attributes and keyboard layout.

Creating (compiling) the runtime version of an applica-
tion (i.e., compressing functions using STSC DIAM and

UNCOMMENT utilities, extracting from libraries only
those groups that are referenced in the application, and
stripping any development specifications from screen
definitions).
Porting of a new version of an APLITDS application
from the APL* PLUS/PC environment to APL*PLUS II
and, preserving those functions, that have been modified
in the new environment.

Maintenance of different versions of the same applica-
tion and multilingual versions of any message embedded
in the application (this is still under development).

Some of these activities could be done using DOS utilities

such as Norton Utilities or PC TOOLS, but using these
“external” systems requires leaving the development en-

APLITDS 310 APL 91

. .. .---- -——-...
in BBS systems) has been emulated on a half duplex net-Vlronment, wtule me Al?lJ’l”DS Utllltles are Immediately

available to the APL programmer.

{Select cme ~pplicaticm}

1

RIF9

C3elect mi~ entity>

r

alF9

-1
{Edit uariables}

fig,5 How to edit a variable - Example of documentation

...more

There are other features of APLITDS, that have proven to

be useful. The most frequently used is the ability to
schedule background activities. A scheduled activity is an

APL function to be executed at certain points, for example

while waiting for user input, or during time-consuming
operations. The most common of these activities
(automatically scheduled by APLITDS) is the refreshing -

every 60 seconds - of the time stamp showed at the upper-
right corner of the APLITDS screen.

One of the applications written by APL Italiana using

APLITDS is a PC front-end for mainframe applications
based on a Sharp APL system and accessed through a
telephone line. This PC application makes heavy use of
scheduled activities, for example to let the user browse part

of the message already received, while new material is
constantly appended to the end of it. Unsolicited input (as

work (such as the IPSA/Reuters network). A scheduled
activity occasionally polls the remote system for new infor-
mation while the user’is free to browse everything that has

already arrived on his PC.

Careful writing of the scheduled functions can reduce the
interruptions experienced by the user to a negligible level.

Notes about Implementation of
APLITDS

APLITDS is completely based upon itself. Any screen used
in APLITDS (editors and utilities) is written using

APLITDS and its dictionary.

Any facility that APLITDS provides to the end user, can

be used by the developer during his work (the reverse is

also true unless the facility is excluded during compilation

of the runtime version).

APLITDS was written in APL* PLUS/PC using most of the
features of this interpreter. This means that porting it to
other APL systems would require a substantial effort. We
have ported a complete version of APLITDS to

APL*PLUS II and a very reduced subset (only the library
management subsystem) to Sharp APL.

Applications Implemented using
APLITDS.

We have implemented a large number of applications using
APLITDS. Some of them are used internally to record our

activities, or to maintain our customer database, etc. Some
applications were developed under contract, such as the

PC front-end mentioned above, that has about one

thousand installations. Others are “products” such as a
portfolio management system for stocks and bonds called
SOFIA, which is the the primary product sold by APL
Italiana. Some of those applications are installed in Local

Area Networks and allow multiple users to access and

update the same data bases simultaneously.

Conclusion

The development of a system such as APLITDS, using a

powerful language such as APL is not impossible, even for
a small company like APL Italiana. Creating a well docu-
mented, bug-free product from it is probably beyond our
capabilities (or rather our capacity).

A flexible and extensive application environment capable
of imposing a uniform style on all the products of our
company, without stifling creativity, is of enormous value

to us. Tasks such as maintenance and documentation are
greatly simplified (our user manuals are at least 5070 iden-

APL Quote Quad 311 Carlo Alberto Spinicci

tical). Thk is true despite the fact that we are an APL-

based company!

Screens provide an intermediate hierarchical level over

computational (APL) functions. This brings APL
programming closer to the main stream of non-APL

programming facilitating the use of emerging analysys
techniques and related CASE products. Screens and fields
are objects which can be activated by the user. The environ-
ment knows how to react to a user actions. A simple
reorganization of the application definitions could provide

a framework for an object-oriented programming style in

APL.

APLITDS itself is probably is not an example of good APL
programming style. We have added new features each time

we needed them, with the functionality which was required
at that moment. I would expect that the development of
similar (hopefully better) products, maintained by the
major APL vendors would help to spread APL, giving a

uniform base to the applications written in APL by dif-
ferent companies. This would lead to a more homogeneous

culture among APL programmers, which in turn will help
the circulation of people and ideas within the APL com-

munity, which unfortunately remains very small.

matrices: HDR and Dm. The fwst column of HDR is a

pointer to customers, the first column of DET is a pointer

to HDR. PROD is a character matrix containing product
names.

The fust step is to define the needed dictionary as follows:

TABLES :

Table: CUSTOMER (Customers)
Insert: Cus+cus ‘ ‘ o CUSA-CUSA ‘ ‘ O

0 selc+selc, 1 ~pCUS
Pointer: sc
Selector: selc

Table: INVHDR (Invoice Headers)
Insert: HDR+HDRO O selh+selh, 1 ~pHDR
Pointer: sh
Selector: selh

Table: INVDET (Invoice Details)
Insert: DET+DET (– 1 ~pDET) ~ sh O

0 seld+seld, 1 ~pDET
Pointer: sd
Selector: seld

References
FIELDS :

[A1186] D.B.Allen, L.H. Goldsmith, M.R.Dempsey and
Kevin L. Harrel, LOGOS: An APL Programming Environ-

ment, APL86 Conference Proceedings, p.314 Manchester
(1986)

[Bar90] Guy Barker, Douglas j. Keenan and Herman van
Loon, Conscientious Programming Using PhL4, APL90

Conference Proceedings, p.18 Copenhagen (1990)

[Ber84] Michael J.A. Berry, Shared Functions and Varia-

bles as an aid to Application Design, APL84 Conference
Proceedings, p.57 Helsinki (1984)

[Cur89] A.D. Curtin and J.M.Scholes, IJSM: AFull-Screen
Manager for Dyalog APL, API-%9 Conference Procee-
dings, p.107 New York (1989)

[Kro90] Morten Kromberg and Martin Gfeller, An Appli-
cation Development Pla~onn, APL90 Conference Procee-
dings, p.217 Copenhagen (1990)

[McD88] McDonnell Douglas, PRO-ZVRe~erence Manual,

Version 1.5, St. Louis, (1988)

Example of use

This simple example implements an invoice data entry
system. Data is kept in the workspace. Customer names

and addresses are kept in two character matrices: cus and
CUSA. Invoice headers and details are in two numeric

Fields in the table: CUSTOMER

Customer name
output : Cus[sc;]
Store: Cus [Sc;] --Wx
Input: wx.+w~c

Customer address
output : CUSA[SC ;]

Store: CUSA[SC ;] +WX

Input: wx+w~c

Fields in the table: INVHDR

Customer
Represent: CUS iO
output : HDR[sh; l]
Store: HDR[sh; l]+wx
Input: wx+wI s ?cus ~

Date of invoice
Represent: dcvo
output : HDR[sh;2]
Store: HDR[sh;2]-wx
Input: wx+wId 11

Terms of payment
Represent: dCVo

APLITDS 312 APL 91

output : HDR[sh;3]
store: HDR[sh;3]-wx
Input: wx+wId 11

Fields in the table: INVDET

Product
Represent:PROD iO
output : DET[sd;2]
Store: DET[sd;2]+wx
Input: wx.+wIsJpROD f

Quantity
output : DET[sd;3]
Store: DET[sd;3]-wx
Input: wx+wIn f)

Price
output : DET[sd;4]
Store: DET[sd;4]-wx
Input: wx.+wIn ()

Row Amount
output : X/DET[sd;3 4]

Notes:

● Represent and Input statement, if omitted, are empty.
● XiOY is equivalenttoXIY] (inzeroorigin)

● dcvotransforms the internal representation ofdates
. to the external numeric representation DDMMYY
. WIC inputs character strings

● wId inputs dates (11 is the external format used)
● WIS allows selection ofonevalue from a fist

● WI n inputs numbers

After defining the dictionary we will proceed with screen

definitions. We will define three screens:

Screen aOSl: Customer List
Primary Table: CUSTOMER
Fields:

Customer name
customer address

Screen aOS2: Invoice List
Primary Table: INVHDR
Joined Tables: CUSTOMER
Fields:

Customer
Date of invoice
Terms of payment
customer address

PF keys:
Key: 2 F2 Details
Exp: seld+WHERE DET[;l]=sh V

O 0 Opw’aOs3’

Screen aOS3: Invoice Details
Primary Table: INVDET
Fields:

Product
Quantity
Price
ROW AmOUnt

Notes: Function”w” opens thescreen named inthe right
argument.

Wewilldefneone menu:

Menu sMEXAMPLE: APL91 example
choices:

Customers O Opw’aOSl’

Invoices O Opw’aOS2’

AndfinallyanAPL functionto startthe system

V DO
[1] ?@L91 example start function

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

banner
UG ‘gDWMB’
UG ‘gAFIUi’
UG ‘gAFSSr
UG ‘gAFUB’
wPF

wSKI

‘wTS’ wSKD 1 0

READDATA

WM ‘sMEXAMPLE ‘
STOREDATA

banner

load the APLITDS
screen manager
and other basic

groups
initialize screen

management

Initialize skeduled
activities

Start clock as a
skeduled activity

Reads CUS CUSA HDR
e PROD

Start the menu
StOres CUS CUSA HDR

e PROD
[14]

[15] 0 (c)APLIT O INI spi 19/04/1991 10:37
‘2805

v

APLQuoteQuad 313 Carlo Alberto Spinicci

