APLITDS: An APL Development System

Carlo Alberto Spinicci
APL Italiana srl
via Eustachi, 11

20129 Milano

Abstract

In spite of its tremendous expressive power, APL lacks a
convenient environment for developing large, interactive
systems, The workspace structure prevents easy sharing of
code and the realization of user interfaces is at least as
difficult as in other languages. This paper describes an
integrated development environment that attempts to
overcome these limitations.

Introduction

APLITDS is the development system used by APL Italiana
for internal development. The awful name is an acronym
for the APL ITaliana Development System. We never
found a better name and eventually grew accustomed

Development of APLITDS started in mid-1987 as we tried
to organize the large number of utilities for file handling,
screen definition, reporting and graphics which we had
accumulated during the three previous years of
APL*PLUS/PC usage. The first version of APLITDS was
released after a couple of months of programming in spare
time. From start to finish, the implementation of APLITDS
has been a one-man job - unfortunately, my own.

The main aims of APLITDS are the same as any system of
this kind: to reduce development efforts, to simplify main-
tenance, and to provide for uniform programming styles
and user interfaces.

The Workspace Problem

The standard APL environment, centered around the
workspace, is perfect for casual users, ad hoc solutions and
small personal applications, but it falls short for developers
of complex, professional, systems. It is simply too difficult

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1991 ACM 0-89791-441-4/91/0008/0307...$1.50

APL Quote Quad 307

Italy

to ensure that all the application workspaces use the same
(latest) version of the utilities. Further, it is not practical to
have a copy of all your development tools in every
workspace and)COPYing and)ERASEing everything
each time is slow and annoying. This problem has been
highlighted many times in the past [Ber84] [All86] and
numerous solutions have been proposed.

APLITDS keeps programs in files (so that different ap-
plications can make direct use of them) and uses only one
(small) saved WS to boot the system.

Building User Interfaces

Probably most of the code written for large, interactive
systems is devoted to managing the user interface. In this
respect APL doesn’t provide much more than any other
language. Screen tools included with most APL inter-
preters are at a rather basic level, as AP124, AP126, OWIN,
and so forth. Even the more advanced tools such as
Dyadic’s[0SM [Cur89] handle only the final part of the task.
A lot of code has to be written which has very little to do
with the application itself, and concerns itself with the
(graphic) input and output technology used.

One of the beauties of APL immediate execution mode is
that the user is at the very top of the hierarchy with all the
programs at his fingers. When using traditional interactive
programs written in APL or any other language, the user
is just a subroutine of the system and she/he may only react
in ways foreseen by the programmer. This “inverted”
hierarchy tends to produce user interfaces that frustrate
the user and promote clumsy programming. The solution
is perfectly highlighted in [Kro90]: “Instead of letting the
application call the tools, let the tools call the application”.
This is what we tried to do in APLITDS.

Structure of APLITDS

The main components of APLITDS are:

« a data dictionary, where all data variables used in the
application are described.

Carlo Alberto Spinicci

« ascreen editor for both fill-the-blanks and spread-sheet
style forms (forms are filed on disk and retrieved at the
moment of execution). The definition of the variable part
of a form is dictionary driven.

» an overlay system for storing functions and variables, and
retrieving them when needed.

« areport generator.

« a business graphics generator.

« aset of utilities,

An APLITDS “screen” is not only the basic unit of inter-
action between the user and the application, but also the
fundamental element of APLITDS programming. This
“screen oriented” programming is typical of certain ap-
plication generators such as PRO-1V [McD88].

Interactive applications usually follow this general pattern:

« Data is read from files.

» Computations are performed to obtain all required in-
formation.

« Data is formatted, merged with fixed text, and presented
to the user.

» Some code for managing the interaction with the user (as
OWIN) is executed.

« User input is validated.

«» After some final computation, data is written to file.

3101-1991 06:06

APL I TDS m———sme———— AFLITDS r.1.0
I Dizionario
| Sistemi Applicazioni és 8 g
L i

2 Variabili Formati

il
Indice Sslottore Funziore fpplic.

Cod. Descrizione Frimario Primaria di selez. di
t. Entita’ Entita’ Entita’ Entita’ fppart,
O non assagnata senza roms J
14 DIZ_APP BDIZIONARIO J
10 DIZ_ENT se sele DIZIONARIO J

11 DIZ_FLD sd sald DIZIONARIO J
12 DIZ2_FnT &df seld

. DIZIONARIO &
15 DIZ_ENT_J

sdj T saldj DIZIONARIC J

] {cD39)
R T L e T e S R T EET

Esecuzione. .
9 Flence Variahili

fig 1. List of tables

In APLITDS the above activities are defined in the data
dictionary. The activities are performed at the appropriate
moments when the user make use of the screen. Some of
the definitions are APL expressions, and thus the data
dictionary defines how APL functions are called from the
screen.

APLITDS screens give the user a great deal of freedom in
managing data: she/he can select and sort rows, aggregate
numeric data, define and print reports, and create graphs.
She/he can also control some aspects of the screen layout,
such as selecting and ordering columns of information to
appear on the screen from a predefined set. This works -
at akeystroke - on a thirty rows of a memory-resident table,
or on several thousand rows of data in a file.

APLITDS

Furthermore, all this is obtained without any application
code, it’s just a “fringe benefit” coming from the screen
definition and the data dictionary.

APLITDS Data Dictionary

Variables are the basic objects described in the dictionary.
They can be APL workspace variables, or the results of
computation. They can reside in memory, or on a file (not
necessary an APL file, you can use any file system which
can be accessed from APL).

APLITDS =y AFLITDS r.1,0 3L01,1991 06108
Dizionarto -
lI Sistemi Applicazioni Igr RNy

R i

i Variabili Formati FH

] SadaRieaal
Descrizions del dato

Elenco Variabil{
Cod. (testata orizzontale) Formato
41 Descrizione del Pormat Caratteri (gererico)
42 Format. Caratteri (generico)
43 Larghezza Input dei Pormat Numero Intero{generico)
45 Caratteri di coda del Format Mumero Intero(gererico)
44 Displacement del format MNurerc Intero(generico)
46 Patiore di scala del Farmat Numere Intero(genericol
47 Codice de) Format Mumero Intero(generico)
48 Applicazione di appartenenza Caratteri (generico)

4
1z,

(eDS10
poE e e e e e T e e e e
SRR

tseowzionc.,
6 Mnstra ‘testata

" Fit Reports

fig. 2 List of fields

For each variable, the dictionary contains the following
information:

« A short description of the variable.

o The format (OFMT syntax).

o The header to use in spread-sheet like forms and in
reports (it can be fixed, or calculated at execution time).

» The APL expression that calculates (or retrieves) the
value of the variable.

« The APL expression that produces the external repre-
sentation of the variable fromits internal value (e.g., from
internal date format to ’yy-mm-dd’).

« The APL statement used to accept input for the variable.
APLITDS itself supports several data types such as
character strings, numbers, dates or items selected from
a predefined set of values. If you have special require-
ments, the expression can do anything you need, even
opening a completely new screen.

» The APL expression that validates input.

- The APL statement that stores the input (e.g., assigning
it to a variable or writing it to disk).

« How to sum values of this field. Certain fields (especially
calculated fields such as averages) cannot be totalled
using a simple plus reduction.

« Various less important attributes.

Variables are organized in tables (very similar to relational
tables). For tables, the dictionary describes various opera-
tions on the table.

APL 91

The most important information recorded for a table is:

« The APL statement that, when executed, adds anewitem
(record) to the table.

« The name of a variable to be used as a “selector” for the
table (it will contain the indication of which records of
that table are to be considered “selected”).

» The name of a variable to be used as a pointer for the

table. The system will set the value to the indices of those

records which are involved in the current operation.

Most of the expressions which describe APLITDS vari-

ables will be sensitive to this value.

The {optional} name of a function, which does the setup

needed before referencing the table (such as opening

files).

The {optional} name of a function, which does the setup

needed before any operation on the currently active

items (such as reading from files).

+ Aset of expressions that join this table with others. These
expressions compute the pointer of one table from the
pointer of another. They will be used by the system when
the same screen or report contains variables belonging
to different tables.

The dictionary also contains descriptions of standard for-
mats used through the application, and complementary
information regarding applications and their related data
and program directories. Dictionary maintenance is per-
formed using interactive APLITDS screens.

The Screen Editor

The screen editor of APLITDS enables the programmer
to define three types of objects:

« Fill-the-blanks screens. A fixed format screen with a
constant part and variable fields. The constant part of the
screen is designed by the programmer using an interac-
tive utility. The variables, described in the dictionary, are
then positioned on the screen using the same utility.

« Spread-sheet style screens. A collection of variables
(columns) for all the selected records (rows) of the main
table of the screen. Vertical and horizontal scrolling is
allowed. Constant parts (headers) are taken from the

I———_'— AP LL:E.{ D § ey AFLITDS r.1.0 3L01,1991 06:32
N W L

Lista Applicaziont Compilato Lul.
05,0389 2
Posiziore 7 2 15 30 Entita’ Primaria non assegnata 15:45 59" 450
Entita’ Selezione Espressloni E]
Collegate totale?
Dizionario B Righe gia’ lg Livello di
Locale euidenziate? conpatibilita’
Lista Colonne n Buffer di
campl spalta tastiera
Attributl D Nomax righe [0 | Tasti B
campi sujdenziabili Funzionali
Testata DE] btharg. fo | Variabili E]
Speciale of Wprog Locali

Selezionare canpn
3 Dizionarin

F4 Quit (senza aggilorwanentn)

fig. 3 Screens editor

APL Quote Quad

data dictionary as well as any information needed for
their handling. The developer is only requested to specify
which variables are to be included.

« Menus. A list of choices and related APL statements to
be executed. The menu is automatically formatted. The
user can activate one choice moving the cursor and
pressing the “enter” key or just pressing the first upper-
case character of the choice.

Both types of screens are filed in screen libraries. Menus
are kept as packages together with APL functions and
variables in the function libraries (see below). Editing of
screens is also performed using interactive APLITDS
editors.

Screens can have local variables and a local dictionary (we
have developed systems using APLITDS, which make no
use of the central application dictionary).

A set of APL statements can be defined so that they will be
executed at useful points such as during the initialization
of a screen, before or after the input of a field, or before
the display of a new item. Using these statements together
with dictionary statements it is possible to design applica-
tions where the flow of operations is completely controlled
by the screen definitions.

Function keys can be defined for screens and menus. The
APL statement to be executed and an optional text to be
displayed on the last line of the screen are recorded for
each function key. “Hot keys” (always active during an
application) are defined as specially named functions. In
this case, the informative text used to automatically create
the help screen - always avalaible through the PF1 key - is
kept in a public comment in the first line of the function.

At any moment privileged users can press a key to open an
“APL immediate execution” window and perform any
APL operation. The depression of another key resumes
normal APLITDS operations. Screens, PF-keys and error
trap definitions are preserved during the APL activity.
Another useful key (not active in the final runtime applica-
tions) enables editing and recompiling the currently active
screen. The application dictionary can be also updated “on
the fly”.

Function Libraries.

Programs and constants are collected in “groups” (pack-
ages). Groups are organized in “libraries” (APL files).
Library names are single characters. Group names are
three characters long. To refer to a group within a library,
you simply catenate the library name to the group name
(e.g, DWMB is the name of the group WMB inside the
library D)

Libraries with uppercase names are general libraries.
Libraries with lowercase, or numeric names are “applica-
tion libraries”. The actual file name for libraries is built

Carlo Alberto Spinicci

from the letter that designates the library plus a fixed part
for general libraries and an application dependent part for
application libraries. Screen libraries have the same
naming convention.

A single function “uG” does all the housekeeping of groups
and libraries. The statement uG’G DWMB’ defines the
group D WMB in the workspace, while uG’S DWMB’
stores a modified version of the same group into the D
library. Other operations recognized by the uG function let
you list the contents of libraries and groups, create new
libraries and groups, etc.

APL] TDS m=m———————y APLITDS r.1.0 31011991 06: 1L

l List
WS Groups FRTIMEIE Forms Libs i
] APL files DOS files HELP files
§ N-files naMes in ws
i Librerie di Gruppt — ¢

b
Elanco Gruppi in

i cod pr—e————————

% ~—— |lib grp In WS Descrizione Conteruto

i a —— Namel {st

& B fi UN No Nome Classe Size Grp

: C A UML No —

5t D A FUB Si’ oL fn 3 7B AFLO

| G A FLO Mo QTLP ™ 3 4% AFLO

: H A KEY Mo DELETE fn 3 2% ATFLO

B M A OPK No DESCRIBE var 2 %44 ATFLO

5 Q A US Mo DOCHD fn 3 %2 A FLO

i R A MFF No PREPARA fn 3 1232 ATLO

[T A UWe No SOSTITUISCI fn 3 448 A FLO

i W A ERR Si° ses fn 3 04 ATFLO i
Y A APP Mo SZs fn 3 208 A FLO i
— A HAD No TRASF fn 3 W4 ATFLO Al
L TRASFERISC! fn 3 494 ATFLO &

i
i
— Rirerca stringa F.’l Delete

fig.4 List of the variables of a group

When a group is stored, the uG function adds, or updates
a standard comment in each function of that group that
specifies when the function was last changed, and who
changed it (changed functions are recognized through a
CRC code recorded in the same comment line). Manage-
ment of groups and libraries can be achieved directly
through the uG function, or through APLITDS screens.

Only the uG function, the package functions, and some
error handling tools are kept in the boot WS, All other
functions and variables are stored in libraries.

The Report Generator

At any moment, when using a spreadsheet screen, the user
can create and print reports. Reports are defined by just
selecting which columns are to be included. Partial totall-
ing is permitted. A number of parameters let you control
several aspects of the report such as suppression of detail
(i.e., print only totals) for all rows, or just for a selected
number of rows, printing attributes for totals, print destina-
tion (printer port or file), etc.

Escape sequences to drive the printer are fetched from a
configuration file and can be modified.

APLITDS

310

Graphics

At any moment, when using a spreadsheet screen, the user
can create and print charts. To obtain a graphic image of
the data, the user has only to specify the variable (or
variables) to plot, and the ordinate (one or two variables,
not necessarly numeric), and then to select the kind of chart
she/he wants (line, points, bars, pies, percentage bars,
skyscrapers, line3D, or points3D).

Graphics can be printing on impact and laser printers in
different orientations and dimensions. Charts are plotted
using the OG* functions supplied with APL*PLUS/PC.

Utilities

A wide set of utilities, ranging from development tools to
DOS interfaces, have been added to APLITDS.

The following list summarizes some of the activities that are
possible through those utilities:

« Searching APLITDS libraries.

« Editing help files.

« Capturing a TIFF image from the screen (both graphic
and text screens) for documentation purposes (all figures
- with the exception of fig.5 - in this document were
created using this tool).

Creating a TIFF image that graphically shows which
sequence of menu selections and PF keys the user has to
follow to activate a certain function of an application (we
use this option when writing manuals, see fig.5).
Creating “auto demo” versions of an application to be
used during exhibitions.

Maintenance of our propietary data bases.

Issuing a DOS command on a selected list of files.

File (de)compression and archiving using PKZIP from
PKWARE.

« Housekeeping of APL files.

Controlling various printers.

Changing screen attributes and keyboard layout.
Creating (compiling) the runtime version of an applica-
tion (i.e., compressing functions using STSC DIAM and
UNCOMMENT utilities, extracting from libraries only
those groups that are referenced in the application, and
stripping any development specifications from screen
definitions).

Porting of a new version of an APLITDS application
from the APL*PLUS/PC environment to APL*PLUS II
and, preserving those functions, that have been modified
in the new environment.

Maintenance of different versions of the same applica-
tion and multilingual versions of any message embedded
in the application (this is still under development).

*

Some of these activities could be done using DOS utilities
such as Norton Utilities or PC TOOLS, but using these
“external” systems requires leaving the development en-

APL 91

vironment, while the APLITDS utilities are immediately
available to the APL programmer.

I APLITDS
Il Editors List ||

Applicazioni g SEX

I Dizionario
Sistemi
Variabili Formati

{Select one application}

It

{Select one entity}

84

{Edit variables}

fig.5 How to edit a variable - Example of documentation

...more

There are other features of APLITDS, that have proven to
be useful. The most frequently used is the ability to
schedule background activities. A scheduled activity is an
APL function to be executed at certain points, for example
while waiting for user input, or during time-consuming
operations. The most common of these activities
(automatically scheduled by APLITDS) is the refreshing -
every 60 seconds - of the time stamp showed at the upper-
right corner of the APLITDS screen.

One of the applications written by APL Italiana using
APLITDS is a PC front-end for mainframe applications
based on a Sharp APL system and accessed through a
telephone line. This PC application makes heavy use of
scheduled activities, for example tolet the user browse part
of the message already received, while new material is
constantly appended to the end of it. Unsolicited input (as

APL Quote Quad

311

in BBS systems) has been emulated on a half duplex net-
work (such as the IPSA/Reuters network). A scheduled
activity occasionally polls the remote system for new infor-
mation while the user is free to browse everything that has
already arrived on his PC.

Careful writing of the scheduled functions can reduce the
interruptions experienced by the user to a negligible level.

Notes about Implementation of
APLITDS

APLITDS is completely based upon itself. Any screen used
in APLITDS (editors and utilities) is written using
APLITDS and its dictionary.

Any facility that APLITDS provides to the end user, can
be used by the developer during his work (the reverse is
also true unless the facility is excluded during compilation
of the runtime version).

APLITDS was written in APL*PLUS/PC using most of the
features of this interpreter. This means that porting it to
other APL systems would require a substantial effort. We
have ported a complete version of APLITDS to
APL*PLUS II and a very reduced subset (only the library
management subsystem) to Sharp APL.

Applications Implemented using
APLITDS.

We have implemented alarge number of applications using
APLITDS. Some of them are used internally to record our
activities, or to maintain our customer data base, etc. Some
applications were developed under contract, such as the
PC front-end mentioned above, that has about one
thousand installations. Others are “products” such as a
portfolio management system for stocks and bonds called
SOFIA, which is the the primary product sold by APL
Italiana. Some of those applications are installed in Local
Area Networks and allow multiple users to access and
update the same data bases simultanously.

Conclusion

The development of a system such as APLITDS, using a
powerful language such as APL is not impossible, even for
a small company like APL Italiana. Creating a well docu-
mented, bug-free product from it is probably beyond our
capabilities (or rather our capacity).

A flexible and extensive application environment capable
of imposing a uniform style on all the products of our
company, without stifling creativity, is of enormous value
to us. Tasks such as maintenance and documentation are
greatly simplified (our user manuals are at least 50% iden-

Carlo Alberto Spinicci

tical). This is true despite the fact that we are an APL-
based company!

Screens provide an intermediate hierarchical level over
computational (APL) functions. This brings APL
programming closer to the main stream of non-APL
programming facilitating the use of emerging analysys
techniques and related CASE products. Screens and fields
are objects which can be activated by the user. The environ-
ment knows how to react to a user actions. A simple
reorganization of the application definitions could provide
a framework for an object-oriented programming style in
APL.

APLITDS itself is probably is not an example of good APL
programming style. We have added new features each time
we needed them, with the functionality which was required
at that moment. I would expect that the development of
similar (hopefully better) products, maintained by the
major APL vendors would help to spread APL, giving a
uniform base to the applications written in APL by dif-
ferent companies. This would lead to a more homogenous
culture among APL programmers, which in turn will help
the circulation of people and ideas within the APL com-
munity, which unfortunately remains very small.

References

[All86] D.B.Allen, L.H. Goldsmith, M.R.Dempsey and
Kevin L. Harrel, LOGOS: An APL Programming Environ-

ment, APL86 Conference Proceedings, p.314 Manchester
(1986)

[Bar90] Guy Barker, Douglas j. Keenan and Herman van
Loon, Conscientious Programming Using PMA, APL90
Conference Proceedings, p.18 Copenhagen (1990)

[Ber84] Michael J.A. Berry, Shared Functions and Varia-
bles as an aid to Application Design, APL84 Conference
Proceedings, p.57 Helsinki (1984)

[Cur89] A.D. Curtin and J.M.Scholes, [ISM: A Full-Screen
Manager for Dyalog APL, APL89 Conference Procee-
dings, p.107 New York (1989)

[Kro90] Morten Kromberg and Martin Gfeller, An Appli-
cation Develepment Platform, APL90 Conference Procee-
dings, p.217 Copenhagen (1990)

[McD88] McDonnell Douglas, PRO-IV Reference Manual,
Version 1.5, St. Louis, (1988)

Example of use

This simple example implements an invoice data entry
system. Data is kept in the workspace. Customer names
and addresses are kept in two character matrices: cUS and
CUSA. Invoice headers and details are in two numeric

APLITDS

matrices: HDR and DET. The first column of HDR is a
pointer to customers, the first column of DET is a pointer
to HDR. PROD is a character matrix containing product
names.

The first step is to define the needed dictionary as follows;
TABLES:

Table: CUSTOMER (Customers)
Insert: CUS«CUS’ ' ¢ CUSA«CUSA’ ' $
¢ selceselc,lfpcus
Pointer: sc
Selector: selc

Table: INVHDR (Invoice Headers)
Insert: HDR<«HDRO ¢ selheselh,1%pHDR
Pointer: sh
Selector: selh

Table: INVDET (Invoice Details)
Insert: DET<DET(11pDET)?%sh ¢
¢ seldeseld,1tpDET
Pointer: sd
Selector: seld

FIELDS:

Fields in the table: CUSTOMER

Customer name

output: CUs[sc;]
Store: CUS[sc;]«wWX
Input: wxewIc

Customer address

output: CUSA[sc;]
Store: CUSA[sC;]<WwWX
Input: wxewIc

Fields in the table: INVHDR

Customer
Represent:CUS i0
Output: HDR[sh; 1]
Store: HDR[sh; l]ewx
Input: WXeWIS ' CUS‘

Date of invoice

Represent:dcvo

output: HDR[sh; 2]
Store: HDR[sh;2]ewx
Input: wxewId 11

Terms of payment
Represent:dCcvo

APL 91

Output: HDR[sh; 3]
store: HDR{sh;3]ewx
Input: wxewid 11

Fields in the table: INVDET

Product
Represent :PROD i0
output: DET[sd;2]
Store: DET[sd;2)«wx
Input: wX<wIs’'PROD'
Quantity
output: DET([sd; 3]
Store: DET[sd;3]«wx
Input: wxewIn 0
Price
output: DET[sd; 4]
Store: DET[sd;4]«wx
Input: wxewIn 0

Row Amount
output: X /DET{sd;3 4]

Notes:

+ Represent and Input statement, if omitted, are empty.
« Xi0Y isequivalent to X[Y] (in zero origin)

« dcvo transforms the internal representation of dates
« to the external numeric representation DDMMYY

» wIc inputs character strings

» wId inputs dates (11 is the external format used)

« wIs allows selection of one value from a list

» WIn inputs numbers

After defining the dictionary we will proceed with screen
definitions. We will define three screens:

screen a08l: Customer List
Primary Table: CUSTOMER
Fields:

Ccustomer name

customer address

Screen a0S2: Invoice List
Primary Table: INVHDR
Joined Tables: CUSTOMER
Fields:

Customer

Date of invoice

Terms of payment

Customer address
PF keys:

Key: 2 F2 Details

ExXp: seld«WHERE DET[;1l]=sh ¢

¢ 0 Opw’'a083’

APL Quote Quad

Screen «a0s83: Invoice Details
Primary Table: INVDET
Fields:

Product

Quantity

Price

Row Amount

Notes: Function “w” opens the screen named in the right
argument.
We will define one menu:

Menu SMEXAMPLE: APL91 example

Choices:
Customers 0 Opw'alsl’
Invoices 0 Opw'a0s2’

And finally an APL function to start the system:

V po
[1] APL91 example start function
[2]
[3] banner
[4] uG ’'gDWMB'’
[5] uG 'gAFAA’
[6] uG 'gAFSS’

banner

load the APLITDS
screen manager
and other basic

[7] uG ‘gAFUB' groups

[81 wWPF initialize screen
management

[9] WSKI Initialize skeduled
activities

[10] 'wTs’ wSKD 1 0 start clock as a
skeduled activity
Reads CUS CUSA HDR
e PROD
[12] wM 'sMEXAMPLE' start the menu
[13] STOREDATA Stores CUS CUSA HDR
e PROD

[11] READDATA

[14]
[15] ° (C)APLIT O INI spi 19/04/1991 10:37
2805
\Y

Carlo Alberto Spinicci

