

Calhoun: The NPS Institutional Archive DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1976

APL histogram, density estimation and probability plotting routines.

Hutchinson, Dennis Roy

Monterey, California. Naval Postgraduate School

<http://hdl.handle.net/10945/17675>

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

APL HISTOGRAM, DENSITY ESTIMATION
AND
PROBABILITY PLOTTING ROUTINES

Dennis Roy Hutchinson

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

APL HISTOGRAM, DENSITY ESTIMATION
AND
PROBABILITY PLOTTING ROUTINES

by

Dennis Roy Hutchinson

December 1976

Thesis Advisor:

P. A. W. Lewis

Approved for public release; distribution unlimited.

T176093

routines are explored. And, the combined routines give the general user an extensive tool to analyze either discrete or continuous data.

APL HISTOGRAM, DENSITY ESTIMATION
AND
PROBABILITY PLOTTING ROUTINES

by

Dennis Roy Hutchinson
Captain, United States Army
B.S., United States Military Academy, 1969

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
December 1976

ABSTRACT

This paper introduces several data analysis routines that were designed for interactive use with APL (A Programming Language) and placed in the APL user library at the Naval Postgraduate School. Specifically, histograms, density estimation and probability plotting routines are both explained in detail and demonstrated with actual data. In addition, applications and limitations on each of the routines are explored. And, the combined routines give the general user an extensive tool to analyze either discrete or continuous data.

TABLE OF CONTENTS

I.	INTRODUCTION	8
II.	HISTOGRAM ROUTINE	10
	A. DESCRIPTION	10
	B. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE DATA 2 OFFLINE; ALL DATA, ECDF, AND TITLE	15
	C. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE DATA 2 ON LINE; CONDITIONAL DATA BETWEEN 2 AND 140, ECDF, AND TITLE	20
III.	LISTING ROUTINE	25
	A. DESCRIPTION	25
	B. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE DATA 2 OFFLINE	26
IV.	SECTIONING ROUTINE	36
	A. DESCRIPTION	36
	B. USAGE WITH TELEPHONE DATA 1	38
	C. INTERPRETATION OF RESULTS	40
V.	JACKNIFE ROUTINE	41
	A. DESCRIPTION	41
	B. USAGE WITH TELEPHONE DATA 1	44
	C. INTERPRETATION OF RESULTS	46
	D. USAGE WITH COST OVERRUN DATA	46
VI.	EXPONENTIAL PLOTTING ROUTINE	49
	A. DESCRIPTION	49
	B. USAGE WITH TELEPHONE DATA 1	49
	C. USAGE WITH RANDOM GENERATED EX- PONENTIALLY DISTRIBUTED SAMPLE WITH MEAN SAME AS TELEPHONE DATA 1	50

VII.	NORMAL PLOTTING ROUTINE	53
A.	DESCRIPTION	53
B.	USAGE WITH COST OVERRUN DATA	54
C.	USAGE WITH NORMAL SAMPLE GENERATED WITH MEAN AND VARIANCE THE SAME AS COST OVERRUN DATA	54
D.	USAGE WITH COEFFICIENT OF VARIATION DATA OBTAINED FROM USING SECTIONING ROUTINE	57
VIII.	THE INDEPENDENCE AND MARKOV CHAIN HYPOTHESSES FOR THE TELEPHONE DATA	59
IX.	DOCUMENTATION ON ROUTINES	73
A.	LOCATION IN APL LIBRARY	73
B.	WORKSPACE LOADING PROCEDURES	73
C.	ROUTINE LISTING	74
1.	Author Created Routines	75
2.	Adapted from Fortran Library Routine HISTG/F	75
3.	Borrowed Routines to Supplement Author Created Routines	75
X.	COMPUTER LISTING OF ALL ROUTINES	76
LIST OF REFERENCES		94
INITIAL DISTRIBUTION LIST		95

LIST OF FIGURES

Figure

1. Histogram and descriptive statistics of telephone data 1 using routine HIST - - - - - 18
2. Histogram and descriptive statistics of telephone data 2 using routine HIST - - - - - 19
3. Histogram and descriptive statistics of telephone data 1 between 2 and 140 using routine HIST - - - - - - - - - - - - - - - - - 23
4. Histogram and descriptive statistics of telephone data 2 between 2 and 140 using routine HIST - - - - - - - - - - - - - - - - - 24
5. (a,b,c) Listing of telephone data 1 using routine HISTLIST - - - - - - - - - - - - - - - - - 28-30
6. (a,b,c,d) Listing of telephone data 2 using routine HISTLIST - - - - - - - - - - - - - - - - - 31-34
7. Sectioning of telephone data 1 into 16 sections with descriptive statistics using routine HISTS - - - - - - - - - - - - - - - - - 39
8. Jacknifing of telephone data 1 into 16 groups with descriptive statistics using routine HISTJACK - - - - - - - - - - - - - - - - - 45
9. Jacknifing of cost overrun data into 22 groups with descriptive statistics using routine HISTJACK - - - - - - - - - - - - - - - - - 48
10. Exponential plot of telephone data 1 using routine EXPONP - - - - - - - - - - - - - - - - - 51
11. Exponential plot of exponential sample generated with mean same as telephone data 1 using routine EXPONP - - - - - - - - - - - - - - - - - 52
12. Normal plot of cost overrun data using routine NORMP - - - - - - - - - - - - - - - - - 55
13. Normal plot of normal sample generated with mean and variance same as cost overrun data using routine NORMP - - - - - - - - - - - - - - - - - 56
14. Normal plot of 16 coefficient of variation values (obtained from section routine HISTS of telephone data 1) using routine NORMP - - - - - 58

15.	Histogram and descriptive statistics of the runs of one using routine HIST	64
16.	Histogram and descriptive statistics of the runs of zero using routine HIST	65
17.	Listing of the runs of one using routine HISTLIST	66
18.	(a,b,c) Listing of the runs of zero using routine HISTLIST	67-69

ACKNOWLEDGMENTS

Particular acknowledgment is due to two individuals. Professor P.A.W. Lewis, with his extensive knowledge in the area of data analysis, was instrumental in the initial phase of this thesis. And, with his continual guidance the methodology and procedures to be used were successfully implemented in the computer routines created.

Professor Richard W. Butterworth contributed greatly with his extensive knowledge of all aspects of APL. His cooperation and willingness to assist resulted in the efficient and extensive use of all current features available for APL at the Naval Postgraduate School.

I. INTRODUCTION

The Naval Postgraduate School acquired APL (A Programming Language) from IBM in 1974. Since that time more and more students and faculty have become familiar with the extensive and efficient capabilities of APL and have been putting these features to good use. With the acquisition of APL came several extensive library routines that are both well documented and varied in scope. However, on close examination of these library routines it was found that statistics and data analysis were areas where some additions would be particularly useful.

Because of the efficiency and ease of APL in manipulating vectors, matrices and arrays, it is ideal for use in the area of data analysis. After a complete and thorough screening of the existing APL library routines pertaining to data analysis, it was found that by adding six additional data analysis routines to the present library, the Naval Postgraduate School could enhance its present APL capability and provide the student and general user with a more varied and flexible tool for analyzing data.

To this end the purpose of this thesis will be (1) to completely describe the six data analysis routines added to the APL library, (2) to explain the features and capabilities of each of the routines and (3) to demonstrate the use of each of the routines with "real world data".

The data to be used in this paper has come from two different sources. The first source of data was from tests performed jointly by IBM Germany and the German Public Telephone Network on errors in transmission of binary data on telephone lines (Lewis & Cox, 1966). From this source two sets of data are used and each data set contains the times between errors in binary bits transmitted over telephone lines. The first data set contains 672 elements (times-between-errors: actually number of bits between errors) and will hereby be referred to as "telephone data 1". The second data set contains 736 elements and will be referred to as "telephone data 2". The second source of data was obtained from percent overrun or underrun on selected military contracts during the year 1950 (Dixon, 1973). This data set contains 22 elements and will be referred to as "cost overrun data".

II. HISTOGRAM ROUTINE

A. DESCRIPTION

The first routine to be presented is the histogram routine which is used for estimating from given data the probability density function $f(x)$ of a continuous random variable. The current APL library has several small histogram routines that are general in nature but lack the overall detail necessary for good data analysis. For this reason HIST (histogram routine) was created. HIST represents the adaptation and modification of the fortran library version of HISTG/F, which was developed at N.P.S. by D. R. Robinson under the guidance of Professor P.A.W. Lewis. By modifying and adapting HISTG/F to APL the power and efficiency of the APL language could be put to full use.

A complete description of how HIST operates is contained in the variable HISTHOW. If the users APL workspace is properly loaded (see section IX.B. for workspace loading procedures) all that is necessary is to type HISTHOW. The user then receives the following printed response on the terminal:

HISTHOW

SYNTAX HIST

HIST ALLOWS YOU TO INTERACTIVELY OBTAIN A HISTOGRAM OF YOUR DATA ALONG WITH A SET OF BASIC DESCRIPTIVE STATISTICS. IN ADDITION, HIST HAS THE FOLLOWING CAPABILITIES WHICH ALLOW YOU:

- (1) THE OPTION OF A TITLE FOR YOUR HISTOGRAM
- (2) THE OPTION OF DISPLAYING A SMOOTHED EMPIRICAL DENSITY FUNCTION OVER THE HISTOGRAM
- (3) THE OPTION OF SCALING AND SELECTING THE NUMBER OF CELLS FOR YOUR HISTOGRAM
- (4) THE OPTION OF SELECTING AN INTERVAL AND PERFORMING A HISTOGRAM ON ALL THE DATA POINTS OR CONDITIONALLY SELECTING AN INTERVAL IN THE RANGE OF THE DATA.
- (5) THE OPTION OF HAVING YOUR OUTPUT APPEAR ON THE OFFLINE PRINTER OR ON YOUR TERMINAL

WHEN YOU TYPE HIST YOU WILL BE ASKED TO DO THE FOLLOWING:

- (1) ENTER YOUR DATA IN VECTOR FORM - YOU CAN TYPE YOUR DATA IN SINGLY OR YOU CAN TYPE THE NAME OF A VARIABLE THAT HAS YOUR DATA IN IT. YOU MUST ENSURE THAT YOU HAVE AT LEAST 10 DATA POINTS IN YOUR VECTOR AND THAT THERE IS SOME DIFFERENCES IN THE DATA POINTS (MAX SIZE OF INTEGER VECTOR IS APPROX. 2500 , MAX SIZE OF REAL VECTOR IS 2000). AFTER YOU HAVE ENTERED YOUR DATA YOU WILL BE ASKED
- (2) IF YOU DESIRE A SMOOTHED EMPIRICAL DENSITY FUNCTION OR NOT. THE EMPIRICAL DENSITY FUNCTION WHEN PLOTTED GIVES ESSENTIALLY A MORE EXACT PICTURE OF THE DATA THAN DOES THE HISTOGRAM ALONE, ALTHOUGH THIS FEATURE IS SLIGHTLY BLURRED BY THE PRECISION WHICH CAN BE OBTAINED WITH THE APL BELL (THE APL FINE PLOT IS NOT PRESENTLY AVAILABLE ON THE NPS SYSTEM). THE SMOOTHED EMPIRICAL DENSITY IS DEFINED BY THE RELATION (LEWIS, LIU, ROBINSON, AND ROSENBLATT, 1975; ROSENBLATT, 1956)

$$\bar{F}(z) = \frac{1}{N} \sum_{i=1}^{N} w((x_i - z) / b(N))$$

WHERE N IS THE NUMBER OF DATA POINTS, $b(N)$ IS A BANDWIDTH FUNCTION,

$$b(N) = \text{RANGE} / \sqrt{N}$$

AND w IS A WEIGHT FUNCTION,

$$w(z) = 0 \quad \text{IF } |z| > 1 \\ = 1 - |z| \quad \text{OTHERWISE}$$

$\bar{F}(z)$ IS COMPUTED FOR VALUES OF z BETWEEN THE MAXIMUM AND THE MINIMUM OF THE SAMPLE AND PLOTTED OVER THE HISTOGRAM USING THE SYMBOL $-F-$. THE RELATIVE FREQUENCY MARKS ON THE LEFT OF THE OUTPUT REFER TO THE HISTOGRAM, AND NOT TO THE DENSITY FUNCTION. AFTER THIS QUERY YOU WILL BE ASKED

- (3) IF YOU DESIRE TO TITLE YOUR HISTOGRAM. IF YOU ELECT TO TITLE YOUR HISTOGRAM, SIMPLY TYPE YOUR TITLE, ENSURING THAT YOUR TITLE IS MORE THAN ONE CHARACTER IN LENGTH. IF NO TITLE IS DESIRED JUST HIT THE CARRIAGE RETURN. AFTER THE TITLE QUERY YOU WILL BE ASKED
- (4) IF YOU WANT TO SET YOUR OWN SCALE AND THE NUMBER OF CELLS. YOUR RESPONSE MUST BE A VECTOR OF 3 ELEMENTS THE FIRST ELEMENT IS THE NUMBER OF CELLS YOU DESIRE, THIS MUST BE AN INTEGER BETWEEN 10 AND 28, THE SECOND ELEMENT IS THE LEFT SCALE POINT AND THE THIRD ELEMENT IS THE RIGHT SCALE POINT (HIST DOES NOT REQUIRE THAT YOUR INTERVAL BE DIVISIBLE BY THE NUMBER OF CELLS). IF YOU WANT HIST TO AUTOMATICALLY SCALE AND PICK THE CELLS YOU SHOULD TYPE THE VECTOR 0 0 0. AFTER YOU HAVE SELECTED YOUR SCALING TECHNIQUE YOU WILL BE ASKED
- (5) IF YOU WANT DATA POINTS NOT INSIDE THE SCALE LIMITS INCLUDED IN THE HISTOGRAM ROUTINE. MOST HISTOGRAMS LUMP DATA POINTS THAT FALL OUTSIDE THE SCALE LIMITS IN THE END CELLS. HOWEVER, HIST GIVES YOU THE OPTION OF INCLUDING THEM OR EXCLUDING THEM, I.E. OF OBTAINING A HISTOGRAM FOR THE CONDITIONAL DENSITY. AFTER YOUR RESPONSE TO THIS QUERY YOU WILL BE ASKED
- (6) IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER OR ON YOUR TERMINAL. IF YOU SELECT THE OFFLINE PRINTER THE NEXT RESPONSE YOU WILL RECEIVE ON YOUR TERMINAL IS - HISTOGRAM SENT TO PRINTER -. THIS RESPONSE WILL TAKE SEVERAL SECONDS AND AFTER IT IS RECEIVED YOUR TERMINAL IS FREE FOR FURTHER USE. HOWEVER, IF YOU ELECTED TO HAVE YOUR HISTOGRAM PRINTED ON YOUR TERMINAL THE PRINTING WOULD BEGIN IN JUST A FEW SECONDS BUT WOULD TAKE BETWEEN 5 AND 10 MINUTES TO COMPLETE.

THE FOLLOWING BASIC DESCRIPTIVE STATISTICS ARE COMPUTED AND PRINTED OUT BY HIST.

MEAN, MEDIAN, TRIMEAN, MIDMEAN, MODE

GEOMETRIC AND HARMONIC MEANS (POSITIVE SAMPLES ONLY)
VARIANCE, STANDARD DEVIATION, COEFFICIENT OF VARIATION,

RANGE AND MIDSPREAD

THIRD AND FOURTH CENTRAL MOMENTS, COEFFICIENTS OF SKEWNESS AND KURTOSIS

MAXIMUM, MINIMUM AND 5 SAMPLE QUANTILES

IN ADDITION, THE MEAN IS DISPLAYED ON THE HISTOGRAM BY A VERTICAL COLUMN OF -M- AND THE QUARTILES BY COLUMNS OF DOTS.

INTERPRETING THE OUTPUT

THE DEFINITIONS OF THE BASIC STATISTICS COMPUTED BY HIST ARE LISTED BELOW. PAGE NUMBER REFERENCES ARE TO THE CRC STANDARD MATH TABLES, 19TH EDITION (1971).

MEAN AVERAGE OF THE SAMPLE (P 554).

MEDIAN MID-VALUE OF THE SAMPLE, IF THERE ARE AN ODD NUMBER OF SAMPLE POINTS, OR THE AVERAGE OF THE TWO MIDDLE VALUES FOR AN EVEN NUMBER OF POINTS (P 555)

SAMPLE QUARTILES THE $Q(1) = .25$, $Q(2) = .50$, AND $Q(3) = .75$ POPULATION QUARTILES ARE THE SOLUTION TO THE EQUATION $\text{PROB}(X \leq X(Q(I))) = Q(I)$ $I=1,2,3$. THE SAMPLE QUARTILES, WHICH ESTIMATE THE POPULATION QUARTILES ARE, THE J^{TH} ORDERED VALUE IN THE SAMPLE, WHERE $J = [Q(I) \times N] + 1$. WHERE $N = \text{SAMPLE SIZE}$.

TRIMEAN $0.25 \times (Q(1) + 2Q(2) + Q(3))$, WHERE THE $Q(I)$ ARE THE QUARTILES.

MIDMEAN THE AVERAGE OF ALL THE SAMPLE VALUES BETWEEN THE UPPER AND LOWER QUARTILES.

MODE THE DATA POINT THAT OCCURS MOST OFTEN (IF ALL THE DATA POINTS ARE DIFFERENT OR IF THERE ARE MORE THAN 300 DATA POINTS THE MODE WILL NOT BE PRINTED. IF TWO OR MORE MODES OCCUR HIST WILL PRINT THE FIRST MODE.)

MIDRANGE AVERAGE OF THE MAXIMUM AND MINIMUM.

GEOMETRIC (P 554).

MEAN

HARMONIC (P 555).

MEAN

VARIANCE (P 557). UNBIASED ESTIMATORS FOR VARIANCE AND STANDARD DEVIATION ARE USED.

STANDARD DEVIATION (P 557).

COEFFICIENT OF VARIATION = STANDARD DEVIATION \div |MEAN| WHEN THE MEAN IS LESS THAN $1E-30$, THE COEFFICIENT OF VARIATION IS SET TO ZERO.

MEAN (P 556). THE AVERAGE OF THE SUM OF THE ABSOLUTE DEVIATION DIFFERENCES BETWEEN THE SAMPLE VALUES AND THE MEDIAN.

RANGE MAXIMUM - MINIMUM (P 557).

MIDSPREAD $Q(3) - Q(1)$, ALSO CALLED THE INTERQUARTILE DISTANCE.

M3 THIRD CENTRAL MOMENT. UNBIASED ESTIMATOR IS USED. (P 558)

M4 FOURTH CENTRAL MOMENT. UNBIASED ESTIMATOR IS USED. (P 558)

COEFFICIENT OF SKEWNESS $M3 \div (STD\ DEV) * 3$

COEFFICIENT OF KURTOSIS $(M4 \div (STD\ DEV) * 4) - 3$

BETA1 BIASED ESTIMATE OF THIRD CENTRAL MOMENT. CAN BE USED IN TESTING FOR NORMALITY. (BIOMETRIKA TABLES FOR STATISTICIANS, 1966).

BETA2 BIASED ESTIMATE OF FOURTH CENTRAL MOMENT. (BIOMETRIKA TABLES FOR STATISTICIANS, 1966).

MAXIMUM LARGEST SAMPLE VALUE.

MINIMUM SMALLEST SAMPLE VALUE.

SAMPLE QUANTILES THE α -QUANTILE, $X(\alpha)$, IS THE SOLUTION TO THE EQ. PROBABILITY $(X \leq X(\alpha)) = \alpha$.

With this complete description the general user should be able to take full advantage of HIST and put to use all its options.

B. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE
DATA 2, OFFLINE, ALL DATA, ECDF, AND TITLE

HIST was now used on two sets of data. Both telephone data 1 and telephone data 2 were first used with the offline printer demonstrating the title option, the empirical density function option and using the conditional option with any data points outside the designated interval being lumped into the end cells. When HIST was typed the following responses to each of the queries were entered.

HIST

ENTER DATA IN VECTOR FORM

□:

TELDAT1

IF YOU ALSO WANT A SMOOTHED EMPIRICAL DENSITY FUNCTION ENTER
A 1 . IF YOU DO NOT WANT IT ENTER A 0 .

□:

1

IF YOU WANT TO TITLE YOUR HISTOGRAM TYPE YOUR TITLE.
IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.

TELEPHONE DATA 1

IF YOU WANT TO SET THE NUMBER OF CELLS AND THE SCALE ENTER
FIRST THE NUMBER OF CELLS (AN INTEGER BETWEEN 10 AND 28)
FOLLOWED BY A SPACE AND THEN YOUR LEFT SCALE POINT FOLLOWED
BY A SPACE AND THEN YOUR RIGHT SCALE POINT. HOWEVER, IF YOU
WANT HIST TO AUTOMATICALLY SCALE ENTER 0 0 0 .

□:

28 0 20000

GIVEN THAT YOU HAVE SET YOUR OWN SCALE, TO INCLUDE DATA
POINTS THAT MIGHT BE OUTSIDE YOUR SCALE LIMITS IN THE END
CELLS, TYPE 1 . IF YOU DESIGNATED AUTOSCALE ALSO, TYPE
1 . IF HOWEVER, YOU DO NOT WANT THE DATA OUTSIDE THE SCALE
LIMITS INCLUDED IN THE HISTOGRAM, TYPE 0 .

□

1

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER,
TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR
TERMINAL, TYPE 0 . (NOTE IF YOU TYPED 0 BE SURE YOUR
TERMINAL'S CARRIAGE PAGE SETTING IS ON THE MAXIMUM WIDTH)

□:

1

HISTOGRAM SENT TO PRINTER

Note that telephone data 1 was contained in the variable TELDAT1 and that the number of cells chosen was 28 with the left scale point being 0 and the right scale point being 20,000.

After the response - HISTOGRAM SENT TO PRINTER - was received. HIST was again typed under identical conditions and telephone data 2 was entered through the variable TELDAT2.

HIST
ENTER DATA IN VECTOR FORM
□:
TELDAT2

IF YOU ALSO WANT A SMOOTHED EMPIRICAL DENSITY FUNCTION ENTER A 1 . IF YOU DO NOT WANT IT ENTER A 0 .
□:
1

IF YOU WANT TO TITLE YOUR HISTOGRAM TYPE YOUR TITLE.
IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.
TELEPHONE DATA 2

IF YOU WANT TO SET THE NUMBER OF CELLS AND THE SCALE ENTER FIRST THE NUMBER OF CELLS (AN INTEGER BETWEEN 10 AND 28) FOLLOWED BY A SPACE AND THEN YOUR LEFT SCALE POINT FOLLOWED BY A SPACE AND THEN YOUR RIGHT SCALE POINT. HOWEVER, IF YOU WANT HIST TO AUTOMATICALLY SCALE ENTER 0 0 0 .
□:
28 0 20000

GIVEN THAT YOU HAVE SET YOUR OWN SCALE, TO INCLUDE DATA POINTS THAT MIGHT BE OUTSIDE YOUR SCALE LIMITS IN THE END CELLS, TYPE 1 . IF YOU DESIGNATED AUTOSCALE ALSO, TYPE 1 . IF HOWEVER, YOU DO NOT WANT THE DATA OUTSIDE THE SCALE LIMITS INCLUDED IN THE HISTOGRAM, TYPE 0 .
□:
1

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER, TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR TERMINAL, TYPE 0 . (NOTE IF YOU TYPED 0 BE SURE YOUR TERMINAL'S CARRIAGE PAGE SETTING IS ON THE MAXIMUM WIDTH)
□:
1

HISTOGRAM SENT TO PRINTER

Now by looking at figure 1 (output for telephone data 1) and figure 2 (output from telephone data 2) the similarities and differences in the histograms can be compared. Without getting into specifics, the empirical density function plot seems to indicate that both sets of data are similar. However, the one time-between-errors dominate the data; a more detailed discussion of this data and its analysis is given in Section VIII.

FIGURE 1

TELETYPE DATA 1

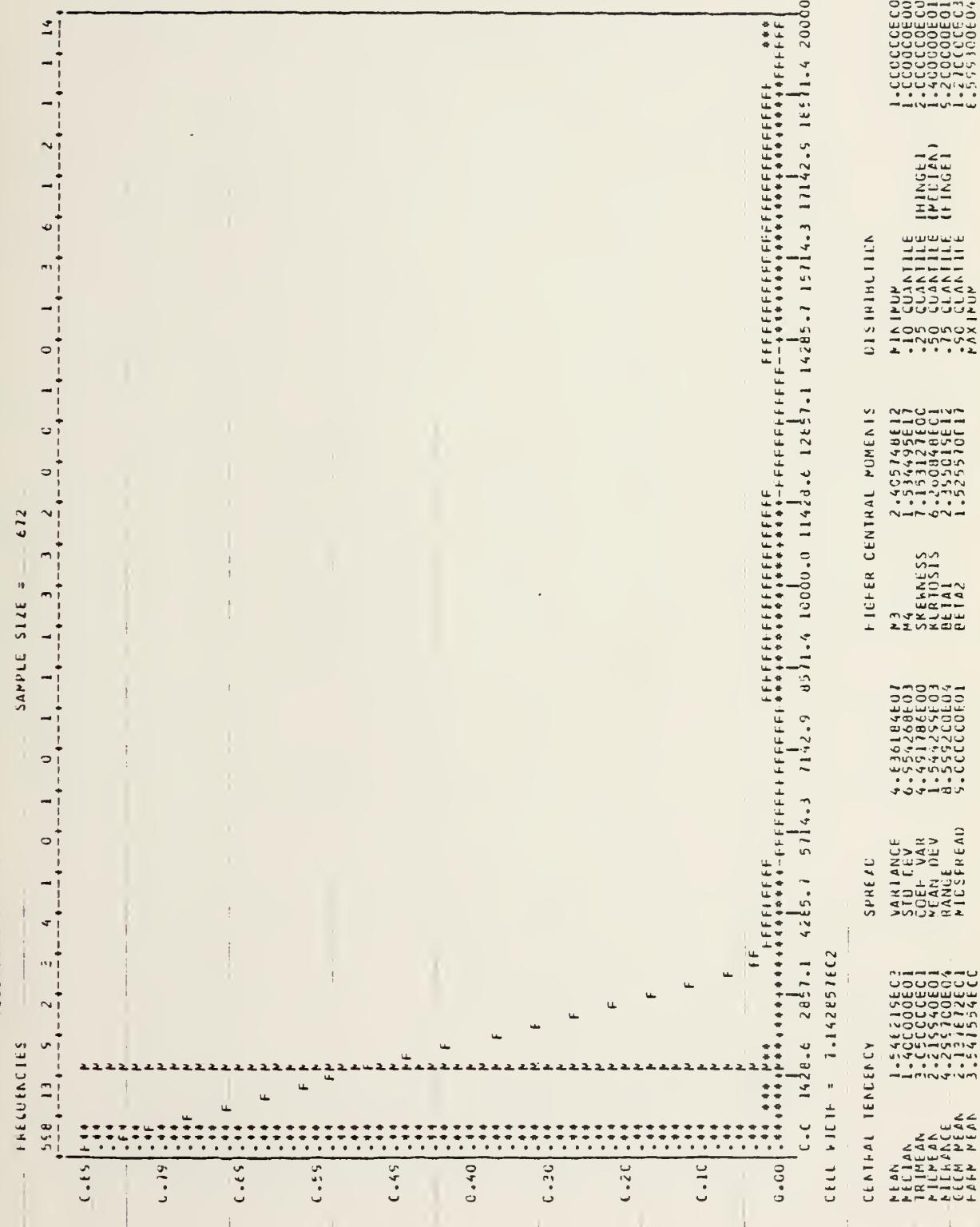


FIGURE 2

C. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE DATA 2, ON LINE; CONDITIONAL DATA BETWEEN 2 AND 140, ECDF, AND TITLE

Because both sets of data contain:

- (1) a large number of elements,
- (2) a large number of times-between-error equal to 1 (this becomes more apparent when HISTLIST is described), and
- (3) the range of the data sets is so extensive,

it would appear that the conditional option available on HIST could be used to see if the two data sets are in fact similar over a smaller interval. This in fact was done using the on line printer option, the empirical density function option, the title option and the conditional option with any data points outside the designated interval excluded from the histogram.

HIST

ENTER DATA IN VECTOR FORM

□:

TELDAT1

IF YOU ALSO WANT A SMOOTHED EMPIRICAL DENSITY FUNCTION ENTER A 1 . IF YOU DO NOT WANT IT ENTER A 0 .

□:

1

IF YOU WANT TO TITLE YOUR HISTOGRAM TYPE YOUR TITLE .
IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN .

TELEPHONE DATA 1 BETWEEN 2 AND 140

IF YOU WANT TO SET THE NUMBER OF CELLS AND THE SCALE ENTER FIRST THE NUMBER OF CELLS (AN INTEGER BETWEEN 10 AND 28) FOLLOWED BY A SPACE AND THEN YOUR LEFT SCALE POINT FOLLOWED BY A SPACE AND THEN YOUR RIGHT SCALE POINT . HOWEVER, IF YOU WANT HIST TO AUTOMATICALLY SCALE ENTER 0 0 0 .

□:

28 2 140

GIVEN THAT YOU HAVE SET YOUR OWN SCALE, TO INCLUDE DATA POINTS THAT MIGHT BE OUTSIDE YOUR SCALE LIMITS IN THE END CELLS, TYPE 1 . IF YOU DESIGNATED AUTOSCALE ALSO, TYPE 1 . IF HOWEVER, YOU DO NOT WANT THE DATA OUTSIDE THE SCALE LIMITS INCLUDED IN THE HISTOGRAM, TYPE 0 .

□:

0

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER, TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR TERMINAL, TYPE 0 . (NOTE IF YOU TYPED 0 BE SURE YOUR TERMINAL'S CARRIAGE PAGE SETTING IS ON THE MAXIMUM WIDTH)

□:

0

Note that the same variable TELDAT1 is used but this time the interval was between 2 and 140. Also, the - HISTOGRAM SENT TO PRINTER - was not typed because the on-line printer (terminal) option was employed.

After the output for telephone data 1 was printed HIST was again typed and telephone data 2 was entered under identical conditions.

HIST

ENTER DATA IN VECTOR FORM

□:

TELDAT2

IF YOU ALSO WANT A SMOOTHED EMPIRICAL DENSITY FUNCTION ENTER A 1 . IF YOU DO NOT WANT IT ENTER A 0 .

□:

1

IF YOU WANT TO TITLE YOUR HISTOGRAM TYPE YOUR TITLE. IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.

TELEPHONE DATA 2 BETWEEN 2 AND 140

IF YOU WANT TO SET THE NUMBER OF CELLS AND THE SCALE ENTER FIRST THE NUMBER OF CELLS (AN INTEGER BETWEEN 10 AND 28) FOLLOWED BY A SPACE AND THEN YOUR LEFT SCALE POINT FOLLOWED BY A SPACE AND THEN YOUR RIGHT SCALE POINT. HOWEVER, IF YOU WANT HIST TO AUTOMATICALLY SCALE ENTER 0 0 0 .

□:

28 2 140

GIVEN THAT YOU HAVE SET YOUR OWN SCALE, TO INCLUDE DATA POINTS THAT MIGHT BE OUTSIDE YOUR SCALE LIMITS IN THE END CELLS, TYPE 1 . IF YOU DESIGNATED AUTOSCALE ALSO, TYPE 1 . IF HOWEVER, YOU DO NOT WANT THE DATA OUTSIDE THE SCALE LIMITS INCLUDED IN THE HISTOGRAM, TYPE 0 .

□:

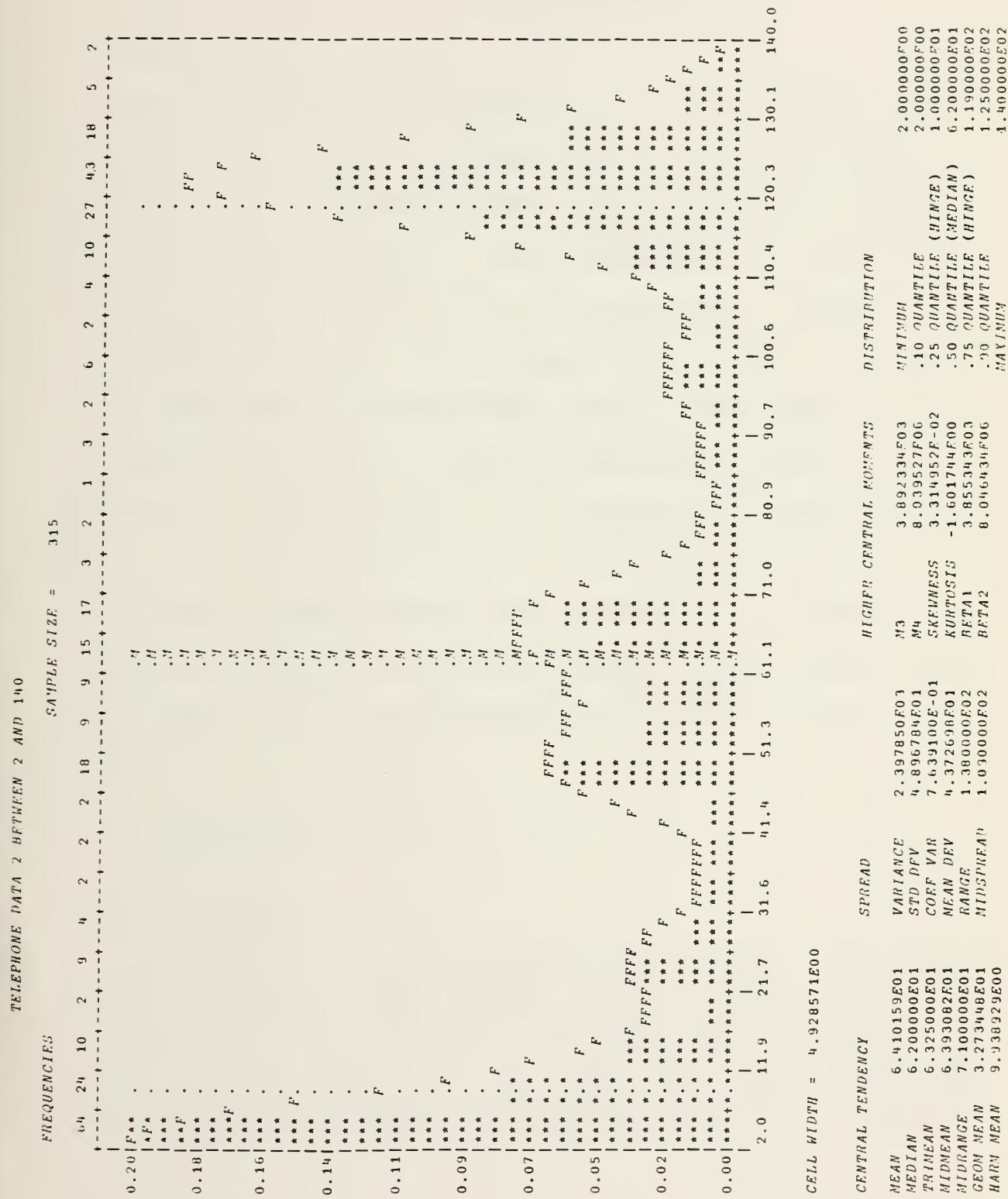
0

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER, TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR TERMINAL, TYPE 0 . (NOTE IF YOU TYPED 0 BE SURE YOUR TERMINAL'S CARRIAGE PAGE SETTING IS ON THE MAXIMUM WIDTH)

□:

0

Figure 3 (output from telephone data 1 between 2 and 140) and figure 4 (output from telephone data 2 between 2 and 140) now appear quite different in shape based on the empirical density function plot. This is, again, because of the extensive range of the data (85,993 for telephone data 1 and 67,271 for telephone data 2) and the large number of times-between-error equal to one. Both sets of data are actually discrete, only occurring at multiples of 1, but as an initial analysis the data sets were treated as continuous. Thus, by employing the conditional option available on HIST differences in the two sets of data become quite apparent whereas before, the differences were not so easily detected.



TELEPHONE DATA 1 BETWEEN 2 AND 140

FIGURE 4

III. LISTING ROUTINE

A. DESCRIPTION

The second routine presented is a listing routine. APL has a function that will automatically sort the data and print the results. However, the unique feature of HISTLIST (listing routine) is that it takes advantage of like occurrences in the data and prints the ordered data ascendingly in a compressed form. This becomes highly useful when listing a large number of data points that contain multiple occurrences. It is also a tool for finding multiplicities in supposedly continuous data, and a probability function estimating routine for data which is known to be discrete.

A complete description of how HISTLIST operates is contained in the variable HISTLISTHOW. When the user types HISTLISTHOW the following response is printed on the terminal:

HISTLISTHOW

SYNTAX HISTLIST

HISTLIST IS A HIGHLY CONVENIENT WAY TO LIST YOUR DATA. HISTLIST TAKES YOUR DATA, ORDERS IT AND COMPRESSES IT. FOR EXAMPLE, IF THREE DATA POINTS WERE ALL THE SAME VALUE HISTLIST WOULD JUST PRINT THE VALUE ONCE AND THEN PRINT THE NUMBER OF OCCURENCES OF THAT VALUE. HISTLIST WILL ALSO PRINT THE SERIAL NUMBER OF THE DATA, THE PERCENTAGE THIS SAMPLE VALUE IS TO THE WHOLE SAMPLE, AND A SMALL HISTOGRAM (STARS) SHOWING RELATIVE PERCENTAGES. EXAMPLE: 6 4 4 3 4

HISTLIST

SER. NUM.	ORDERED DATA	NUMBER OF OCCURENCES	PER CENT
1	3	1	**** .20
2	4	3	***** .60
5	6	1	**** .20

HISTLIST IS IDEALLY SUITED FOR A LARGE SAMPLE THAT COULD POSSIBLY HAVE A LOT OF LIKE OCCURENCES. HISTLIST FURTHER HAS THE ADVANTAGE OF BEING USED WITH EITHER THE OFFLINE PRINTER OR THE USERS TERMINAL.

B. USAGE WITH TELEPHONE DATA 1 AND TELEPHONE DATA 2 OFFLINE

HISTLIST was used with the title option and offline printer option on both telephone data 1 and telephone data 2. When HISTLIST was typed the following responses to each of the queries were entered.

HISTLIST.

HISTLIST PRINTS THE SERIAL NUMBER OF THE COMPRESSED DATA, THE ORDERED DATA COMPRESSED, AND THE NUMBER OF LIKE OCCURENCES. ENTER YOUR DATA IN VECTOR FORM.

□:

TELDAT1

IF YOU WANT TO TITLE YOUR DATA TYPE YOUR TITLE. IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.

TELEPHONE DATA 1

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR TERMINAL TYPE 0 .

□:

1
HISTLIST SENT TO PRINTER

After the response - HISTLIST SENT TO PRINTER - was received HISTLIST was again typed and telephone data 2 was entered.

HISTLIST

HISTLIST PRINTS THE SERIAL NUMBER OF THE COMPRESSED DATA, THE ORDERED DATA COMPRESSED, AND THE NUMBER OF LIKE OCCURENCES. ENTER YOUR DATA IN VECTOR FORM.

□:

TELDAT2

IF YOU WANT TO TITLE YOUR DATA TYPE YOUR TITLE. IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.

TELEPHONE DATA 2

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE PRINTER TYPE 1. IF YOU WANT YOUR OUTPUT TO APPEAR ON YOUR TERMINAL TYPE 0.

□:

*1
HISTLIST SENT TO PRINTER*

Looking at figure 5 (output with telephone data 1) and figure 6 (output with telephone data 2) the listings of the two data sets can be compared. It can be seen that both telephone data 1 and telephone data 2 contain a large number of multiple occurrences of the number one and the number two. In fact 19% of telephone data 1 is the number one and 24% of telephone data 2 is the number one. Also, telephone data 2 has many more multiple occurrences in the 120 to 130 range than telephone data 1. This was quickly apparent when one looked at the stars to the right of the ordered data.

FIGURE 5A

TELEPHONE DATA 1

SERIAL NUMBER	ORDERED DATA	NUMBER OF OCCURENCES	PER CENT
1	1.000000	128	0.0150
129	2.000000	54	0.0080
163	3.000000	28	0.0042
211	4.000000	22	0.0035
233	5.000000	17	0.0025
260	6.000000	11	0.0016
261	7.000000	10	0.0015
271	8.000000	12	0.0018
283	9.000000	14	0.0021
297	10.000000	9	0.0013
306	11.000000	10	0.0015
316	12.000000	11	0.0016
327	13.000000	6	0.0009
333	14.000000	6	0.0009
339	15.000000	6	0.0009
345	16.000000	8	0.012
353	17.000000	8	0.012
361	18.000000	5	0.007
366	19.000000	12	0.018
378	20.000000	12	0.011
379	21.000000	5	0.007
384	22.000000	5	0.007
389	23.000000	3	0.004
392	24.000000	7	0.010
399	25.000000	3	0.004
402	26.000000	3	0.004
405	27.000000	2	0.003
407	28.000000	3	0.004
410	29.000000	6	0.009
415	30.000000	4	0.006
421	31.000000	4	0.006
425	32.000000	2	0.003
429	33.000000	2	0.003
431	34.000000	4	0.006
435	35.000000	3	0.004
438	36.000000	2	0.003
440	38.000000	2	0.003
442	39.000000	1	0.001
445	40.000000	2	0.003
447	41.000000	1	0.001
448	43.000000	1	0.001
449	44.000000	1	0.001
453	45.000000	4	0.006
456	47.000000	1	0.001
457	48.000000	2	0.003
459	49.000000	1	0.001
461	51.000000	1	0.001
463	53.000000	1	0.001
464	54.000000	1	0.001
465	55.000000	1	0.001
468	56.000000	5	0.008
470	57.000000	2	0.003
472	58.000000	2	0.003
474	59.000000	1	0.001
475	60.000000	2	0.003
477	61.000000	3	0.004
480	64.000000	1	0.001
481	65.000000	1	0.001
483	66.000000	1	0.001
484	67.000000	3	0.005
487	69.000000	1	0.001
488	70.000000	1	0.001
489	73.000000	1	0.001
490	74.000000	1	0.001
492	75.000000	1	0.001
495	79.000000	3	0.005
496	83.000000	1	0.001
497	84.000000	1	0.001
498	86.000000	1	0.001
499	89.000000	2	0.003
501	69.000000	1	0.001
502	90.000000	2	0.003
504	91.000000	1	0.001
505	93.000000	1	0.001
506	95.000000	1	0.001
507	98.000000	1	0.001
508	99.000000	1	0.001
509	106.000000	1	0.001
510	109.000000	1	0.001
511	111.000000	1	0.001
512	112.000000	2	0.003
514	113.000000	1	0.001
515	116.000000	1	0.001
516	117.000000	1	0.001
517	119.000000	1	0.001

FIGURE 5B

518	120.000000	4	0.006
5522	121.000000	2	0.003
5524	122.000000	2	0.003
5526	123.000000	2	0.006
5528	124.000000	3	0.004
5530	128.000000	1	0.001
5533	135.000000	1	0.001
5534	142.000000	1	0.001
5535	148.000000	1	0.001
5537	153.000000	1	0.001
5538	156.000000	1	0.001
5539	158.000000	1	0.001
541	161.000000	1	0.001
541	165.000000	1	0.001
542	175.000000	1	0.001
543	176.000000	1	0.001
544	177.000000	1	0.001
545	183.000000	1	0.001
546	186.000000	1	0.001
547	187.000000	1	0.001
548	192.000000	1	0.001
549	193.000000	1	0.001
550	202.000000	1	0.001
551	217.000000	2	0.003
553	224.000000	1	0.001
555	226.000000	1	0.001
558	228.000000	3	0.004
559	231.000000	1	0.001
560	234.000000	1	0.001
561	237.000000	1	0.001
563	239.000000	2	0.003
567	240.000000	4	0.006
568	241.000000	1	0.001
569	244.000000	1	0.001
570	248.000000	1	0.001
570	249.000000	1	0.001
571	251.000000	1	0.001
572	252.000000	1	0.001
573	270.000000	1	0.001
574	279.000000	1	0.001
575	286.000000	1	0.001
576	297.000000	1	0.001
577	302.000000	1	0.001
578	312.000000	1	0.001
579	318.000000	1	0.001
580	347.000000	1	0.001
581	364.000000	1	0.001
582	366.000000	1	0.001
583	368.000000	1	0.001
584	370.000000	1	0.001
585	379.000000	1	0.001
586	384.000000	1	0.001
587	435.000000	1	0.001
588	466.000000	1	0.001
589	465.000000	1	0.001
590	473.000000	1	0.001
591	480.000000	1	0.001
592	486.000000	1	0.001
593	491.000000	1	0.001
594	549.000000	1	0.001
595	630.000000	2	0.003
596	647.000000	1	0.001
597	621.000000	1	0.001
598	711.000000	1	0.001
599	817.000000	1	0.001
600	838.000000	1	0.001
601	927.000000	1	0.001
602	1124.000000	1	0.001
603	1150.000000	1	0.001
614	1279.000000	1	0.001
605	1289.000000	1	0.001
646	1298.000000	1	0.001
647	1305.000000	1	0.001
508	1328.000000	1	0.001
639	1348.000000	1	0.001
610	1355.000000	1	0.001
611	1412.000000	1	0.001
612	1429.000000	1	0.001
613	1489.000000	1	0.001
614	1493.000000	1	0.001
515	1510.000000	1	0.001
516	1519.000000	1	0.001
617	1547.000000	1	0.001
618	1623.000000	1	0.001
619	1787.000000	1	0.001
620	2072.000000	1	0.001
621	2483.000000	1	0.001
622	2806.000000	1	0.001
623	2982.000000	1	0.001
624	3025.000000	1	0.001
625	3281.000000	1	0.001
626	3593.000000	1	0.001
627	3685.000000	1	0.001
628	3682.000000	1	0.001
629	4157.000000	1	0.001
630	4469.000000	1	0.001

FIGURE 5C

631	62C8•CCCC00	1	0.001
632	7614•CCCC00	1	0.001
633	8322•CCCC00	1	0.001
634	9015•CCCC00	1	0.001
635	9625•CCCC00	1	0.001
636	9866•CCCC00	1	0.001
637	9818•CCCC00	1	0.001
638	10154•CCCC00	1	0.001
639	10368•CCCC00	1	0.001
640	10451•CCCC00	1	0.001
641	10939•CCCC00	1	0.001
642	11280•CCCC00	1	0.001
643	13447•CCCC00	1	0.001
644	14265•CCCC00	1	0.001
645	15135•CCCC00	1	0.001
646	15264•CCCC00	1	0.001
647	15334•CCCC00	1	0.001
648	15347•CCCC00	1	0.001
649	15668•CCCC00	1	0.001
650	16280•CCCC00	1	0.001
651	16299•CCCC00	1	0.001
652	16361•CCCC00	1	0.001
653	16448•CCCC00	1	0.001
654	16817•CCCC00	1	0.001
655	17174•CCCC00	1	0.001
656	17667•CCCC00	1	0.001
657	18218•CCCC00	1	0.001
658	18649•CCCC00	1	0.001
659	19461•CCCC00	1	0.001
660	21848•CCCC00	1	0.001
661	23493•CCCC00	1	0.001
662	24692•CCCC00	1	0.001
663	26443•CCCC00	1	0.001
664	29674•CCCC00	1	0.001
665	35644•CCCC00	1	0.001
666	38003•CCCC00	1	0.001
667	40151•CCCC00	1	0.001
668	47120•CCCC00	1	0.001
669	47552•CCCC00	1	0.001
670	61715•CCCC00	1	0.001
671	69775•CCCC00	1	0.001
672	85693•CCCC00	1	0.001

FIGURE 6A

TELEPHONE DATA 2

SERIAL NUMBER	ORDERED DATA	NUMBER OF OCCURENCES	PER CENT
1	1.000000	173	****
179	2.000000	36	****
215	3.000000	11	**
226	4.000000	6	
2262	5.000000	5	
2268	6.000000	5	
2274	7.000000	5	
2278	8.000000	4	
2282	9.000000	4	
2288	10.000000	9	*
2292	11.000000	2	
2297	12.000000	3	
2270	13.000000	1	
2271	14.000000	1	
2272	15.000000	1	
2277	16.000000	1	
2278	17.000000	1	
2279	18.000000	1	
2280	19.000000	1	
2286	20.000000	1	
2288	21.000000	1	
2292	22.000000	1	
2293	23.000000	1	
2296	24.000000	1	
2297	25.000000	1	
2298	26.000000	1	
2299	27.000000	1	
2299	28.000000	1	
2299	29.000000	1	
2299	30.000000	1	
2299	31.000000	1	
2299	32.000000	1	
2299	33.000000	1	
2299	34.000000	1	
2299	35.000000	1	
2299	36.000000	1	
2299	37.000000	1	
2299	38.000000	1	
2299	39.000000	1	
2299	40.000000	1	
2299	41.000000	1	
2299	42.000000	1	
2299	43.000000	1	
2299	44.000000	1	
2299	45.000000	1	
2299	46.000000	1	
2299	47.000000	1	
2299	48.000000	1	
2299	49.000000	1	
2299	50.000000	1	
2299	51.000000	1	
2299	52.000000	1	
2299	53.000000	1	
2299	54.000000	1	
2299	55.000000	1	
2299	56.000000	1	
2299	57.000000	1	
2299	58.000000	1	
2299	59.000000	1	
2299	60.000000	1	
2299	61.000000	1	
2299	62.000000	1	
2299	63.000000	1	
2299	64.000000	1	
2299	65.000000	1	
2299	66.000000	1	
2299	67.000000	1	
2299	68.000000	1	
2299	69.000000	1	
2299	70.000000	1	
2299	71.000000	1	
2299	72.000000	1	
2299	73.000000	1	
2299	74.000000	1	
2299	75.000000	1	
2299	76.000000	1	
2299	77.000000	1	
2299	78.000000	1	
2299	79.000000	1	
2299	80.000000	1	
2299	81.000000	1	
2299	82.000000	1	
2299	83.000000	1	
2299	84.000000	1	
2299	85.000000	1	
2299	86.000000	1	
2299	87.000000	1	
2299	88.000000	1	
2299	89.000000	1	
2299	90.000000	1	
2299	91.000000	1	
2299	92.000000	1	
2299	93.000000	1	
2299	94.000000	1	
2299	95.000000	1	
2299	96.000000	1	
2299	97.000000	1	
2299	98.000000	1	
2299	99.000000	1	
2299	100.000000	1	
2299	101.000000	1	
2299	102.000000	1	
2299	103.000000	1	
2299	104.000000	1	
2299	105.000000	1	
2299	106.000000	1	
2299	107.000000	1	
2299	108.000000	1	
2299	109.000000	1	
2299	110.000000	1	
2299	111.000000	1	
2299	112.000000	1	
2299	113.000000	1	
2299	114.000000	1	
2299	115.000000	1	
2299	116.000000	1	
2299	117.000000	1	
2299	118.000000	1	
2299	119.000000	1	
2299	120.000000	1	
2299	121.000000	1	
2299	122.000000	1	
2299	123.000000	1	
2299	124.000000	1	
2299	125.000000	1	
2299	126.000000	1	
2299	127.000000	1	
2299	128.000000	1	
2299	129.000000	1	
2299	130.000000	1	
2299	131.000000	1	
2299	132.000000	1	
2299	133.000000	1	
2299	134.000000	1	
2299	135.000000	1	
2299	136.000000	1	
2299	137.000000	1	
2299	138.000000	1	
2299	139.000000	1	
2299	140.000000	1	
2299	141.000000	1	
2299	142.000000	1	
2299	143.000000	1	
2299	144.000000	1	
2299	145.000000	1	
2299	146.000000	1	
2299	147.000000	1	
2299	148.000000	1	
2299	149.000000	1	
2299	150.000000	1	
2299	151.000000	1	
2299	152.000000	1	
2299	153.000000	1	
2299	154.000000	1	
2299	155.000000	1	
2299	156.000000	1	
2299	157.000000	1	
2299	158.000000	1	
2299	159.000000	1	
2299	160.000000	1	
2299	161.000000	1	
2299	162.000000	1	
2299	163.000000	1	
2299	164.000000	1	
2299	165.000000	1	
2299	166.000000	1	
2299	167.000000	1	
2299	168.000000	1	
2299	169.000000	1	
2299	170.000000	1	
2299	171.000000	1	
2299	172.000000	1	
2299	173.000000	1	
2299	174.000000	1	
2299	175.000000	1	
2299	176.000000	1	
2299	177.000000	1	
2299	178.000000	1	
2299	179.000000	1	
2299	180.000000	1	
2299	181.000000	1	
2299	182.000000	1	
2299	183.000000	1	
2299	184.000000	1	
2299	185.000000	1	
2299	186.000000	1	
2299	187.000000	1	
2299	188.000000	1	
2299	189.000000	1	
2299	190.000000	1	
2299	191.000000	1	
2299	192.000000	1	
2299	193.000000	1	
2299	194.000000	1	
2299	195.000000	1	
2299	196.000000	1	
2299	197.000000	1	
2299	198.000000	1	
2299	199.000000	1	
2299	200.000000	1	

FIGURE 6B

475	127.	0000000	3	0.0.014
478	128.	0000000	2	0.0.013
480	129.	0000000	4	0.0.013
484	130.	0000000	5	0.0.014
487	132.	0000000	4	0.0.014
490	133.	0000000	3	0.0.013
492	137.	0000000	1	0.0.011
493	140.	0000000	1	0.0.011
494	143.	0000000	1	0.0.011
495	152.	0000000	1	0.0.011
496	158.	0000000	1	0.0.011
497	169.	0000000	1	0.0.011
498	170.	0000000	2	0.0.013
500	173.	0000000	1	0.0.013
501	176.	0000000	1	0.0.011
503	178.	0000000	1	0.0.011
504	180.	0000000	1	0.0.013
505	182.	0000000	1	0.0.011
507	185.	0000000	1	0.0.011
508	187.	0000000	1	0.0.011
509	190.	0000000	1	0.0.011
510	194.	0000000	1	0.0.011
511	195.	0000000	1	0.0.011
512	199.	0000000	1	0.0.011
513	206.	0000000	1	0.0.011
514	209.	0000000	1	0.0.011
515	216.	0000000	1	0.0.011
516	229.	0000000	1	0.0.011
517	230.	0000000	1	0.0.011
518	237.	0000000	1	0.0.011
519	239.	0000000	1	0.0.014
520	240.	0000000	1	0.0.013
521	241.	0000000	1	0.0.013
522	244.	0000000	1	0.0.013
523	247.	0000000	1	0.0.013
524	248.	0000000	1	0.0.013
525	250.	0000000	1	0.0.013
526	251.	0000000	1	0.0.013
527	252.	0000000	1	0.0.013
528	255.	0000000	1	0.0.013
529	256.	0000000	1	0.0.013
530	258.	0000000	1	0.0.013
531	272.	0000000	1	0.0.011
532	275.	0000000	1	0.0.011
533	280.	0000000	1	0.0.011
534	283.	0000000	1	0.0.011
535	287.	0000000	1	0.0.011
536	293.	0000000	1	0.0.011
537	294.	0000000	1	0.0.011
538	340.	0000000	1	0.0.011
539	344.	0000000	1	0.0.011
540	349.	0000000	1	0.0.011
541	365.	0000000	1	0.0.011
542	367.	0000000	1	0.0.011
543	377.	0000000	1	0.0.011
544	380.	0000000	1	0.0.011
545	387.	0000000	1	0.0.011
546	413.	0000000	1	0.0.011
547	418.	0000000	1	0.0.011
548	429.	0000000	1	0.0.011
549	423.	0000000	1	0.0.011
550	466.	0000000	1	0.0.011
551	472.	0000000	1	0.0.011
552	503.	0000000	2	0.0.013
553	504.	0000000	1	0.0.011
554	507.	0000000	1	0.0.011
555	516.	0000000	1	0.0.011
556	517.	0000000	1	0.0.011
557	523.	0000000	1	0.0.011
558	528.	0000000	1	0.0.011
559	570.	0000000	1	0.0.011
560	572.	0000000	1	0.0.011
561	586.	0000000	1	0.0.011
562	587.	0000000	1	0.0.011
563	601.	0000000	1	0.0.011
564	614.	0000000	1	0.0.011
565	624.	0000000	1	0.0.011
566	640.	0000000	1	0.0.011
567	663.	0000000	1	0.0.011
568	714.	0000000	1	0.0.011
569	716.	0000000	1	0.0.013
570	740.	0000000	1	0.0.011
571	742.	0000000	1	0.0.011
572	751.	0000000	1	0.0.011
573	853.	0000000	1	0.0.011
574	862.	0000000	1	0.0.011
575	866.	0000000	1	0.0.011
576	875.	0000000	1	0.0.011
577	884.	0000000	1	0.0.011
578	886.	0000000	1	0.0.011
579	892.	0000000	1	0.0.011
580	895.	0000000	1	0.0.011
581	896.	0000000	1	0.0.011
582	923.	0000000	1	0.0.011
583	931.	0000000	1	0.0.011

FIGURE 6C

595	576.000000	1	70.001
596	591.000000	1	70.001
597	1021.000000	1	70.001
598	1023.000000	1	70.001
599	1062.000000	1	70.001
600	1086.000000	2	70.003
602	1107.000000	1	70.001
603	1118.000000	1	70.001
604	1125.000000	1	70.001
605	1231.000000	1	70.001
606	1259.000000	1	70.001
607	1261.000000	2	70.003
609	1296.000000	1	70.001
610	1367.000000	1	70.001
611	1412.000000	1	70.001
612	1413.000000	1	70.001
613	1492.000000	1	70.001
614	1483.000000	1	70.001
615	1497.000000	1	70.001
616	1505.000000	1	70.001
617	1517.000000	1	70.001
618	1524.000000	1	70.001
619	1535.000000	2	70.003
621	1562.000000	1	70.001
622	1584.000000	1	70.001
623	1595.000000	1	70.001
624	1603.000000	1	70.001
625	1602.000000	1	70.001
626	1693.000000	1	70.001
627	1700.000000	1	70.001
628	1715.000000	1	70.001
629	1750.000000	1	70.001
630	1765.000000	1	70.001
631	1780.000000	1	70.001
632	1822.000000	1	70.001
633	1824.000000	1	70.001
634	1855.000000	1	70.001
635	1877.000000	1	70.001
636	1893.000000	1	70.001
637	1907.000000	1	70.001
638	1923.000000	1	70.001
639	1964.000000	1	70.001
640	1965.000000	1	70.001
641	2051.000000	1	70.001
642	2063.000000	1	70.001
643	2167.000000	1	70.001
644	2185.000000	2	70.003
645	2203.000000	1	70.001
647	2253.000000	1	70.001
648	2260.000000	1	70.001
649	2271.000000	1	70.001
650	2287.000000	1	70.001
651	2316.000000	1	70.001
652	2321.000000	1	70.001
653	2429.000000	1	70.001
654	2439.000000	1	70.001
655	2468.000000	1	70.001
656	2472.000000	1	70.001
657	2490.000000	1	70.001
658	2524.000000	1	70.001
659	2593.000000	1	70.001
660	2592.000000	1	70.001
661	2591.000000	1	70.001
662	2590.000000	1	70.001
663	2589.000000	1	70.001
664	2588.000000	1	70.001
665	2587.000000	1	70.001
666	2585.000000	1	70.001
667	2586.000000	1	70.001
668	2515.000000	1	70.001
669	2578.000000	1	70.001
670	2581.000000	1	70.001
671	2587.000000	1	70.001
672	2537.000000	1	70.001
673	2550.000000	1	70.001
674	2538.000000	1	70.001
675	2579.000000	1	70.001
676	2588.000000	1	70.001
677	2544.000000	1	70.001
678	2578.000000	1	70.001
679	2573.000000	1	70.001
680	2593.000000	1	70.001
681	2512.000000	1	70.001
682	2537.000000	1	70.001
683	2586.000000	1	70.001
684	2535.000000	1	70.001
685	2521.000000	1	70.001
686	2552.000000	1	70.001
687	2555.000000	1	70.001
688	2525.000000	1	70.001
689	2525.000000	1	70.001
690	2541.000000	1	70.001
691	2572.000000	1	70.001

FIGURE 6D

692	6385.000000	1	-J.001
693	6059.000000	1	J.001
694	6816.000000	1	J.001
695	6821.000000	1	J.001
696	7307.000000	1	J.001
697	7329.000000	1	J.001
698	7746.000000	1	J.001
699	7927.000000	1	J.001
700	8038.000000	1	J.001
701	8053.000000	1	J.001
702	8253.000000	1	J.001
703	88347.000000	1	J.001
704	9206.000000	1	J.001
705	9256.000000	1	J.001
706	9517.000000	1	J.001
707	9541.000000	1	J.001
708	9562.000000	1	J.001
709	9365.000000	1	J.001
710	10020.000000	1	J.001
711	10376.000000	1	J.001
712	10327.000000	1	J.001
713	10518.000000	1	J.001
714	12042.000000	1	J.001
715	12783.000000	1	J.001
716	13012.000000	1	J.001
717	13179.000000	1	J.001
718	14092.000000	1	J.001
719	15825.000000	1	J.001
720	16377.000000	1	J.001
721	18055.000000	1	J.001
722	19273.000000	1	J.001
723	19096.000000	1	J.001
724	19349.000000	1	J.001
725	19851.000000	1	J.001
726	20840.000000	1	J.001
727	21440.000000	1	J.001
728	24573.000000	1	J.001
729	24770.000000	1	J.001
730	26278.000000	1	J.001
731	27238.000000	1	J.001
732	28133.000000	1	J.001
733	29613.000000	1	J.001
734	39867.000000	1	J.001
735	53138.000000	1	J.001
736	57271.000000	1	J.001

In addition, HISTLIST saved on printing time and paper. By printing the data in compressed form HISTLIST saved printing 448 lines (6 additional pages) in the case of telephone data 1 and 419 lines (5 additional pages) in the case of telephone data 2. Thus, HISTLIST not only gives the user more information than an ordered listing of the data, but also is cost effective in terms of printing time and paper used. Finally, note that it is not possible to look at the data in as much detail with routine HIST as with HISTLIST. If the data is continuous and there are no multiplicities, then HISTLIST gives only this information and an ordered listing of the data. The shape of the density function can best be seen (estimated) in using routine HIST.

IV. SECTIONING ROUTINE

A. DESCRIPTION

The third routine presented is the sectioning routine, HISTS. HISTS (sectioning routine) gives a way of assessing the variability of estimates of descriptive statistics from sample data. It is essential that the data be in random order.

The basic idea is as follows: Assume we have m independent observations y_1, y_2, \dots, y_m of a random variable Y . The usual estimate of its mean value $\mu = E(Y)$ is the sample mean \bar{y} , where $\bar{y} = \sum_{i=1}^m y_i/m$. Now \bar{y} is the least-squares estimate of μ , and therefore unbiased with variance $\text{var}(\bar{y}) = \sigma^2/m$, where $\sigma^2 = \text{var}(y)$. Of course σ^2 is unknown, but we can estimate it from the data with the sample variance

$$s^2 = \frac{1}{m-1} \sum_{i=1}^m (y_i - \bar{y})^2$$

and then estimate the variance of the estimate \bar{y} of μ as

$$\widetilde{\text{var}}(\bar{y}) = \frac{s^2}{m} = \frac{1}{m(m-1)} \sum_{i=1}^m (y_i - \bar{y})^2$$

This is the basis for the sectioning routine: here the y_i are estimates of descriptive statistics from the m sections of the data and \bar{y} is the average of the statistics

from each section. Estimates are assumed independent because the original data is assumed to be independent.

A complete description of how HISTS operates is contained in the variable HISTSHOW. When the user types HISTSHOW the following response is printed on the terminal:

HISTSHOW

SYNTAX HISTS

HISTS ALLOWS YOU TO INTERACTIVELY SECTION YOUR DATA AND ASSESS THE VARIABILITY IN EACH OF THE DESCRIPTIVE STATISTICS BY USING THE SECTIONED SAMPLE DATA.

WHEN YOU TYPE HISTS YOU WILL BE ASKED TO DESIGNATE THE NUMBER OF SECTIONS YOU DESIRE. HISTS WILL THEN TAKE THE UNORDERED DATA AND DIVIDE THE DATA INTO THE NUMBER OF SECTIONS YOU INDICATE DISCARDING ANY DATA POINTS LEFT OVER. FOR EXAMPLE, IF YOU HAVE 301 DATA POINTS AND YOU SELECT 10 SECTIONS HISTS WILL PLACE THE FIRST 30 DATA POINTS IN THE FIRST SECTION, THE SECOND 30 DATA POINTS IN THE SECOND SECTION AND SO ON UNTIL THE LAST DATA POINT IS OMITTED. YOU WILL NOW HAVE 10 SECTIONS WITH 30 DATA POINTS PER SECTION.

HISTS WOULD NOW PRINT THE FOLLOWING STATISTICS ON EACH OF THE SECTIONS: MEAN, MEDIAN, VARIANCE, STD DEV, COEF VAR, SKEWNESS, KURTOSIS, MINIMUM AND MAXIMUM. IN ADDITION, THE ABOVE STATISTICS WOULD BE PRINTED FOR THE UNSECTIONED DATA TO ALLOW FOR COMPARISONS.

FINALLY, HISTS WILL PRINT (1) THE MEAN OF THE SECTIONED DATA STATISTICS. FOR EXAMPLE, THE MEAN FOR SKEWNESS WOULD BE EACH SECTION VALUE FOR SKEWNESS SUMMED UP AND DIVIDED BY THE NUMBER OF SECTIONS. (2) THE VARIANCE AND STD DEV OF THE SECTIONED DATA STATISTICS. AND, (3) THE STD DEV DIVIDED BY THE SQUARE ROOT OF THE NUMBER OF SECTIONS, WHICH ESTIMATES THE STANDARD DEVIATION OF THE STATISTICS.

AS A RESULT, HISTS WILL GIVE YOU AN UNBIASED ESTIMATE OF THE VARIANCE OF THE SAMPLE MEAN, MEDIAN, VARIANCE, STD DEV, COEF VAR, SKEWNESS AND KURTOSIS FROM USING THE SAMPLE VARIANCE OF THE SECTIONED DATA. WITH THIS RESULT, CONFIDENCE INTERVALS CAN ALSO BE OBTAINED FOR EACH OF THE ABOVE STATISTICS, IF THE ESTIMATES FROM THE SECTIONS ARE NORMALLY DISTRIBUTED. HISTS IS BEST SUITED FOR LARGE AND MODERATE SIZED SAMPLES; FOR SMALL SAMPLES JACKNIFING SHOULD BE CONSIDERED.

B. USAGE WITH TELEPHONE DATA 1

HISTS was now used on telephone data 1 to assess the variability in the mean, median, variance, standard deviation, coefficient of variation, skewness and kurtosis. When HISTS was typed the following responses were entered (see figure 7).

The 672 data points of telephone data 1 were broken down into 16 sections with 42 data points per section. Because of this breakdown no data points were discarded.

The unsectioned statistics printed can be compared with the values printed by HIST (figure 1) and are in fact the same. Providing that the estimates are normally distributed (this can be checked with the normal plots, described later), confidence intervals for each of the statistics (mean, median, variance, standard deviation, coefficient of variation, skewness and kurtosis) based on the t-statistic can be obtained in the following manner

$$\bar{y}_n \pm \frac{s_{\bar{y}_n}}{\sqrt{m}} t_{(1-\frac{1}{2}\alpha), (m-1)}$$

Here \bar{y}_n is the mean of the sectioned data statistics (obtained from column one under summary for sectioned data); $s_{\bar{y}_n}$ is the standard deviation of the sectioned data statistic divided by the square root of the number of sections (obtained from column four under summary for sectioned data); m is the number sections chosen; and, $t_{(1-\frac{1}{2}\alpha), (m-1)}$ is the $1-\frac{1}{2}\alpha$ quantile of the t-distribution with $m-1$ degrees of freedom.

HISTS
 TYPE THE NUMBER OF SECTIONS YOU PREFER (INTEGER
 BETWEEN 2 AND 28) BE SURE TO PICK YOUR NUMBER OF
 SECTIONS SO AS TO MINIMIZE THE NUMBER OF DATA
 POINTS THAT WILL HAVE TO BE DISCARDED. (HISTS
 PLACES THE DATA INTO THE EQUAL NUMBER OF SECTIONS
 YOU INDICATE DISCARDING ANY DATA LEFT OVER)

16

ENTER YOUR DATA TO BE SECTIONED IN VECTOR FORM

1: TELDATA1

SECTION	MEAN	MEDIAN	VARIANCE	STD DEV	COEF VAR	SKWNESS	KURTOSIS	MINIMUM	MAXIMUM
1	1.0526E03	8.5000E08	3.4598E07	5.8820E03	5.5079E00	6.3404E08	3.7031E01	1.0000E00	3.8003E04
2	3.2135E03	1.4500E01	1.8494E08	1.3599E04	4.2320E00	5.8106E00	3.3017E01	1.0000E00	6.5993E04
3	1.7662E03	1.4580E01	4.2383E07	6.5103E03	3.6860E00	4.2006E00	1.7036E01	1.0000E00	3.5644E04
4	6.0669E02	1.1080E02	5.3412E06	2.3111E03	3.8094E00	4.3148E00	1.6406E01	1.0000E00	1.1200E04
5	1.5639E03	5.0500E01	2.1924E07	4.6824E03	2.9941E00	4.2209E00	1.6565E01	1.0000E00	2.6443E04
6	2.5334E03	5.7000E01	4.0337E07	6.3511E03	2.5061E00	3.1573E00	9.5654E00	1.0000E00	3.0974E04
7	2.6700E03	2.2800E01	7.2756E07	8.5297E03	6.2573E00	4.1587E00	1.7579E01	1.0000E00	4.7120E04
8	9.8881E02	1.0500E01	3.0282E07	6.1073E07	6.4001E00	3.8995E01	1.0000E00	4.0131E04	
9	1.5116E03	2.2000E01	2.0792E07	4.5599E03	3.0046E00	2.9066E00	6.8551E00	1.0000E00	1.7174E04
10	2.7682E03	1.45000E01	1.0906E08	1.04943E04	3.7726E00	4.0932E00	2.9134E01	1.0000E00	6.1710E04
11	1.9258E03	1.4000E01	5.9852E07	7.7364E03	4.0173E00	5.4134E00	2.9059E01	1.0000E00	4.7592E04
12	8.1955E02	4.9500E01	8.2095E06	2.0791E03	3.5131E00	4.5999E00	1.9765E01	1.0000E00	5.8600E04
13	2.1201E03	4.0000E00	1.2224E08	1.1056E04	5.2150E00	5.9400E00	3.3861E01	1.0000E00	6.9775E04
14	2.3062E02	1.1500E01	3.3035E05	5.7476E02	2.4923E00	3.4695E00	1.2018E01	1.0000E00	2.9620E03
15	4.3732E02	7.0000E00	5.7201E06	2.3917E03	5.4664E00	6.3903E00	3.8209E01	1.0000E00	1.5554E04
16	5.4838E02	6.5000E00	1.1340E07	3.3675E03	6.1408E00	6.4765E00	3.8964E01	1.0000E00	2.1048E04
UNSECTIONED	1.5482E03	1.4000E01	4.8362E07	6.9543E03	4.4918E00	7.1531E00	6.2608E01	1.0000E00	8.59993E04

SUMMARY FOR SECTIONED DATA

	MEAN	VARIANCE	STD DEV	STD(SFCS)*.5
MEAN	1.5482E03	8.6480E05	9.2999E02	2.3250E02
MEDIAN	2.0313E01	2.8023E02	1.6740E01	4.1850E00
VARIANCE	4.88637E07	2.6217E15	5.1205E07	1.2801E07
STD DEV	6.0664E03	1.2625E07	3.5532E03	8.8830E02
COEF VAR	4.1175E00	1.5503E00	1.2451E00	3.1228E-01
SKWNESS	4.9343E00	1.4701E00	1.2125E00	3.0312E-01
KURTOSIS	2.4552E01	1.2484E02	1.1173E01	2.7933E00

C. INTERPRETATION OF RESULTS

As an example, a confidence interval for the coefficient of variation was obtained in the following manner. The mean value of the coefficient of variation for the 16 sections is 4.1175 (column 1). The standard deviation divided by the square root of 16 is .31128 (column 4). Using $\alpha = .05$, the t value with 15 degrees of freedom is 2.131. Thus, the 95% confidence interval for the coefficient of variation for telephone data 1 is $4.1175 \pm (.31128)(2.131)$ which is [3.454, 4.781]. Confidence intervals on the six other statistics could be obtained in the same fashion.

Again note that the use of the variance estimate from the sectioned data to give confidence intervals is based on the assumption that the estimates from the sections are independent and normally distributed. The normality will depend on the number of observations in each section, which should be kept large to induce normality. This requirement conflicts with the need to make the number of sections large to reduce the variability in the estimate of the variance of the statistics.

Another problem is that if the number of observations in each section is small, the estimates may be severely biased. This effect can be seen in figure 7: note that all of the 16 estimates of skewness from the sections are smaller than the estimate 7.1531 from the unsectioned data.

V. JACKNIFE ROUTINE

A. DESCRIPTION

The fourth routine presented is the jackknife routine. HISTJACK (jackknife routine) is another way of assessing the variability in the estimates from sample data, and also of reducing bias in estimates of the descriptive statistics.

The jackknife procedure, like the previous sectioning method, is based on the assumption that an independent and identically distributed random sample x_1, x_2, \dots, x_n have come from a population with an unknown distribution function $F_X(x)$. If we divide the sample into r groups, with each group containing the same number of elements, we can obtain estimates $\tilde{\theta}$ of the descriptive statistics, which we denote generically as θ , in the same manner as previously done with the sectioning method. The difference here is that the descriptive statistics are computed with the j^{th} group deleted $j=1, 2, \dots, r$. We then let $\tilde{\theta}_{(j)}$ be the result or the descriptive statistic estimate computed with the j^{th} subgroup omitted, and $\tilde{\theta}_{\text{all}}$ is the corresponding result or descriptive statistic estimated from the entire sample (no group omitted). The jackknife pseudo-values are then computed in the following way:

$$\tilde{\theta}_{*j} = (r)(\tilde{\theta}_{\text{all}}) - (r-1)(\tilde{\theta}_{(j)}) \quad j = 1, 2, \dots, r$$

Then we define the jacknifed estimator to be:

$$\tilde{\theta}_* = \frac{1}{r} \sum_{j=1}^r \tilde{\theta}_{*j}$$

The pseudo-values can be used to obtain variance estimates for $\tilde{\theta}_*$, and to set approximate confidence limits, using Student's t. The idea is that the pseudo-values will be approximately independent and possibly normally distributed. The jacknifed estimator $\tilde{\theta}_*$ is a sample average so we form an estimate s_*^2 of its variance given by the following relationship (Miller, 1974):

$$s^2 = \frac{\sum \tilde{\theta}_{*j}^2 - \frac{1}{r} (\sum \tilde{\theta}_{*j})^2}{r-1}$$

$$s_*^2 = s^2/r$$

This procedure is particularly useful if the number n of data points is small, but it must be used with care. Note, that the estimator $\tilde{\theta}_*$ is designed to eliminate a $1/n$ bias term in the estimator $\tilde{\theta}$.

A complete description of how HISTJACK operates is contained in the variable HISTJACKHOW. When the user types HISTJACKHOW the following response is printed on the terminal.

HISTJACKHOW

SYNTAX HISTJACK

HISTJACK ALLOWS YOU TO INTERACTIVELY JACKNIFE YOUR DATA AND ASSESS THE VARIABILITY IN EACH OF THE STATISTICAL ESTIMATES BY USING THE SAMPLE DATA.

WHEN YOU TYPE HISTJACK YOU WILL BE ASKED TO DESIGNATE THE NUMBER OF GROUPS YOU DESIRE. HISTJACK WILL TAKE THE UNORDERED DATA AND DIVIDE THE DATA INTO THE NUMBER OF GROUPS YOU INDICATE DISCARDING ANY DATA POINTS LEFT OVER. FOR EXAMPLE, IF YOU HAVE 22 DATA POINTS AND YOU SELECT 7 GROUPS HISTJACK WILL PLACE THE FIRST 3 DATA POINTS IN GROUP 1, THE SECOND 3 DATA POINTS IN GROUP 2, AND SO ON UNTIL THE LAST DATA POINT IS OMITTED. YOU WOULD NOW HAVE 7 GROUPS WITH 3 DATA POINTS PER GROUP. IF YOU HAD ELECTED TO DO A COMPLETE JACKNIFE, THAT IS TYPED 22, YOU WOULD NOW HAVE 22 GROUPS WITH 1 DATA POINT OMITTED PER GROUP.

HISTJACK WOULD NOW PERFORM STATISTICAL COMPUTATIONS USING THE JACKNIFE PROCEDURE. THAT IS, BY OMITTING ONE GROUP AT A TIME, STARTING WITH THE FIRST GROUP, HISTJACK WOULD PRINT THE FOLLOWING STATISTICS: MEAN, MEDIAN, VARIANCE, STD DEV, COEF VAR, SKEWNESS, KURTOSIS, MINIMUM AND MAXIMUM. IN ADDITION, THE ABOVE STATISTICS WOULD BE PRINTED FOR THE UNGROUPED DATA TO ALLOW FOR COMPARISONS. (NOTE, THE COLUMNS GIVE THE STATISTIC ESTIMATED FROM ALL THE DATA WITH ONE GROUP MISSING, AND NOT THE PSEUDO-VALUES)

FINALLY, HISTJACK WILL PRINT (1) THE JACKNIFE ESTIMATE (2) THE SAMPLE VARIANCE OF THE PSEUDO-VALUES DERIVED IN THE JACKNIFE ESTIMATE (3) AND, THE ESTIMATED STD DEV OF THE JACKNIFE ESTIMATE DIVIDED BY THE SQUARE ROOT OF THE NUMBER OF GROUPS.

AS A RESULT, HISTJACK WILL GIVE YOU AN ESTIMATE OF THE VARIANCE OF THE SAMPLE MEAN, MEDIAN, VARIANCE, STD DEV, COEF VAR, SKEWNESS AND KURTOSIS USING THE SAMPLE VARIANCE OF THE JACKNIFED DATA. WITH THIS RESULT, CONFIDENCE INTERVALS CAN BE OBTAINED FOR EACH OF THE ABOVE STATISTICS, AGAIN ASSUMING THAT THE PSEUDO-VALUES ARE APPROXIMATELY INDEPENDENT AND NORMALLY DISTRIBUTED. HISTJACK IS BEST SUITED FOR SMALL SAMPLES.

B. USAGE WITH TELEPHONE DATA 1

HISTJACK was now used on telephone data 1 to assess the variability in the mean, median, variance, standard deviation, coefficient of variation, skewness and kurtosis. When HISTJACK was typed the following responses were entered. (see figure 8)

The 672 data points were broken down into 16 groups with 42 data points per group. Again, because of this breakdown no data points were discarded.

The ungrouped statistics printed are again the same values that were printed by HIST (figure 1). Using the jackknife method, confidence intervals for each of the statistics (mean, median, variance, standard deviation, coefficient of variation, skewness and kurtosis) can be obtained in the following manner;

$$\tilde{\theta}_* \pm (s_*) t_{(1-\frac{1}{2}\alpha), (r-1)} .$$

Here $\tilde{\theta}_*$ is the jackknife estimate of the sample data (obtained from column one under summary for jackknifed data); s_* is the jackknife estimate of the standard deviation divided by the square root of the number of groups (obtained from column four under summary for jackknifed data); r is the number of groups chosen; and, $t_{(1-\frac{1}{2}\alpha), (r-1)}$ is the $1-\frac{1}{2}\alpha$ quantile of the t-distribution with $r-1$ degrees of freedom. The basis for these assertions about the confidence intervals using the jacknifing technique is asymptotic and great care must be taken in using them.

HISTJACK
 TYPE THE NUMBER OF GROUPS YOU DESIRE (INTEGER
 BETWEEN 2 AND 50) BE SURE TO PICK YOUR NUMBER
 OF GROUPS SO AS TO MINIMIZE THE NUMBER OF DATA
 POINTS THAT WILL HAVE TO BE DISCARDED. (HISTJACK
 PLACES THE DATA INTO THE EQUAL NUMBER OF GROUPS
 YOU INDICATE DISCARDING ANY DATA LEFT OVER)
 [:]

16

ENTER YOUR DATA TO BE JACKNIFED IN VECTOR FORM
 [:;
 TELDATA1

GROUP	MEAN	MEDIAN	VARIANCE	STD DFV	COEF VAR	SKENNESS	KURTOSIS	MINIMUM	MAXIMUM
1	1.5813E03	1.5000E01	4.9310E07	7.0227E03	4.4412E00	7.1746E00	6.3025E01	1.0000E00	8.5993E04
2	1.4372E03	1.4000E01	3.9340E07	6.2720E03	4.3641E00	6.5220E00	5.0690E01	1.0000E00	6.9775E04
3	1.5337E03	1.4000E01	4.8825E07	6.9875E03	4.5560E00	7.3093E00	6.4762E01	1.0000E00	8.5993E04
4	1.6110E03	1.4000E01	5.1180E07	7.1540E03	4.4408E00	6.9781E00	5.9257E01	1.0000E00	8.5993E04
5	1.5472E03	1.3500E01	5.0162E07	7.0825E03	4.5777E00	7.1494E00	6.1027E01	1.0000E00	8.5993E04
6	1.4825E03	1.3000E01	4.8893E07	6.9923E03	4.7166E00	7.3663E00	6.5160E01	1.0000E00	8.5993E04
7	1.4729E03	1.3000E01	4.6758E07	6.8380E03	4.6425E00	7.5001E00	6.6831E01	1.0000E00	8.5993E04
8	1.5855E03	1.4000E01	4.9073E07	7.0052E03	4.4183E00	7.1050E00	6.3371E01	1.0000E00	8.5993E04
9	1.5503E03	1.3500E01	5.0236E07	7.0877E03	4.5720E00	7.1592E00	6.1773E01	1.0000E00	8.5993E04
10	1.4669E03	1.4000E01	4.4376E07	6.6615E03	4.5413E00	7.4572E00	6.9610E01	1.0000E00	8.5993E04
11	1.5230E03	1.4000E01	4.7680E07	6.9050E03	4.5337E00	7.3200E00	6.5919E01	1.0000E00	8.5993E04
12	1.5968E03	1.3000E01	5.1013E07	7.1423E03	4.4729E00	7.0092E00	5.9701E01	1.0000E00	8.5993E04
13	1.5101E03	1.6000E01	4.3600E07	6.6030E03	4.3726E00	7.1493E00	6.5032E01	1.0000E00	8.5993E04
14	1.6361E03	1.4000E01	5.1466E07	7.1726E03	4.3841E00	6.9200E00	5.0526E01	1.0000E00	8.5993E04
15	1.6223E03	1.5000E01	5.1130E07	7.1500E03	4.4070E00	6.9784E00	5.9319E01	1.0000E00	8.5993E04
16	1.6149E03	1.5000E01	5.0781E07	7.1261E03	4.4128E00	7.0291E00	6.0129E01	1.0000E00	8.5993E04
UNGROUPED									
SUMMARY FOR JACKNIFED DATA									
JACKNIFE ESTIMATE									
VARIANCE									
(VARIANCE) * .5									
JACKNIFE ESTIMATE OF STD DEV									
OF MEAN OF STD FUDIO - VALUFS									
MEAN	1.5482E03	1.4000E01	6.9543E03	4.4918E00	7.1531E00	6.2608E01	1.0000E00	8.5993E04	
MEAN	1.3063E01	1.5656E02	2.3250E02						
VARIANCE	4.8344E07	2.5453E15	3.1281E00						
STD DEV	7.0154E03	1.3879E07	9.3135E02						
COEF VAR	4.5053E00	2.4262E00	3.8940E-01						
SKENNESS	7.3732E00	1.2963E01	9.0012E-01						
KURTOSIS	6.7077E01	4.6806E03	1.7104E01						

C. INTERPRETATION OF RESULTS

To compare the confidence interval obtained for the coefficient of variation using the sectioning routine with that obtained using the jackknife routine the following was done. The jackknife estimate of the coefficient of variation for the 16 groups is .4.5053 (column 1). The jackknife estimate of the standard deviation divided by the square root of 16 is .3894 . Using $\alpha = .05$, the t value with 15 degrees of freedom is 2.131. Thus, the 95% confidence interval for the coefficient of variation for telephone data 1 is 4.5053 \pm (.3894) (2.131) which is [3.676, 5.335]. This compares with the confidence interval of [3.454, 4.781] using the sectioning routine described in section IV. Likewise, confidence intervals on the remaining six statistics could be obtained in a similar manner. Note that the values obtained for the skewness coefficient from the sections are now not evidently biased; of the 16 values, 7 have values below the value 7.1531 for all the data.

D. USAGE WITH COST OVERRUN DATA

To demonstrate how the complete jackknife could be used and why it is better to use when possible, the following was done. The 22 data points of the cost overrun data were used with the jackknife routine (HISTJACK). When HISTJACK was typed the data was entered in the variable YROVR and 22 was typed as the number of groups. By typing 22, which is the same as the number of data points, a complete jackknife was done.

Looking at the output from the complete jackknife (figure 9), the cost overrun data can be studied. One can note that by using the complete jackknife the mean, median, and variance of the jackknife estimate (column one under summary for jackknifed data) are the same value as the ungrouped mean, median and variance. But, also note that the coefficient of variation is less than zero which can happen when using the jackknife technique.

FIGURE 9

HISTJACK
TYPE THE NUMBER OF GROUPS YOU DESIRE (INTEGER
BETWEEN 2 AND 50) BE SURE TO PICK YOUR NUMBER
OF GROUPS SO AS TO MINIMIZE THE NUMBER OF DATA
POINTS THAT WILL HAVE TO BE DISCARDED. (HISTJACK
PLACES THE DATA INTO THE EQUAL NUMBER OF GROUPS
YOU INDICATE DISCARDING ANY DATA LEFT OVER)

22

ENTER YOUR DATA TO BE JACKNIFED IN VECTOR FORM
[]:
YR0VR

GROUP	MEAN	MEDIAN	VARIANCE	STD DEV	COFF VAR	SKWNESS	KURTOSIS	MINIMUM	MAXIMUM	
1	1.0524E00	-1.6000E00	1.0228E02	1.0113E01	9.6101E00	7.7349E-01	7.3991E-02	-1.3600E01	2.5300E01	
2	1.2048E00	-1.2000E00	1.0089E02	1.0044E01	8.3784E00	7.2904E-01	5.1529E-02	-1.3600E01	2.5300E01	
3	1.3190E00	-1.2000E00	1.0089E02	1.0044E01	7.6149E00	7.0897E-01	7.9345E-02	-1.3600E01	2.5300E01	
4	1.7714E00	-1.2000E00	9.1014E01	9.5401E00	5.3056E00	8.7130E-01	3.2139E-01	-1.3000E01	2.5300E01	
5	9.9048E-01	-1.6000E00	1.0213E02	1.0106E01	1.0203E01	7.9519E-01	1.0417E-01	-1.3600E01	2.5300E01	
6	7.6190E-01	-1.6000E00	1.0006E02	1.0003E01	1.3129E01	8.8022E-01	3.1867E-01	-1.3600E01	2.5300E01	
7	1.2286E00	-1.2000E00	1.0173E02	1.0086E01	8.2096E00	7.2372E-01	5.4384E-02	-1.3600E01	2.5300E01	
8	1.4381E00	-1.2000E00	9.9207E01	9.9603E00	6.9260E00	7.0632E-01	1.4054E-01	-1.3600E01	2.5300E01	
9	1.5286E00	-1.2000E00	9.7491E01	9.8738E00	6.4595E00	7.2120E-01	2.0046E-01	-1.3600E01	2.5300E01	
10	1.2000E00	-1.2000E00	1.0192E02	1.0095E01	8.4128E00	7.3016E-01	5.1155E-02	-1.3600E01	2.5300E01	
11	1.0190E00	-1.6000E00	1.0222E02	1.0111E01	9.9216E00	7.0499E-01	8.0707E-02	-1.3600E01	2.5300E01	
12	1.7429E00	-1.2000E00	9.1918E01	9.5874E00	5.5009E00	8.4272E-01	3.1785E-01	-1.3600E01	2.5300E01	
13	1.6000E00	-1.2000E00	9.5869E01	9.7913E00	6.1119E00	7.4622E-01	2.4899E-01	-1.3600E01	2.5300E01	
14	1.2857E00	-1.2000E00	1.0124E02	1.0062E01	7.8260E00	7.1331E-01	6.7672E-02	-1.3600E01	2.5300E01	
15	6.0476E-01	-1.6000E00	9.7632E01	9.8607E00	1.6305E01	9.3010E-01	5.4286E-01	-1.3600E01	2.5300E01	
16	1.9048E-01	-1.6000E00	8.4311E01	9.1821E00	4.8206E01	8.9026E-01	9.9254E-01	-1.3600E01	2.5300E01	
17	6.4571E-01	-1.6000E00	9.8831E01	9.9414E00	1.4498E01	9.0629E-01	4.2160E-01	-1.3600E01	2.5300E01	
18	-8.0952E-02	-1.6000E00	7.1546E01	8.4585E00	1.0449E00	4.6734E-01	-2.0707E-01	-1.3600E01	1.9600E01	
19	1.4810E00	-1.6000E00	1.0202E02	1.0101E01	8.5529E00	1.3487E-01	5.0328E-02	-1.3600E01	2.5300E01	
20	9.6190E-01	-1.6000E00	1.0201E02	1.0100E01	1.0500E01	8.0563E-01	1.2225E-01	-1.3600E01	2.5300E01	
21	1.3433E00	-1.2000E00	1.0072E02	1.0036E01	7.5270E00	7.0754E-01	8.5165E-02	-1.3600E01	2.5300E01	
22	5.8095E-01	-1.6000E00	9.6705E01	9.8339E00	1.6927E01	9.3606E-01	5.0006E-01	-1.3600E01	2.5300E01	
	UNGROUPED	1.0727E00	-1.4000E00	9.7420E01	9.8702E00	9.2010E00	7.6191E-01	2.2400E-01	-1.3600E01	2.5300E01

SUMMARY FOR JACKNIFED DATA

JACKNIFE ESTIMATE

VARIANCE

JACKNIFE ESTIMATE

VARIANCE

(VAR: GROUPS) * .5
JACKNIFE ESTIMATE OF STD DEV
OF MEAN OF PSEUDO-VALUES

MEAN	1.0727E00	9.7420E01
MEDIAN	-1.4000E00	1.8460E01
VARIANCE	9.7420E01	2.3810E04
STD DEV	1.0026E01	6.7477E01
COFF VAR	-1.2279E02	2.0693E05
SKWNESS	8.7458E-01	4.6496E00
KURTOSIS	4.3524E-01	2.7843E01

VI. EXPONENTIAL PLOTTING ROUTINE

A. DESCRIPTION

The fifth routine presented is an exponential plotting routine. Routine EXPONP is a way of plotting the data to see if it "fits" an exponential distribution, and also to give some indication of what alternative distributions could be used if the exponential hypothesis is rejected.

A complete description of how EXPONP operates is contained in the variable EXPONPHOW . When the user types EXPONPHOW the following response is printed on the terminal.

EXPONPHOW

SYNTAX EXPONP

EXPONP ORDERS THE DATA X(I) AND COMPUTES THE EMPIRICAL LOG SURVIVER FUNCTION FOR THE DATA. THAT IS,

*\ / | | \ | / I - ----- \ |
X VS | | \ | | \ | N+1 /
/ \ (I) |--| | |*

THE ORDERED DATA IS PLOTTED AGAINST THE LOG SURVIVER FUNCTION TO SEE IF THERE IS A LINEAR FIT. EXPONP ALSO ALLOWS YOU TO TITLE YOUR PLOT.

B. USAGE WITH TELEPHONE DATA 1

EXPONP was used with telephone data 1 to see if the data plotted as a relative straight line. When EXPONP was typed the following responses were entered.

EXPONP

EXPONP ORDERS THE DATA YOU GIVE AND COMPUTES THE EMPIRICAL LOG SURVIVER FUNCTION FOR THE DATA. A PLOT OF THE LOG SURVIVER FUNCTION FOR THE DATA IS THEN PRINTED TO SEE IF THERE IS A LINEAR FIT.

IF YOU WANT TO TITLE YOUR PLOT TYPE YOUR TITLE. IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE RETURN.

TELEPHONE DATA 1

ENTER YOUR DATA IN VECTOR FORM

□:

TELDAT1

Looking at figure 10 (plot of telephone data 1 using EXPONP), it was found that the data did not plot linearly from the origin, but that the data did appear somewhat linear in the tail (5,000 to 90,000 range).

C. USAGE WITH RANDOM GENERATED EXPONENTIALLY DISTRIBUTED SAMPLE WITH MEAN SAME AS TELEPHONE DATA 1

As a comparison, EXPONP was used with an exponentially generated random sample with the same mean as telephone data 1 (figure 11). As expected, this plot is, within limits of sample fluctuations, linear from the origin and in fact, what telephone data 1 would have looked like if the data was truly exponential. The quantization because of the coarseness of the APL type-ball is evident in this plot. The sample size is 672 , but not all these points can be plotted separately.

EXPONENTIAL SCORES

0 . 1875 --

-0 . 1875 *

* -0 . 5625 *

* -0 . 9375 *

* -1 . 3125 *

* -1 . 6875 *

* -2 . 0625 *

* -2 . 4375 *

* -2 . 8125 --

* -3 . 1875 --

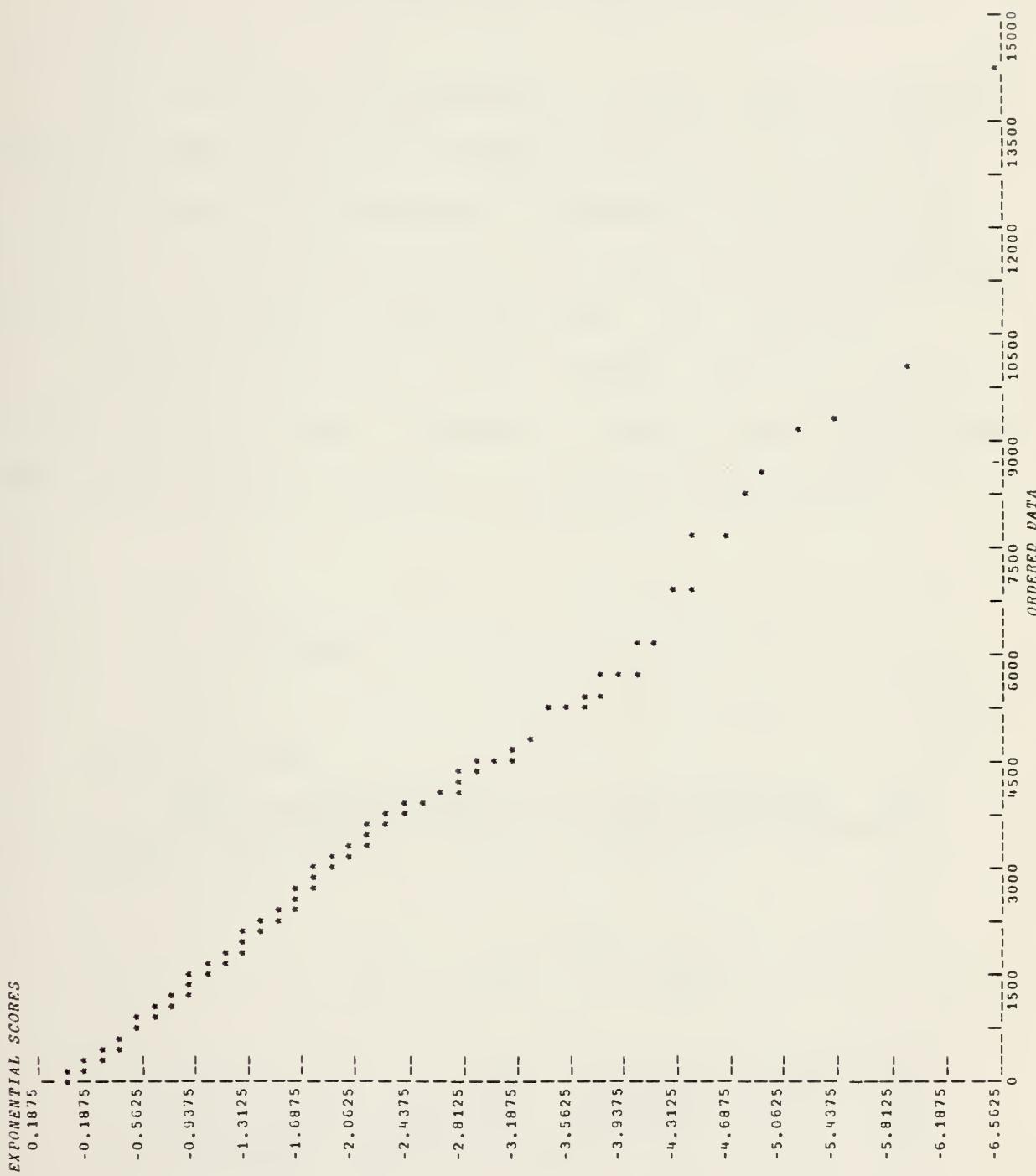
* -3 . 5625 --

* -3 . 9375 --

* -4 . 3125 --

* -4 . 6875 --

* -5 . 0625 --


* -5 . 4375 --

* -5 . 8125 --

* -6 . 1875 --

VII. NORMAL PLOTTING ROUTINE

A. DESCRIPTION

The final routine presented is a normal plotting routine. Routine NORMP is a way of plotting the data to see if it "fits" a normal distribution. In particular one might want to look at estimates of descriptive statistics obtained from sections and groups in routines HISTS and HISTJACK .

A complete description of how NORMP operates is contained in the variable NORMPHOW . When the user types NORMPHOW the following response is printed on the terminal.

NORMPHOW

SYNTAX NORMP

NORMP ORDERS THE DATA X(I) AND COMPUTES THE INVERSE OF THE UNIT NORMAL CUMULATIVE DISTRIBUTION. THAT IS,

$$\begin{array}{c} \backslash / \\ x \\ / \backslash (I) \end{array} \quad \text{VS} \quad \begin{array}{c} \tau-1 / \\ \phi \\ \perp \end{array} \quad \begin{array}{c} I \\ \hline \backslash N+1 / \end{array}$$

THE ORDERED DATA IS PLOTTED AGAINST THE INVERSE OF THE UNIT NORMAL CUMULATIVE DISTRIBUTION TO SEE IF THERE IS A LINEAR FIT. NORMP ALSO ALLOWS YOU TO CONVIENTLY TITLE YOUR PLOT.

B. USAGE WITH COST OVERRUN DATA

NORMP was used with the cost overrun data to see if the data plotted as a relative straight line. When NORMP was typed the following responses were entered.

NORMP

NORMP ORDERS THE DATA YOU GIVE AND COMPUTES THE INVERSE OF THE UNIT NORMAL CUMULATIVE DISTRIBUTION FOR THE DATA. A PLOT OF THE INVERSE OF THE UNIT NORMAL CUMULATIVE DISTRIBUTION VS THE ORDERED DATA IS THEN PRINTED TO SFF IF THERE IS A LINEAR FIT.

IF YOU WANT TO TITLE YOUR PLOT TYPE YOUR TITLE. IF YOU DO NOT WANT A TITLE JUST HIT THE CARriage RETURN.

COST OVERRUNS

ENTER YOUR DATA IN VECTOR FORM

□:

YROVR

Note that the cost overrun data was contained in the variable YROVR. Looking at figure 12 (plot of cost overrun data using NORMP), it was found that the data did in fact plot fairly linear through the range -14 to 26 (formal tests are available; see Wilk & Gnanadesikan, 1968).

C. USAGE WITH NORMAL SAMPLE GENERATED WITH MEAN AND VARIANCE THE SAME AS COST OVERRUN DATA

As a comparison, NORMP was used with a normal sample with the same mean and variance as the cost overrun data (figure 13). As expected, this plot is very linear. But again, this plot is not that much different from that of figure 12, which gives credence to the fact that the cost overrun data might in fact be normally distributed.

FIGURE 12

COST OVERRUNS

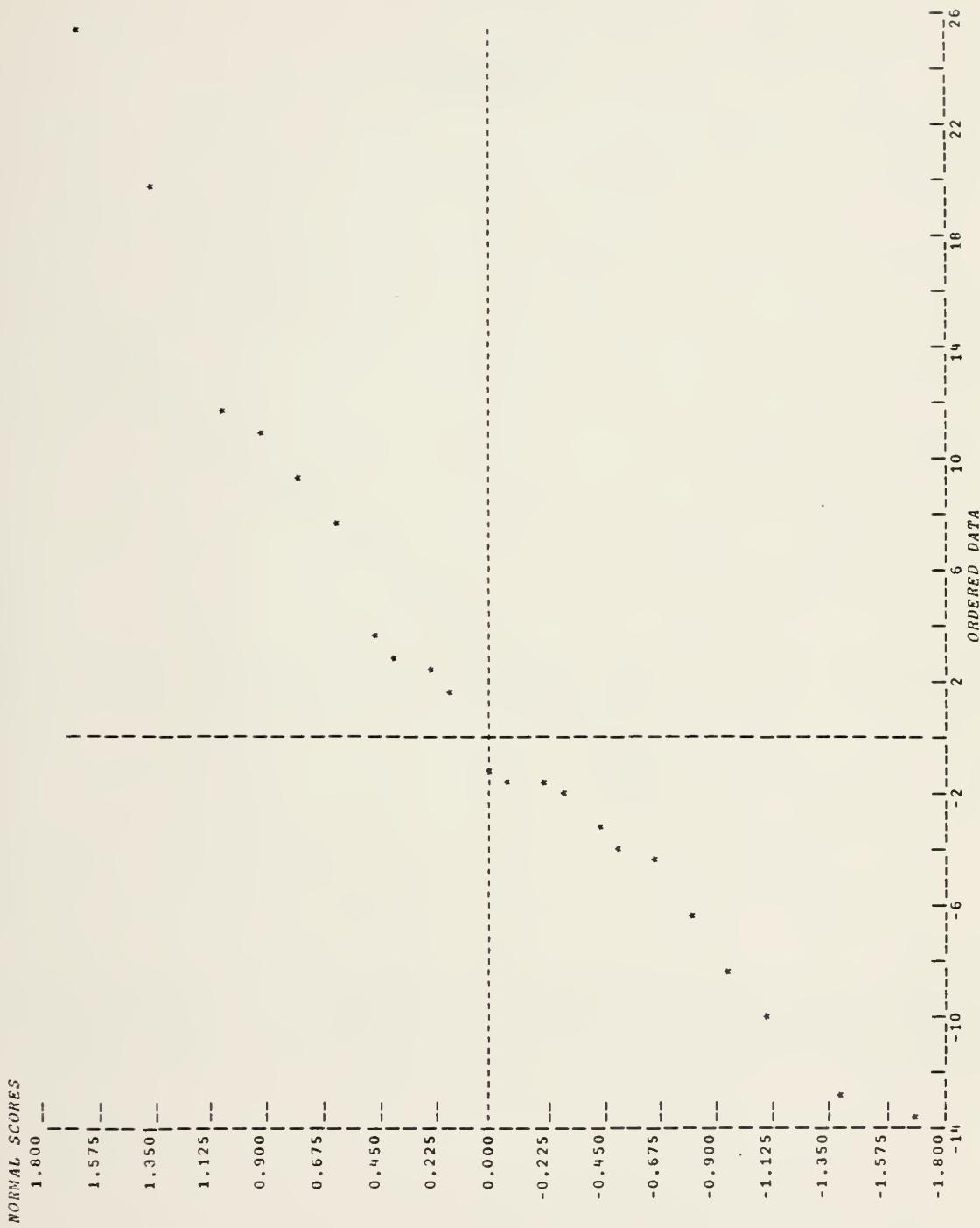
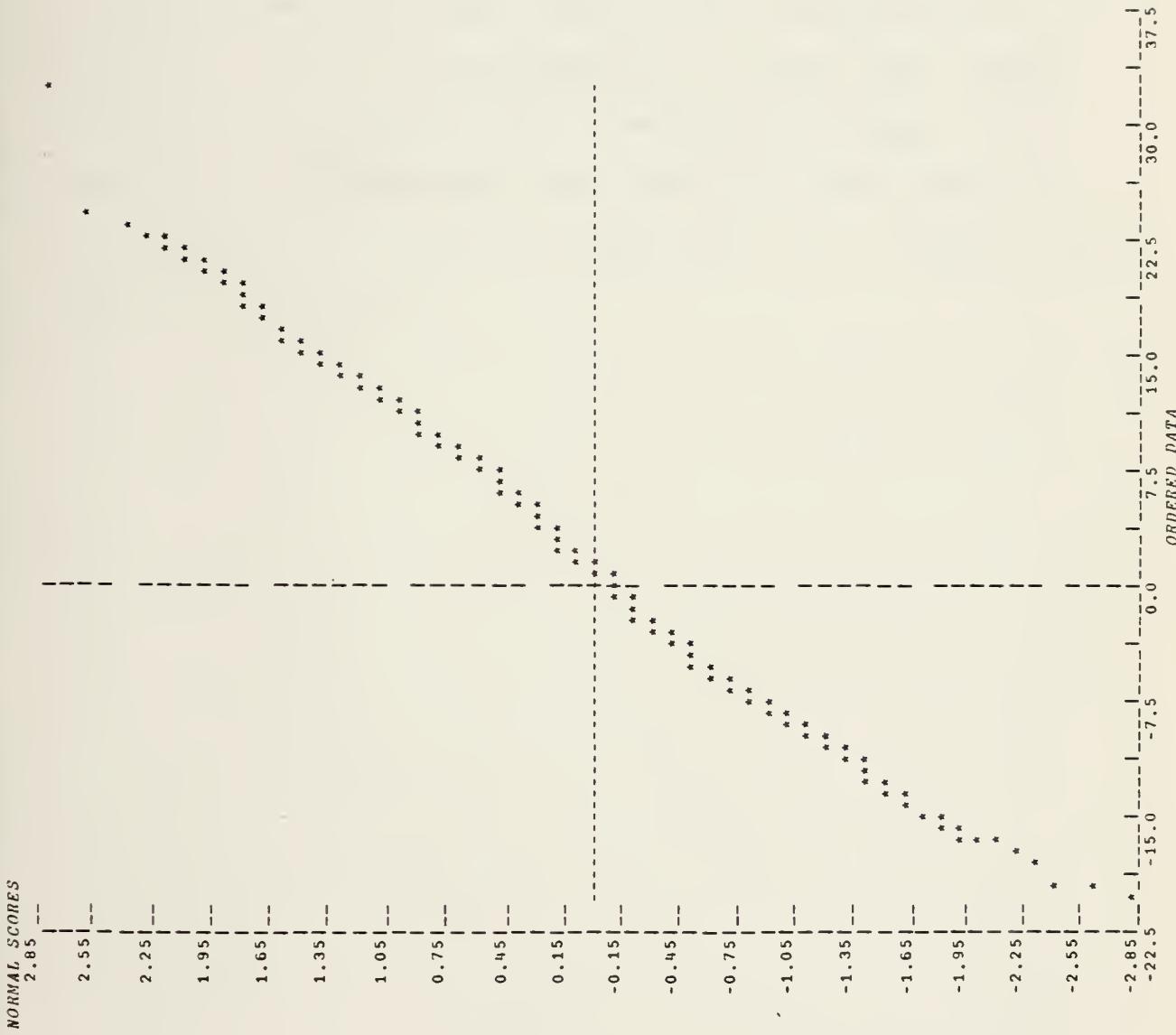



FIGURE 13

D. USAGE WITH COEFFICIENT OF VARIATION DATA OBTAINED
FROM USING SECTIONING ROUTINE

In order to check for normality in the sectioned estimates obtained from using HISTS (sectioning routine) the following was done. The 16 coefficient of variation values obtained from using HISTS with telephone data 1 (column 5, figure 7) were entered as a vector into NORMP. Figure 14 shows that the plot is marginally linear. This demonstrates the need for formal tests to verify normality in the absence of a strictly linear plot (Wilk & Gnanadikian, 1968).

PLOT OF COEF VAR VALUES USING 16 SECTIONS FROM FIGURE 7

VIII. THE INDEPENDENCE AND MARKOV CHAIN HYPOTHESES FOR THE TELEPHONE DATA

The telephone data used in the thesis (Lewis & Cox, 1966) actually consists of binary bits transmitted over telephone lines and the information that the bit transmitted at time i , $i = 0, 1, 2, \dots$ is in error or not. This information is characterized by a sequence of binary-valued random variables $x(i)$, $i = 0, 1, \dots$ where $x(i)=1$ means that the bit transmitted at time i is in error, while $x(i)=0$ means that the bit transmitted at time zero is correctly transmitted.

In telephone data 1 there are 672 ones and 1,105,476 zeros, and a much more compact and equivalent representation of the data is obtained via the sequence of random variables $y(j)$, $j=1, 2, \dots$ where $y(j)$ is one plus the number of correctly transmitted bits between the j^{th} and $(j-1)^{\text{st}}$ bit error, with the convention that $y(j)=1$ if the errors occur on adjacent transmitted bits, and $y(1)$ is the time from $i=0$ to the first incorrectly transmitted bit. The $y(j)$ are called the times-between-errors.

A null hypothesis for the error structure which could be examined is that errors occur independently at each bit with a fixed probability, i.e.

$$P\{x(i)=1\} = \pi(1) \quad i=0, 1, \dots$$

$$P\{x(i)=0\} = \pi(0) = 1 - \pi(1) \quad i=0, 1, \dots$$

The $y(j)$'s then are independent and geometrically distributed, since

$$\begin{aligned}
 P\{y(j)=1\} &= P\{\text{if } (j-1)^{\text{st}} \text{ error at time } i; j^{\text{th}} \text{ at} \\
 &\quad \text{time } i+1\} \\
 &= \pi(1) \\
 P\{y(j)=2\} &= P\{\text{if } (j-1)^{\text{st}} \text{ error at time } i; j^{\text{th}} \text{ at} \\
 &\quad \text{time } i+2\} \\
 &= \pi(1)[1-\pi(1)] = \pi(1)\pi(0) \\
 P\{y(j)=k+1\} &= P\{\text{if } (j-1)^{\text{st}} \text{ error at time } i; j^{\text{th}} \text{ at} \\
 &\quad \text{time } i+1+k\} \\
 &= \pi(1)[1-\pi(1)]^k = \pi(1)[\pi(0)]^k
 \end{aligned}$$

Note that, using the geometric series summation formula,

$$\sum_{k=1}^{\infty} P\{y(j)=k\} = \frac{\pi(1)}{1 - (1-\pi(1))} = 1$$

$$E[y(j)] = \sum_{k=1}^{\infty} kP\{y(j)=k\} = \frac{1}{1-\pi(0)} = \frac{1}{\pi(1)}$$

Now assume that the Markov structure of the zero's and ones is described by the transition matrix

$$\underline{P} = \begin{Bmatrix} P(0,0) & P(0,1) \\ P(1,0) & P(1,1) \end{Bmatrix} = \begin{Bmatrix} P+(1-\rho)\pi(1) & (1-\rho)\pi(0) \\ (1-\rho)\pi(1) & \rho+(1-\rho)\pi(0) \end{Bmatrix}$$

Here $P(m,n) = P\{x(i+1)=n \mid x(i)=m\}$, and we have parameterized the chain in terms of the stationary probability of a one or zero, and a correlation parameter $0 \leq \rho < 1$. Note that there are only two degrees of freedom in the stochastic

matrix, since rows must sum to 1, and there is only one degree of freedom if the stationary probability $\pi(0)=1-\pi(1)$ is fixed. Note that the stationary probabilities in the 2-state case are given by

$$\pi(0) = \frac{P(1,0)}{2-P(0,0)-P(1,1)} \quad \pi(1) = \frac{P(0,1)}{2-P(0,0)-P(1,1)}$$

We now define the runs of ones or zeros i.e. for $\ell=0$ or $\ell=1$, let

$$T_\ell = \inf\{n \geq 1: x(i+n) \neq \ell\} - 1,$$

the length of a run of ℓ 's, starting after time i , where the length can be $0, 1, 2, \dots$.

For example if $x(i+1)=1$, then the length of runs of zeros starting after time i is zero, the length of runs of ones is at least one long. Note that it is possible to talk of a conditional runs structure, i.e. the length of a run of ones which is given to start after time i . The run length is then at least one long.

Now the probability of a run T_ℓ having length greater than k is, using the Markov property,

$$P\{T_\ell \geq k\} = P\{x(i+1)=x(i+2)=\dots=x(i+k)=\ell\} = \pi(\ell)[P(\ell, \ell)]^{k-1}$$

$k=1, \dots$

and $P\{T_\ell = 0\} = 1-\pi(\ell)$.

Thus, the run lengths are geometrically distributed and

$$E[T(\ell)] = \sum_{k=1}^{\infty} P\{T_\ell \geq k\} = \frac{\pi(\ell)}{1-P(\ell, \ell)} = \frac{\pi(\ell)}{(1-\rho)[1-\pi(\ell)]}$$

Note that $\rho=0$ gives the independence case, and while the runs of ones or zeros are geometrically distributed for both the independence or Markov dependent model, the mean run length is always longer for the Markov dependence, since

$$\frac{\pi(\ell)}{(1-\rho)[1-\pi(\ell)]} \geq \frac{\pi(\ell)}{[1-\pi(\ell)]} \quad 0 \leq \rho < 1$$

Thus, we could use the distributional properties of the runs to (1) check that either hypothesis is tenable or (2) if so, compare the estimated run lengths with the mean length $\hat{\pi}(\ell)/[1-\hat{\pi}(\ell)]$ predicted by the independence assumption. If the run lengths are not geometric, than another model must be postulated.

Note that when this mean time-between-errors is large as it is for telephone data 1 (figure 1; $E[y(j)] = 1,548$) the discreteness of the time scale can be ignored and the geometric distribution is indistinguishable from its continuous time analog, the exponential distribution.

That is approximation of the geometric distribution by an exponential distribution is valid can be seen from the fact that there are 672 errors ($x(i)$'s equal to one) in 1,106,148 transmitted bits, so that an estimate of $\pi(1)$, which is the maximum likelihood estimate under the independence hypothesis, is

$$\hat{\pi}(1) = \frac{\# x(i) \text{'s} = 1}{\text{total } \# \text{ bits transmitted}} = \frac{\# x(i) \text{'s} = 1}{\# x(i) \text{'s} = 1 + \# x(i) \text{'s} = 0}$$

In the present data

$$\hat{\pi}(1) = \frac{672}{1,106,148} = .0006075$$

Now this geometric hypothesis will be examined, but it is clear from figure 1 that the hypothesis is not true. The distribution is in fact highly skewed and has been examined by Lewis & Cox, 1966.

An alternative model to independent bit errors is that the dependence structure is Markovian. One could examine this hypothesis with time-series methods but a method which is adaptable for use with the histogram routine and which examines both the independence and Markov assumptions is to look at runs of ones and zeros in the $x(i)$. Under both hypothesis these runs have geometrically distributed lengths.

The alternating conditional runs of ones for telephone data 1 are shown in figure 15 and for runs of zeros are shown in figure 16. Also, HISTLIST was used on the conditional runs and figure 17 shows the runs of ones and figure 18 shows the runs of zero.

To test the hypothesis that the runs of ones in telephone data 1 is geometrically distributed the following was done. Using figures 15 and 17 the following data was obtained:

MEAN	= 1.235294	# of runs = 1 = 444
VARIANCE	= .346008	# of runs = 2 = 81
		# of runs = 3 = 15
		# of runs = 4 = 1
		# of runs = 5 = 2
		# of runs \geq 6 = 1

FIGURE 15

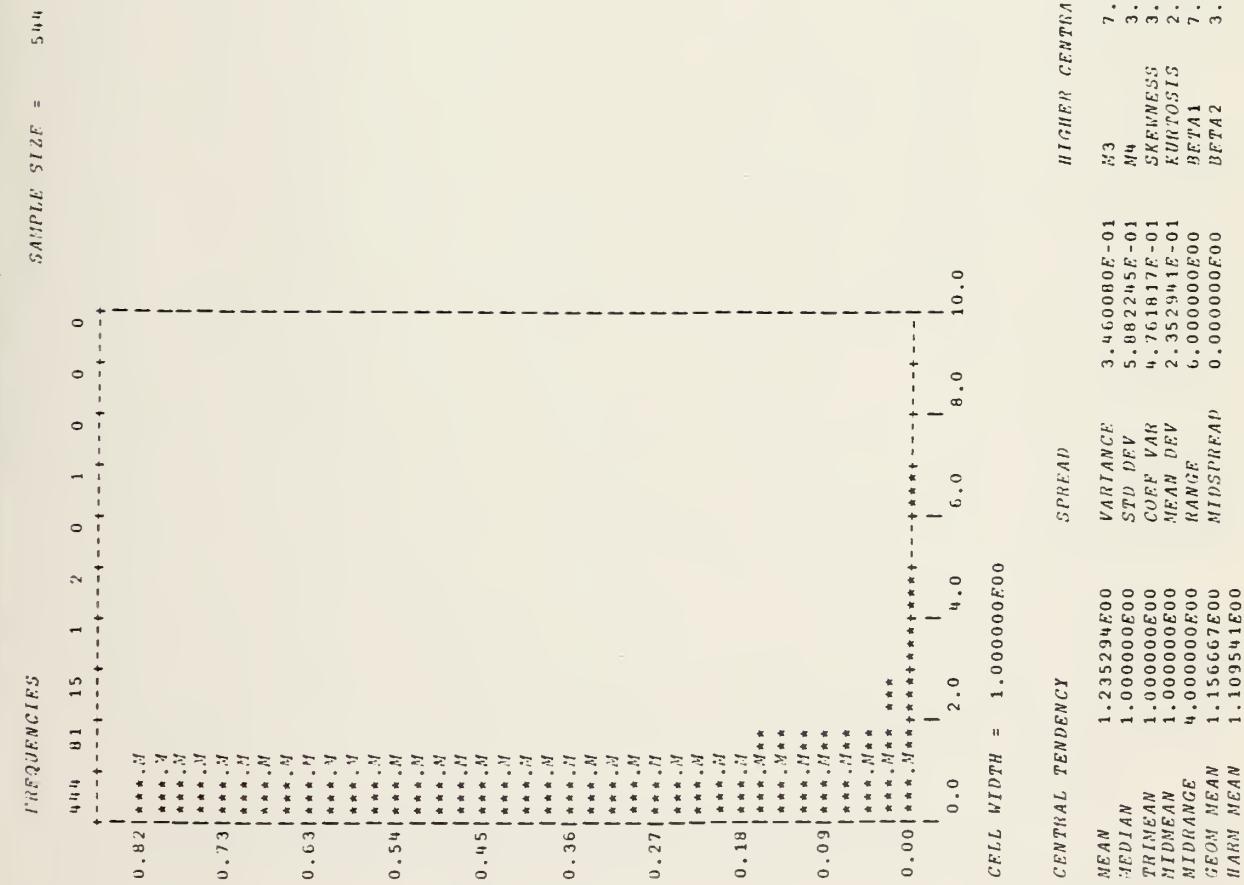


FIGURE 16

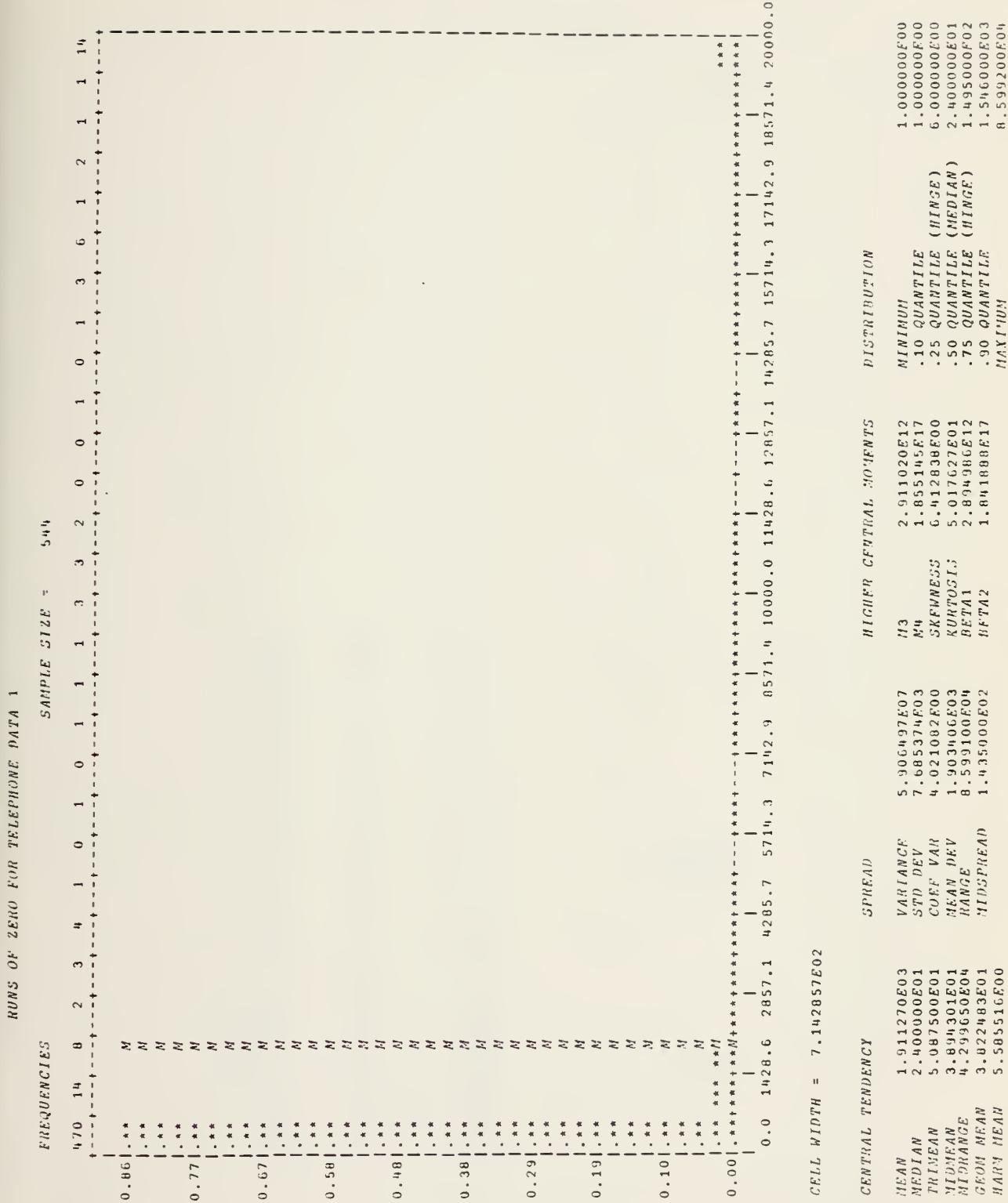


FIGURE 17

HISTLIST
HISTLIST PRINTS THE SERIAL NUMBER OF THE COMPRESSED
DATA, THE ORDERED DATA COMPRESSED, AND THE NUMBER OF
LIKE OCCURRENCES. ENTER YOUR DATA IN VECTOR FORM.
();
ONE

IF YOU WANT TO TITLE YOUR DATA TYPE YOUR TITLE.
IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE
RETURN.

RUNS OF ONE

IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE
PRINTER TYPE 1. IF YOU WANT YOUR OUTPUT TO APPEAR
ON YOUR TERMINAL TYPE 0.
();
0

RUNS OF ONE

SERIAL NUMBER	ORDERED DATA	NUMBER OF OCCURRENCES	PER CENT
1	1.000000	444	0.816
445	2.000000	81	0.149
526	3.000000	15	0.028
541	4.000000	1	0.002
542	5.000000	2	0.004
544	7.000000	1	0.002

FIGURE 18A

RUNS OF ZERO

SERIAL NUMBER	ORDERED DATA	NUMBER OF OCCURENCES	PER CENT
1	1.000000	54	0.039
55	2.000000	28	0.051
53	3.000000	22	0.040
105	4.000000	17	0.031
122	5.000000	11	0.026
143	6.000000	10	0.022
163	7.000000	12	0.026
169	8.000000	14	0.026
178	9.000000	9	0.017
188	10.000000	10	0.019
199	11.000000	11	0.020
201	12.000000	6	0.011
221	13.000000	6	0.011
221	14.000000	6	0.015
221	15.000000	8	0.015
221	16.000000	8	0.015
221	17.000000	8	0.009
221	18.000000	12	0.022
221	19.000000	11	0.022
221	20.000000	5	0.009
261	21.000000	5	0.009
264	22.000000	7	0.013
271	23.000000	3	0.006
274	24.000000	2	0.005
277	25.000000	2	0.004
279	26.000000	2	0.006
282	27.000000	5	0.009
287	28.000000	6	0.011
293	29.000000	4	0.007
301	30.000000	4	0.007
307	31.000000	2	0.004
307	32.000000	4	0.007
310	33.000000	3	0.005
112	34.000000	2	0.004
14	35.000000	1	0.002
157	36.000000	2	0.004
157	37.000000	1	0.002
190	38.000000	1	0.002
221	39.000000	1	0.002
221	40.000000	4	0.007
221	41.000000	3	0.006
221	42.000000	1	0.002
221	43.000000	1	0.002
221	44.000000	4	0.009
221	45.000000	3	0.006
221	46.000000	1	0.002
329	47.000000	2	0.004
329	48.000000	1	0.002
329	49.000000	1	0.002
329	50.000000	2	0.004
329	51.000000	1	0.002
329	52.000000	2	0.004
329	53.000000	1	0.002
329	54.000000	1	0.002
329	55.000000	1	0.002
329	56.000000	1	0.002
329	57.000000	1	0.002
329	58.000000	1	0.002
329	59.000000	1	0.002
329	60.000000	1	0.002
329	61.000000	1	0.002
329	62.000000	1	0.002
329	63.000000	1	0.002
329	64.000000	1	0.002
329	65.000000	1	0.002
329	66.000000	1	0.002
329	67.000000	1	0.002
329	68.000000	1	0.002
329	69.000000	1	0.002
329	70.000000	1	0.002
70	71.000000	1	0.002
71	72.000000	1	0.002
74	73.000000	1	0.004
76	74.000000	1	0.002
77	75.000000	1	0.002
77	76.000000	1	0.002
77	77.000000	1	0.002
789	78.000000	1	0.002
789	79.000000	1	0.002
789	80.000000	1	0.002
789	81.000000	1	0.002
789	82.000000	1	0.002
789	83.000000	1	0.002
789	84.000000	1	0.002
789	85.000000	1	0.002
789	86.000000	1	0.002
789	87.000000	1	0.002
789	88.000000	1	0.002
789	89.000000	1	0.002
789	90.000000	1	0.002
789	91.000000	1	0.002
789	92.000000	1	0.002
789	93.000000	1	0.002
789	94.000000	1	0.002
789	95.000000	1	0.002
789	96.000000	1	0.002
789	97.000000	1	0.002
789	98.000000	1	0.002
789	99.000000	1	0.002
789	100.000000	1	0.002
101	101.000000	1	0.002
101	102.000000	1	0.002
101	103.000000	1	0.002
101	104.000000	1	0.002
101	105.000000	1	0.002

FIGURE 18B

FIGURE 18C

If the runs of ones are geometric then $\text{prob}\{x(i)=k\} = (1-p)p^{k-1}$ $k=1,2,\dots$. Thus, this is the "geometric plus one" distribution.

$$\mu = E[X] = \frac{1}{(1-p)}$$

$$\sigma^2 = \text{VAR}[X] = \frac{1}{(1-p)^2}$$

$$C(X) = \frac{\text{VAR}[X]^{\frac{1}{2}}}{E[X]} = p^{\frac{1}{2}}$$

To find p set $E[X] = 1.235294 = 1/(1-p)$

$$p = \underline{.1904761}$$

Therefore, if the data is "geometric plus one" then

$$\begin{aligned} \text{EXPECTED VAR}[X] &= .1904761 / (.8095329)^2 \\ &= \underline{.2906572} \end{aligned}$$

Thus, the expected variance is .2906572 and the observed variance from HIST is .3460080. Also, the expected coefficient of variance is

$$\text{EXPECTED } C(X) = (.1904761)^{\frac{1}{2}} = \underline{.4364356}$$

And, the observed coefficient of variation is .4761817.

Therefore, at this point there seems to be a fairly close agreement between the runs of one and a "geometric plus one" distribution with $p = .1904761$.

As further proof a Chi-square test for goodness of fit was run on the runs. By using the formula

$$\text{prob } \{X = x\} = (1-p)p^{x-1} \text{ for } x=1,2,3,4,5,\dots$$

<u>PROBABILITY</u>	<u>EXPECTED</u>	<u>OBSERVED</u>
$P(X=1) = .8095239$	440.38	444
$P(X=2) = .1541949$	83.88	81
$P(X=3) = .0293704$	15.98	15
$P(X=4) = .0055943$	3.04	1
$P(X=5) = .0010655$.58	2
$P(X \geq 6) = .0002510$.14	1
	19.74	19

Note, to use Chi-square not more than 20% of the cells should have expected frequencies less than 5 and no cell should have an expected frequency less than one. Therefore, the above frequencies must be combined into 3 cells.

$$\chi^2 = \sum_{i=1}^3 \frac{(obs_i - ex_i)^2}{ex_i} = .1562799$$

And, $\chi^2_{.05,2} = 5.99$. Thus, the null hypothesis that the runs of one are "geometric plus one" with $p = .1904761$ can not be rejected.

A similar procedure was done with the runs of greater than one. By using figure 15 the following information can be obtained:

MEAN = 1911.27
 VARIANCE = 59,064,970
 COEF.VAR. = 4.021082

And, by using the same method as previously done and solving for p one gets $p = .9994767$.

$$EXPECTED VAR[X] = .9994767 / (.0005233)^2 = 3,651,213$$

This expected variance differs greatly from the observed variance. Also, the expected coefficient of variation is

computed to be

$$\text{EXPECTED } C(X) = (.9994767)^{\frac{1}{2}} = \underline{.9997383}$$

This compares with the observed coefficient of variation of 4.021082 . Because of the gross departures of the variance and the coefficient of variation in the geometric hypothesis, one can conclude that the runs of length greater than 1 are not geometrically distributed.

IX. DOCUMENTATION ON ROUTINES

A. LOCATION IN APL LIBRARY

The descriptions and routines that have been presented are all available in the APL workspace library 2 DATALFNS . Providing the user is properly logged on the terminal and in the APL mode, all that is necessary is to type)LOAD 2 DATALFNS . If the user then types DESCRIBE, a short description of the six routines presented and instructions on how to obtain the detailed information that is available in each of the "HOW" variables would be printed.

B. WORKSPACE LOADING PROCEDURES

Each of the routines was designed to stand alone. That is, if the user desires just to use HIST , all that is necessary is to type)COPY 2 DATALFNS HISTGRP into a clear workspace. HISTGRP contains the principal routine HIST and only the additional routines necessary for HIST to operate. Thus, the user does not clutter his workspace with any unneeded functions. It is this group structure that maintains the orderliness of the workspace. And, the ability to copy a particular group into a clear workspace provides more space for data and executions of the functions.

The following is the group structure in library 2 DATALFNS .

<u>GROUP</u>	<u>PRINCIPAL ROUTINE</u>	<u>OTHER NECESSARY ROUTINES</u>	<u>VARIABLES</u>
HISTGRP	HIST	APLNAME,APLOT,AUTOS, CMS,DFT,ECDF,ECODE, EFT,OF,OUT,WRITE	
HISTLISTGRP	HISTLIST	APLNAME,CMS,ECODE, DFT,OF,OUT,WRITE	
HISTSGRP	HISTS	DFT,EFT	
HISTJACKGRP	HISTJACK	DFT,EFT,TOT	
EXPONPGRP	EXPONP	AND,AUTOSCALE, INITIAL,MPLOT,MSGs, VS,MULTIPILOT,SETΔAP, TICMARK	<u>BS</u>
NORMPGRP	NORMP	AND,AUTOSCALE, INITIAL,MPLOT,MSGs, VS,MULTIPILOT,SETΔAP, TICMARK	<u>BS</u>
DESCGRP (Descriptive group)			DESCRIBE,HISTHOW HISTHOW,HISTLIST- HOW,HISTJACKHOW, EXPONPHOW,NORMPHOW
VARIGRP (Variable group)			TELDAT1,TELDAT2, YROVR

C. ROUTINE LISTING

The above mentioned routines were either created by the author, adapted from existing fortran routine HISTG/F , or borrowed from the current APL library to supplement the author created routines.

1. Author Created Routines

HISTLIST, HISTS, HISTJACK, EXPONP, NORMP, APLOT,
AUTOS, OUT, TOT

2. Adapted from Fortran Library Routine HISTG/F

HIST, ECDF

3. Borrowed Routines to Supplement Author Created
Routines

AND, APLNAME, AUTOSCALE, CMS, DFT, ECODE, EFT,
INITIAL, MPLOT, MSGS, MULTIPLOT, NDTRI, OF, SETAAP, TICMARK,
VS, WRITE

X. COMPUTER LISTING OF ALL ROUTINES


```

[44] TAB1A:=(A[1]<10)/LAST
[45] +(A[1]>28)/LAST
[46] DELTA*(HSCALE+A[3]-A[2])+A[1]
[47] XLABEL+A[2].(A[2]+DELTAX+A[1])
[48] F+/(A[1]).=(X-A[2])+DELTAX+A[1]
[49] F[1]+(+(X<XLABEL[1]))+F[1]
[50] F[A[1]]+(+(X>XLABEL[A[1]+1]))+F[A[1]]
[51] C[9]+(C[8]+((+(X-C[1]+(+/X)*N)*2)+(N+ρX)-1)*0.5
[52] C[2]+0.5*x*/X((N#2)*1+N#2)
[53] C[11]+((+(X-C[2]))*N
[54] C[22]+X((N#10))
[55] C[29]+N-C[28]+(N#4)
[56] N2+1+N1+(1-((4|N)‡2))
[57] C[23]+(X[C[28]+1]+(X[C[28]]*M1))+M2
[58] C[24]+C[2]
[59] C[25]+(X[C[29]]+(X[C[29]+1]*M1))+M2
[60] C[26]+X((0*9*N))
[61] C[13]+C[25]-C[23]
[62] C[5]+(C[27]+C[21])*0.5
[63] C[3]+0.25*(C[23]+C[24]+C[25])
[64] C[15]+((+/(X-C[1])*3))*N
[65] C[19]+((+/(X-C[1])*3))*N
[66] C[16]+((+/(X-C[1])*4))*N
[67] C[20]+((+/(X-C[1])*4))+N
[68] C[16]+C[16]-(C[8]*C[8])*3*(N-1)*(N-2)*(N-3)
[69] C[18]+-3+C[16]+(C[8]*C[8])
[70] C[29]+N+1-C[28]+2+N#4
[71] SUM+C[23]+C[25]
[72] SUMA+X((C[28]-1))
[73] SUMB+X((C[29]))
[74] SUM+SUM+(SUMB-SUMA)
[75] C[4]+SUM:((3+C[29]-C[28]))
[76] C[17]+C[15];C[9]*3
[77] C[6]+C[7]+0
[78] SUMA+5
[79] SUMB+7
[80] +(X[1]<0)/TAB
[81] C[6]+((+/(ρX))*N)
[82] C[7]+N;(+/(ρX))
[83] SUMA+SUMB+7
[84] TAB:=(N>300)/TAB4
[85] +(N>C[14]+ρA1+((ρV)ρ(M)≤1))/N+X((V=M+{/V+ +/X o. ρX})/TAB2
[86] TAB4:C[14]+0
[87] SUMB+6
[88] TAB2:C[10]+0

```



```

[89] *(C[1] 1J<1E 30)/TAB3
[90] C[10]+C[9]+C[1]
[91] TAB3:T1+'CENTRAL TENDENCY'
[92] 41+'MEAN' MEDIAN TRIMAN SPREAD HIGHER CENTRAL MOMENTS
[93] 42+'VARIANCE' STD DEV COFF VAR MIDMEAN GEOM MEAN HARM MEAN
[94] 43+M3 M4 SKWNESS KURTOSIS MEAN DEV MIDRANGE GEOM MEAN
[95] 44+'MINIMUM' .10 QUANTILE .25 QUANTILE (HINGE) .50 QUANTILE (MEDIAN)
[96] 44+'75 QUANTILE (HINGE)' .90 QUANTILE MAXIMUM
[97] 44+441.442
[98] B1+ 13 7 EFT B1+((SUMA),1)ρB1+C[1].C[2].C[3].C[4].C[5].C[6].C[7]
[99] B2+ 13 7 EFT B2+((SUMB),1)ρB2+C[9].C[10].C[11].C[12].C[13].C[14]
[100] B3+ B3+ 13 7 EFT B3+((SUMC),1)ρB3+C[15].C[16].C[17].C[18].C[19].C[20]
[101] B4+ 13 7 EFT B4+((SUMD),1)ρB4+C[21].C[22].C[23].C[24].C[25].C[26].C[27]
[102] A1+((SUMA),11)ρA1
[103] A2+((SUMB),11)ρA2
[104] A3+ 7 10 ρA3
[105] A4+ 7 23 ρA4
[106] C+ 7 4 ρC+
[107] APLOT
[108] TAB5:OL OUT T+
[109] OL OUT 'CELL WIDTH = ', 13 7 EFT DELTA
[110] B3+ 7 13 ρB3+B3.T
[111] OL OUT 2 7 ρT
[112] OL OUT T1
[113] OL OUT T
[114] +(SUMA=5)/TAB6
[115] +(SUMB=6)/TAB7
[116] TAB8:OL OUT A1.B1.Σ.A2.Σ.43.Σ.3.Σ.44.Σ.4
[117] +(OL=0)/0
[118] CMS 'FINIS HIST APLPF'
[119] CMS 'PRINTCC HIST APLPF'
[120] +(0xEODE)/EX1
[121] 'HISTOGRAM SENT TO PRINTER'
[122] CMS 'ERASE HIST APLPF'
[123] +0
[124] EX1:0.ρ+'PRINTING FAILED. TRY AGAIN OR SEE APL PROGRAMMER.'
[125] TAB6:A1+ 7 11 ρA1
[126] B1+ 7 13 ρB1
[127] A1[6;]+A1[7;]+B1[6;]+B1[7;]+
[128] +(SUMB=7)/TAB8
[129] TAB7:A2+ 7 11 ρA2
[130] B2+ 7 13 ρB2
[131] A2[7;]+B2[7;]+
[132] +TAB8
[133] LAST: 'NUMBER OF CELLS GIVEN IS NOT PERMISSABLE'

```



```

V HISTLIST()V
  HISTLIST;X;A;B;C;D;E;F;G;I;J;K;N;O;S;TT;APLN;OL
  'HISTLIST PRINTS THE SERIAL NUMBER OF THE COMPRESSED'
  [1]  'DATA. THE ORDERED DATA COMPRESSED, AND THE NUMBER OF'
  [2]  'LIKE OCCURENCES. ENTER YOUR DATA IN VECTOR FORM.'
  [3]  ' '
  [4]  X+[]

  [5]  ' '
  [6]  'IF YOU WANT TO TITLE YOUR DATA TYPE YOUR TITLE.'
  [7]  'IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE.'
  [8]  'RETURN.'
  [9]  ' '
  [10] TT*[]

  [11] ' '
  [12] 'IF YOU WANT YOUR OUTPUT TO APPEAR ON THE OFFLINE'
  [13] 'PRINTER TYPE 1 . IF YOU WANT YOUR OUTPUT TO APPEAR'
  [14] 'ON YOUR TERMINAL TYPE 0 .'
  [15] OL+[]

  [16] +(OL=0)/TABA
  [17] APLN+N+APLNAME 'HISTLIST APLPF P1 V'
  [18] CMS 'ERASE HISTLIST APLPF'
  [19] (20+'1') WRITE APLN
  [20] TABA;+(TT=0)/TAB10
  [21] OL OUT 2 7 p'
  [22] OL OUT TT
  [23] OL OUT 2 7 p'
  [24] TAB10:X+X[4X]
  [25] C+(pX)p1
  [26] K+1
  [27] E+1p1
  [28] J+0
  [29] F+10
  [30] TAB2:J+J+1
  [31] +(X[J]=X[J+1])/TAB1
  [32] K+K+1
  [33] E+E. (J+1)
  [34] F+F. X[J]
  [35] +((J+1)=pX)/TAB3
  [36] +TAB2
  [37] TAB1:G[K]+C[K]+1
  [38] +((J+1)=pX)/TAB3
  [39] +TAB2

```



```

[40] TAB3: F+F,X[J+1]
[41] A+'SERIAL NUMBER'      ORDERED DATA      NUMBER OF OCCURENCES'
[42] B+L(0.5+6.0×((I/C): (ρX)))
[43] D+8{(B+2)
[44] B+(2{(B-4))ρ' '
[45] OL OUT A,B, 'PER CENT'
[46] OL OUT '
[47] J+0
[48] TAB4: J+J+1
[49] G+L(0.5+6.0×I+(C[J]:(ρX)))
[50] B+G+Dρ' '
[51] G+Gρ' '
[52] I+3 DFT I
[53] S+ 10 0 DFT E[J]
[54] O+ 16 6 DFT F[J]
[55] N+ 10 0 DFT C[J]
[56] OL OUT S, ' .O, ' ' .N, ' ' .G,B,I
[57] +(J=K)/TAB5
[58] +TAB4
[59] TAB5: +(OL=0)/0
[60] CMS 'FINISH HISTLIST APPLPF'
[61] CMS 'O PRINTCC HISTLIST APPLPF'
[62] +(O*ECODE)/EX1
[63] 'HISTLIST SENT TO PRINTER'
[64] CMS 'ERASE HISTLIST APPLPF'
[65] +0
[66] EX1:0,ρ[+] 'PRINTING FAILED. TRY AGAIN OR SEE APL PROGRAMMER.' v

```



```

V HISTS[0]V
V HISTS;X;P;SE;ARRAY;J;FNA;B;C;D;E;F;G;H;I;K;SD;VAR;MED;MIN;MAX;SDS;STS;KURT;SKFW;CVAR;MEAN;VRS;MNS;SZ;M3;M4;N
[1] 'TYPE THE NUMBER OF SECTIONS YOU DESIRE ( INTEGER ,
[2] 'BETWEEN 2 AND 28 ) BE SURE TO PICK YOUR NUMBER OF
[3] 'SECTIONS SO AS TO MINIMIZE THE NUMBER OF DATA .
[4] 'POINTS THAT WILL HAVE TO BE DISCARDED . (HISTS ,
[5] 'PLACES THE DATA INTO THE EQUAL NUMBER OF SECTIONS ,
[6] 'YOU INDICATE DISCARDING ANY DATA LEFT OVER )'
[7] SE+1
[8] '
[9] 'ENTER YOUR DATA TO BE SECTIONED IN VECTOR FORM '
[10] X+[]
[11] '
[12] P+0
[13] SDS+VRS+MNS+STS+700
[14] TAB10:SZ+1(ρX)+SE
[15] MEAN+VAR+SD+CVAR+SKEW+MED+MIN+KURT+MAX+(SE)ρ0
[16] ARRAY+((SE),(SZ))ρX
[17] J+0
[18] TAB3:J+J+1
[19] *(J>SE)/TAB2
[20] MAX[J]+[ / (ARRAY[J;])
[21] MIN[J]+[ / (ARRAY[J;)
[22] SD[J]+(VAR[J]+( / (ARRAY[J;]-MEAN[J]+( + / (ARRAY[J;]*N)*2 )*(N+SZ)-1 )+0.5
[23] F+ARRAY[J;]
[24] FN+FN[&FN]
[25] NED[J]+0.5*(+ / FN[ ( [N+2), 1+(N+2) )
[26] N3+N4+(SE)ρ0
[27] M3[J]+((+ / ((ARRAY[J;]-MEAN[J])*3))*N)+((N-1)*(N-2))
[28] M4[J]+((+ / ((ARRAY[J;]-MEAN[J])*4))*N)+((3+N*(N-2))*((N-1)*(N-2)*(N-3)))
[29] M4[J]+N4[J]-(VAR[J]*VAR[J]*3*(N-1)*(N+2)*(N-3))
[30] SKEW[J+N3[J]*SD[J]*3
[31] KURT[J]-3+N4[J]+(VAR[J]*VAR[J])
[32] CVAR[J]+SD[J]+MEAN[J]
[33] +TAB3
[34] TAB2:(P=1)/TAB12
[35] ARRAY+MEAN*MED*VAR,SD,CVAR,SKEW,KURT
[36] ARRAY+(7,(SE))PARRAY
[37] J+0
[38] TAB4:J+J+1
[39] SDS[J]+(VRS[J]+((+ / (ARRAY[J;]-MNS[J]+( + / (ARRAY[J;]*N)*2 )*(N+SE)-1 )+0.5
[40] STS[J]+SDS[J]+((N)*0.5)
[41] +(J=7)/TAB5
[42] +TAB4
[43] TAB5:A+'SECTION MEAN MEDIAN VARIANCE '
[44] B+'SKEWNESS KURTOSIS MINIMUM MAXIMUM '
[45] A,B

```



```

[46]   '
[47]   ' TAB12;J+0
[48] TAB6;J+J+1
[49] K+ 2 0 DFT J
[50] A+ 11 5 EFT MEAN[J]
[51] B+ 11 5 EFT MED[J]
[52] C+ 11 5 EFT VAR[J]
[53] D+ 11 5 EFT SD[J]
[54] E+ 11 5 EFT CVAR[J]
[55] F+ 11 5 EFT SKEW[J]
[56] G+ 11 5 EFT KURT[J]
[57] H+ 11 5 EFT MIN[J]
[58] I+ 11 5 EFT MAX[J]
[59] +(P=1)/TAB7
[60] , ' ,K, ' ,A, ' ,B, ' ,C, ' ,D, ' ,E, ' ,F, ' ,G, ' ,H, ' ,I
[61] +(J=SE)/TAB11
[62] TAB11;P+SE+1
[63] TAB6
[64] TAB10
[65] TAB7;2 7 P
[66] 2 1 P
[67] 0
[68] 'SUMMARY FOR SECTIONED DATA'
[69] '
[70] '
[71] '
[72] J+0
[73] TAB8;J+J+1
[74] A+ 11 5 EFT MNS[J]
[75] B+ 11 5 EFT VRS[J]
[76] C+ 11 5 EFT SDS[J]
[77] D+ 11 5 EFT STS[J]
[78] E+ 'MEAN' MEDIAN
[79] E+ 7 12 P E
[80] E[J;] A, ' ,B, ' ,C, ' ,D
[81] +(J=7)/0
[82] TAB8

```



```

V HISTJACK[][]
V   HISTJACK;X;SEC1;PSV;SZ;A;B;C;J;G;ARRAY;BRRAY;K;FN;S;CVAR;KURT;MAX;MEAN;MEANS;MED;MIN;M3;M4;N;SD;SKEW;VAR;VARSA
[1]   *TYPE THE NUMBER OF GROUPS YOU DESIRE (INTEGER
     BETWEEN 2 AND 50 ) BE SURE TO PICK YOUR NUMBER
     OF GROUPS SO AS TO MINIMIZE THE NUMBER OF DATA
     POINTS THAT WILL HAVE TO BE DISCARDED. (HISTJACK
     PLACES THE DATA INTO THE EQUAL NUMBER OF GROUPS
     YOU INDICATE DISCARDING ANY DATA LEFT OVER),
     SEC1+[]
[2]
[3]
[4]   'ENTER YOUR DATA TO BE JACKNIFIED IN VECTOR FORM'
[5]   X+[]
[6]
[7]   MEANS+VARSA+S+ 7 1 p0
[8]   PSV+((7)*(SEC1))p0
[9]   SZ+((pX)-(L((pX)+SEC1)))
[10]  MEAN+VAR+SD+CVAR+SKEW+MED+MIN+KURT+MAX+(SEC1+1)p0
[11]  ARRAY+(1,(pX))pX
[12]  J+G+1
[13]  B+pX
[14]  TAB3:=(J>(SEC1+1))/TAB2
[15]  MAX[J]+/(ARRAY[G;])
[16]  MIN[J]+/(ARRAY[G;])
[17]  SD[J]+(VAR[J]+((ARRAY[G;]-MEAN[J])*2)+((ARRAY[G;]+N)*2)+(N+B)-1)*0.5
[18]  FN+ARRAY[G;]
[19]  FN+FN[4FN]
[20]  NED[J]+0.5*((FN[ (N+2),1+(N+2)])
[21]  N3+N4+(SEC1+1)p0
[22]  N3[J]+((+/(ARRAY[G;]-MEAN[G;])*3))*N*((N-1)*(N-2))
[23]  M4[J]+((+/(ARRAY[G;]-MEAN[G;])*4))*((3+N*(N-2))*((N-1)*(N-2)*(N-3)))
[24]  N4[J]+N4[J]-(VAR[J]*VAR[J]*3*(N-1)*(N-2)*(N-3))
[25]  SKEW[J]+M3[J]*SD[J]*3
[26]  KURT[J]+-3+M4[J]*((VAR[J]*VAR[J]*VAR[J]))
[27]  CVAR[J]-SD[J]*MEAN[J]
[28]  G+(J+j+1)-1
[29]  B+SZ
[30]  +(G>2)/TAB3
[31]  C+1((pX);A+SEC1
[32]  BRRAY+((A),(S2))pX
[33]  ARRAY+((A),(S2))p0

```



```

1.34] 1.04
[35] TAB3
[36] TAB2.PSV[1;]+(A*MEAN[1])-((A-1)*MEAN[1+1*SEC1])
[37] PSV[2;]+(A*MED[1])-((A-1)*MED[1+1*SEC1])
[38] PSV[3;]+(A*VAR[1])-((A-1)*VAR[1+1*SEC1])
[39] PSV[4;]+(A*SD[1])-((A-1)*SD[1+1*SEC1])
[40] PSV[5;]+(A*CVAR[1])-((A-1)*CVAR[1+1*SEC1])
[41] PSV[6;]+(A*SKEW[1])-((A-1)*SKEW[1+1*SEC1])
[42] PSV[7;]+(A*KURT[1])-((A-1)*KURT[1+1*SEC1])
[43] MEANS+((+PSV)*A)
[44] VARSA+((+PSV*2)-((+PSV)*2)*SEC1)):(SEC1-1)
[45] S+(VARSA:SEC1)*0.5
[46] A+`GROUP` MEAN
[47] C+`SKEWNESS` KURTOSIS
[48] *
[49] A,C
[50] *
[51] J+1
[52] A+ 9 11 0 *
[53] TAB4,J+1
[54] A[1;]+ 11 5 EFT MEAN[J]
[55] A[2;]+ 11 5 EFT MED[J]
[56] A[3;]+ 11 5 EFT VAR[J]
[57] A[4;]+ 11 5 EFT SD[J]
[58] A[5;]+ 11 5 EFT CVAR[J]
[59] A[6;]+ 11 5 EFT SKEW[J]
[60] A[7;]+ 11 5 EFT KURT[J]
[61] A[8;]+ 11 5 EFT MIN[J]
[62] A[9;]+ 11 5 EFT MAX[J]
[63] K+ 2 0 DFT(J-1)
[64] +(J=1)/TAB6
[65] ` ,K,` +(A[1;],` ,A[2;],` ,A[3;],` ,A[4;],` ,A[5;],` ,A[6;],` ,A[7;],` ,A[8;],` ,A[9;])
[66] +(J=(SEC1+1))/TAB5
[67] +TAB4
[68] TAB5;J+0
[69] +TAB4

```



```

[70] TAB6: 2 1 ρ
[71] 'UNGROUPED' ,A[1;], ' ,A[2;], ' ,A[3;], ' ,A[4;], ' ,A[5;], ' ,A[6;], ' ,A[7;], ' ,A[8;], ' ,A[9;]
[72] 2 1 ρ
[73] 'SUMMARY FOR JACKKNIFED DATA'
[74] '
[75] ' JACKKNIFE ESTIMATE          VARIANCE          (VAR+GROUPS)*.5'
[76] A+48ρ
[77] A.'JACKKNIFE ESTIMATE OF STD DEV'
[78] A.'OF MEAN OF PSEUDO-VALUES'
[79] '
[80] A.'MEAN      MEDIAN      VARIANCE      STD DEV      COEF VAR SKEWNESS KURTOSIS '
[81] A+ 7 9 ρA
[82] J+0
[83] C+ 3 11 ρ
[84] TAB7:J+J+1
[85] C[1;]+ 11 5 EFT MEANS[J]
[86] C[2;]+ 11 5 EFT VARSAL[J]
[87] C[3;]+ 11 5 EFT ST[J]
[88] A[J;], ' ,C[1;], ' ,C[2;], ' ,C[3;]
[89] +(J=7)/TAB8
[90] →TAB7
[91] TAB8:+0

```



```

V NORMP[X;TT;BL;SM;TL;PC2;L;J;R;R90;H2;GL;BT;PL;ST;D;PC
V 'NORMP ORDERS THE DATA YOU GIVE AND COMPUTES THE
[1] 'INVERSE OF THE UNIT NORMAL CUMULATIVE DISTRIBUTU-
[2] 'TION FOR THE DATA. A PLOT OF THE INVERSE OF THE
[3] 'UNIT NORMAL CUMULATIVE DISTRIBUTION VS THE ORDER-
[4] 'ED DATA IS THEN PRINTED TO SEE IF THERE IS A
[5] 'LINEAR FIT. '
[6] '
[7] '
[8] 'IF YOU WANT TO TITLE YOUR PLOT TYPE YOUR TITLE.'
[9] 'IF YOU DO NOT WANT A TITLE JUST HIT THE CARRIAGE
[10] 'RETURN. '
[11] '
[12] TT+;V
[13] '
[14] 'ENTER YOUR DATA IN VECTOR FORM'
[15] X+;[]

[16] '
[17] BL+ 'ORDERED DATA'
[18] SM+ 3 1 0
[19] R90+H2+GL+0
[20] D+1.30
[21] ZT+ 1 1.25 1.5 2 2.5 3 4 5 7.5 10
[22] PI+10
[23] BT+10
[24] TLM+ 'NORMAL SCORES'
[25] PC2+11
[26] L2+ ' - '
[27] X+X[AX]
[28] R+((ρX)*2)ρ0
[29] J+((ρX))+(ρX)+1
[30] J+0
[31] TAB3:J+J+1
[32] R[J;]~NDTRI I[J]
[33] +(J=(ρX))/TAB2
[34] +TAB3
[35] TAB2:J+((R[1;1]).10100
[36] I+X[X[1].(X[1]+((X[ρX])-X[1]).1000).1000)
[37] +(X[1]<0AX[(ρX)]>0)/TAB4
[38] (10 10 .(ρX).(101) M PLOT J VS I
[39] +TAB5
[40] TAB4:J+J,R[1;1].(R[1;1]+((R[ρX];1)-R[1;1]).48)×148)
[41] I+I.49ρ0
[42] (10 10 .(ρX).(101).(49) M PLOT J VS I
[43] TAB5:+0

```

```

VAUTOS[1]V
V AUTOS
[1] →((ρX)≥80)/TAB70
[2] A[1]~16
[3] →TAB71
[4] TAB70:A[1]~((28((ρX)+5))
[5] TAB71:A[2]+C[21]
[6] A[3]+C[27]
[7] +0

```

```

VEFT[1]V
V 2+H EFT X;D;E;H;J;K;L;Q;S;T;U;Y
[1] →(V/H*1W+.W+(H+0)*L+1<ρX)/EFTERR+0×K~2
[2] →(V/H*1W+.W+(H+0)*L+1>ρX)/EFTERR+0×K~2
[3] →(3 2 1 <ρX)/(EFTERR+K+0) . 2 3 +126
[4] X+((V/ 1 2 =ρW)Φ 1 2)Φ(1.ρ,X)ρX
[5] X+((Φ2ρΦρX)ρX
[6] +((Λ/(ρW)× 1 2 ×E+1ρΦρX).1×ρW)/(EFTERR×K+1) . 2+126
[7] W+(W+6+(V/.X<0)+V/.1>X).W
[8] +(V/6>-/[1] W+Φ(E 2)ρW)/EFTERR+0×K+2
[9] Z+((K+1ρρX)× +/W[1;]ρ)ρ
[10] EFTLP:→(E<H+H+1)/EFTEND
[11] S+1+[10⊗(Y+0=Y+X[;H])
[12] U+1+[10⊗(Y+0=Y+1.0.5+(10*Q-15)+Y×10*(Q+H)-S
[13] J+((T-4)ρ1)×4ρ0)\1+[10\(|Y:10*U>Q) . +10* 1+Φ1 -4+T+H[1;H]
[14] J[ ;T- 2 1]+1+[10\(|S-U<Q) . + 10 1
[15] J[ ;( \U+T-4+Q).T]+13
[16] J[ ;1.U.T.T-3]+Φ(4,K)ρ(Kρ11).(13+0>Y,S-1).Kρ12
[17] J[ ;1.T-3]+J[ ;(1Φ1U+1). (U+1+1Q) ]
[18] J[ ;T- 2 1 0]+(-S50)ΦJ[ ;T- 2 1 0]
[19] +EFTLP,ρZ[ ;(+/W[1;H-1])+T]+D[J]
[20] EFTEND:+L/0
[21] +0×ρZ+,Z
[22] EFTERR: EFT ' .( 3 6 ρ ' RANK LENGTHDOMAIN' )[K+1;] . ' PROBLEM. '

```



```

V APLOT;I;J;LINE;CROB;PROB;VERT;H1;PLAREL;DIB;FSCALE;DID;DIT;DIS;IQT;IQ2T;IQ3T;NMAX;MNT;RT;PRBMX;INCR;ARRAY;FMAX
[1]  $\rightarrow ((\rho_{TT}) = (\rho, 0)) / TAB5A$ 
[2]  $OL\_OUT(1.8\rho, \cdot, \cdot), TT$ 
[3]  $OL\_OUT(1\rho, \cdot, \cdot)$ 
[4]  $TAB5A: ARRAY^{+}((D[1]), (4 \times A[1])) \rho^{+}$ 
[5]  $FSCALE + (D[1]-1) : FMAX + (F[4F])_{[\rho, F]}$ 
[6]  $I+0$ 
[7]  $J+ -3$ 
[8]  $TAB12: \rightarrow (I=A[1]) / TAB15$ 
[9]  $I+I+1$ 
[10]  $J+J+4$ 
[11]  $LINE+1((D[1]-0, 5) - (FSCALE \times F[1]))$ 
[12]  $\rightarrow (LINE \geq D[1]-1) / TAB13$ 
[13]  $ARRAY[LINE+1(D[1]-LINE); J] \leftarrow \cdot \star \cdot$ 
[14]  $ARRAY[LINE+1(D[1]-LINE); J+1] \leftarrow \cdot \star \cdot$ 
[15]  $ARRAY[LINE+1(D[1]-LINE); J+2] \leftarrow \cdot \star \cdot$ 
[16]  $ARRAY[LINE+1(D[1]-LINE); J+3] \leftarrow \cdot \star \cdot$ 
[17]  $ARRAY[(D[1]); J+3] \leftarrow \cdot \star \cdot$ 
[18]  $\rightarrow TAB12$ 
[19]  $TAB13: \rightarrow (F[I] \times 0) / TAB14$ 
[20]  $ARRAY[(D[1]); J] \leftarrow \cdot \star \cdot$ 
[21]  $ARRAY[(D[1]); J+1] \leftarrow \cdot \star \cdot$ 
[22]  $ARRAY[(D[1]); J+2] \leftarrow \cdot \star \cdot$ 
[23]  $ARRAY[(D[1]); J+3] \leftarrow \cdot \star \cdot$ 
[24]  $\rightarrow TAB12$ 
[25]  $TAB14: ARRAY[(D[1]); J] \leftarrow \cdot \star \cdot$ 
[26]  $ARRAY[(D[1]); J+1] \leftarrow \cdot \star \cdot$ 
[27]  $ARRAY[(D[1]); J+2] \leftarrow \cdot \star \cdot$ 
[28]  $ARRAY[(D[1]); J+3] \leftarrow \cdot \star \cdot$ 
[29]  $\rightarrow TAB12$ 
[30]  $TAB15: PROB^{+}((D[1]), 4) \rho^{+}$ 
[31]  $INCR + (PRBMX + FMAX + N) \leftarrow 9$ 
[32]  $CROB + PRBMX \times (PRBMX - INCR \times 18) \cdot 0$ 
[33]  $CROB \leftarrow 4 \cdot 2 \cdot DFT \cdot CROB \leftarrow 10 \cdot 1 \cdot \rho \cdot CROB$ 
[34]  $PROB[D[2]] + D[3] \times 10; \cdot \leftarrow CROB[\cdot, 10; \cdot]$ 
[35]  $VERT^{+}((D[1]), 1) \rho^{+}$ 
[36]  $RT + (NMAX + A[1] \times 4) \times (A[3] - A[2])$ 
[37]  $IQT + (0.5 + (C[2, 3] - A[2]) \times RT)$ 
[38]  $IQ2T + (0.5 + (C[2, 4] - A[2]) \times RT)$ 
[39]  $IQ3T + (0.5 + (C[2, 5] - A[2]) \times RT)$ 
[40]  $MNT + (0.5 + (C[1] - A[2]) \times RT)$ 
[41]  $\rightarrow (MNT \geq 1) / TAB21$ 
[42]  $MNT \leftarrow 1$ 
[43]  $TAB21: \rightarrow (MNT \leq NMAX) / TAB22$ 
[44]  $MNT + NMAX$ 
[45]  $TAB22: \rightarrow (IQT \geq 1) / TAB23$ 

```



```

[ 46]  $IQ1T^* 1$ 
[ 47]  $TAB23: \rightarrow (IQ2T \geq 1) / TAB24$ 
[ 48]  $IQ2T^* 1$ 
[ 49]  $TAB24: \rightarrow (IQ3T \geq 1) / TAB25$ 
[ 50]  $IQ3T^* 1$ 
[ 51]  $TAB25: \rightarrow (IQ1T \leq NMAX) / TAB26$ 
[ 52]  $IQ1T^* NMAX$ 
[ 53]  $TAB26: \rightarrow (IQ2T \leq NMAX) / TAB27$ 
[ 54]  $IQ2T^* NMAX$ 
[ 55]  $TAB27: \rightarrow (IQ3T \leq NMAX) / TAB28$ 
[ 56]  $IQ3T^* NMAX$ 
[ 57]  $TAB28: ARRAY[(D[1]); IQ1T] \leftarrow .$ 
[ 58]  $ARRAY[(D[1]); IQ2T] \leftarrow .$ 
[ 59]  $ARRAY[(D[1]); IQ3T] \leftarrow .$ 
[ 60]  $ARRAY[(D[1]); MNT] \leftarrow M$ 
[ 61]  $ARRAY[(D[1]); NMAX] \leftarrow .$ 
[ 62]  $\rightarrow (B=0) / TAB3A$ 
[ 63]  $ECDF$ 
[ 64]  $TAB3A: H1+(5\rho^* )^* .H1+^* FREQUENCIES^* .H1+(32\rho^* )^* .H1+^* SAMPLE^* .SIZE = .$ 
[ 65]  $OL OUT H1, 6^* DFT(\rho X)$ 
[ 66]  $OL OUT 1\rho^* .$ 
[ 67]  $OL OUT H1+(4\rho^* )^* .H1+^* 4^* DFT^* F$ 
[ 68]  $OL OUT 1^* .1^* .(4\times A[1])^* .\dots^* .$ 
[ 69]  $OL OUT 1^* .1^* .H1+(4\times (A[1]-1))\rho^* .H1+^* .1^* .$ 
[ 70]  $OL OUT PROB^* .VERT^* .ARRAY$ 
[ 71]  $DIS+( (\rho XLABEL)^* 2)$ 
[ 72]  $DIT+( \rho XLABEL)^* 2$ 
[ 73]  $\rightarrow ((DIT-DIS)=0) / TAB40$ 
[ 74]  $TAB41: DID+(8\times DIS)\rho^* .$ 
[ 75]  $OL OUT 1^* .1^* .DID. .1^* .$ 
[ 76]  $\rightarrow TAB42$ 
[ 77]  $TAB40: DIS+DIS-1$ 
[ 78]  $\rightarrow TAB41$ 
[ 79]  $TAB42: DIB+DIS+1$ 
[ 80]  $XLABEL+XLABEL[-1+2\times ^* DIB]$ 
[ 81]  $\rightarrow ((XLABEL>99999) / TAB31$ 
[ 82]  $\rightarrow (XLABEL<9999) / TAB31$ 
[ 83]  $\rightarrow (DELT A<0.1) / TAB31$ 
[ 84]  $PLABEL+((\rho XLABEL).1)\rho XLABEL$ 
[ 85]  $OL OUT 1^* .PLABEL+^* PLABEL+(PLABEL+^* 7^* 1^* DFT PLABEL).((\rho XLABEL).1)\rho^* .$ 
[ 86]  $\rightarrow 0$ 
[ 87]  $TAB31: XLABEL+XLABEL[-1+2\times ((\rho XLABEL)^* 2)]$ 
[ 88]  $PLABEL+((\rho XLABEL).1)\rho XLABEL$ 
[ 89]  $OL OUT 1^* .PLABEL+^* PLABEL+(10^* 4^* EFT PLABEL).((\rho XLABEL).6)\rho^* .$ 
[ 90]  $\rightarrow 0$ 

```



```

V MULTIPLOT I;J;L;T;PT;U;K;M;N;L;L1;L2;L3;L4;L5;E;TM;HM;Q;Q1;Q8;R
D+DL1+C,6I3,C+6I 3 120
MSG5 'OFF'
[1]  $\rightarrow (\sim R90) / PL2, ST+6\phi K+R+0$ 
[2]  $\rightarrow (SM[2]-\rho, K+H[1]) TICMARK \rho P[2]+, \sim$ 
[3]  $PL2: L+ (1, QL \wedge, NM+0 = (SM[2], 1, 2) \circ, \sim H[2]) \wedge, 2$ 
[4]  $8 TICMARK \rho L3+PL3+1 \sim HS, L2+P \times, Q \sim HS, \rho C+H[1]$ 
[5]  $L5+P-1 \sim HS, L4+Q \times 1 \sim P2, P \times, (\rho P)[1]-1$ 
[6]  $L1+((HS, HS \wedge A \wedge 0 \wedge Q8+D-8) \wedge \sim A) / PL4+, \sim 2, 1$ 
[7]
[8]
[9]  $TM+TM, [1, 5, 1] TM, \sim 1 \sim TM$ 
[10]  $PL3: E \sim I \sim 0 \wedge \sim L \sim R$ 
[11]  $\rightarrow (L1, Q \sim \rho L [D \sim \frac{1}{4}+D/X[2]+J+2+(D+X[1]=N \wedge, K-C)/A], L2$ 
[12]  $\rightarrow P, L[T] \sim (E \setminus L) T+(R \wedge L \setminus 1) \circ L$ 
[13]  $D+(E/\wedge\rho E)[T, (U+L[T]>2)/T+D]$ 
[14]  $L[(\sim U)/T] \sim (\sim U, U/1) / J+J, U/M+1$ 
[15]  $PL4: \rightarrow (A \vee 1 \geq \rho D) / P, E+1 \vee \sim L+L$ 
[16]  $\rightarrow (L5 \times 1 \sim \vee / U \sim (P2 \vee T \wedge J \times 1 \phi J+1, J[T]) \wedge D=1 \phi D \wedge 0, D[T \sim U \wedge D[U \wedge J]]], L4$ 
[17]  $\rightarrow (\wedge / U+1 \wedge / (D \circ, =D+U/D) \wedge J, =J) / Q, J[T \wedge \rho J \wedge U/J] \wedge (T+U \sim T) / M-1$ 
[18]  $U+1 \rightarrow (T=1 \phi T+1, J \sim J[T]) \wedge U=1 \phi U+0, D \rightarrow D[T+U \wedge D[U \wedge A J]]$ 
[19]  $Q: \rightarrow P \times, Q8 \wedge \rho T \sim, (1 \wedge T+P \wedge \rho I) \in D+(D-1), D+D+2 \times, 1 T \sim \rho D \sim U/D$ 
[20]  $I \sim T \setminus I$ 
[21]  $I[D] \sim (U/M), U/J$ 
[22]  $L+I[(E \sim \sim I) \setminus L]$ 
[23]  $P: \rightarrow (\times N) / PL5+\vee / T \sim, (2, 1 \times N) \in, TM$ 
[24]  $\rightarrow (PL5+1), L+L[E \setminus 1+1, \vee \neq HM$ 
[25]  $PL5: L+L[0, T, ((\frac{u}{u}+\rho L) \rho G L \wedge 1+T), 0$ 
[26]  $PT[TM[1, 1], P[1+L]]$ 
[27]  $\rightarrow (0 \leq R \sim \times C+C-1) / L3$ 
[28]  $(SM[2]-1) TICMARK -R90$ 
[29]  $\rightarrow U+(ST[3, 4], 1), 1, 1, 3, 4, \sim 126$ 
[30] 'SCALE FACTOR FOR ORDINATE: ' ; 10*ST[5]
[31]  $\rightarrow U+1 \wedge U$ 
[32] 'SCALE FACTOR FOR ABSISSA: ' ; 10*ST[6]
[33] MSG5 'ON'

```



```

V DFT[ ]V
  V Z+H DFT X;D;E;F;G;H;I;J;K;L;Y
  D+ 0123456789.-
  [1] + (V/W*1W+,W+(H+0)*L+1<ρρX)/DFTERR+0xF+2
  [2] + (3/2 1 <ρρX)/(DFTERR+F+0), 2 3 +126
  [3] + (2+126),ρX+((V/ 1 2 =ρW)Φ 1 2)Φ(1,ρ,X)ρX
  [4] X+(0 1 1 /ρX)ρX
  [5] X+(0 1 1 /ρX)ρX
  [6] +((Λ/(ρW)× 1 2 ×2×E+1ρΦρX),1×ρW)/(DFTERR×F+1),3+126
  [7] I+1+I/0*,110•|X+1>|X
  [8] W+(2+I+W+(W×0)+V/X<0),W
  [9] +(V/2>-/[1]W+Φ(E,2)ρW)/DFTERR+0xF+2
  [10] Z+((K+1ρρX),+ /W[1;]ρ
  [11] X+10 5+K×10*(ρX)ρW[2;]
  [12] DFTLP: +(E<H+H+1)/DFTEND
  [13] J+1+110(|Y+X[1;H])◦+10*^-1+Φ|I+W[1;H]
  [14] J+(•J×G+•Φ(ΦρJ)ρ,(Φ(J×1)V,Λ(J×1)◦,≤,I-F+1),(K×1+F+W[2;H])ρ1
  [15] +(Λ/0≤Y)/2+126
  [16] J[1+(ρJ)|^-1+(I+-/(K,I)ρG)+Ix^-1+1K]+12×Y<0
  [17] J+(K,I)ρJ
  [18] +(0/F)/3+126
  [19] J+J[(1Φ,G),(G+-/W[;H])+1F]
  [20] J[;G]+11
  [21] →DFTLP,ρZ[;(+/W[1;H-1])+,I]+D[1+J]
  [22] DFTEND:+L/0
  [23] →0×ρ+,Z
  [24] DFTERR:DFT +(3 6 ρ RANK LENGTHDOMAIN )[F+1;]. PROBLEM.
  V

```

91

```

V APLNAME[ ]V
  V FID+APLNAME A;K;REM
  [1]   A REMOVE EXTRA BLANKS
  [2]   A+1+(KV1ΦK+,•*A)/A+•,•A,•,•
  [3]   A FIND END OF FILENAME
  [4]   K+(A1,•)-1
  [5]   A IF ONE WORD - SYNTAX ERROR
  [6]   +(K=ρA)/ER1
  [7]   A EXTRACT FILENAME
  [8]   FID+8+K+A
  [9]   A AND REMAINDER
  [10]  REM+(K+1)A
  [11]  A FIND END OF FILETYPE
  [12]  K+(REM,•,•)-1
  [13]  A ADD FILETYPE TO FILE
  [14]  FID+FID.(8+K+REM)
  [15]  A EXTRACT 2ND REMAINDER
  [16]  REM+(K+1)+REM
  [17]  A CHECK SPECIAL MODES
  [18]  +((Λ/0SY=2+REM)∨(Λ/*,•,•=2+REM))/L1
  [19]  A MODELETTER='P' UNLESS OTHERWISE
  [20]  FID+FID.'ABC'TP'•ABCT',1+REM
  [21]  A MODENO=1 UNLESS OTHERWISE
  [22]  FID+FID.'0234561'[•023456'•11+1+REM]
  [23]  →L2
  [24]  L1:FID+FID,2+REM
  [25]  A RECTYPE='F' UNLESS V SPECIFIED
  [26]  L2:FID+FID,•,•'FV'[(•V•=1REM)+1]
  [27]  A CONVERT TO EBCDIC INTEGER
  [28]  FID+2 OF FID
  [29]  →0
  [30]  ER1: 'FILETYPE MISSING'
  V

```

```

V AUTOSCALE[ ]V
  V AUTOSCALE;C;D
  C+C(X[1;]+X[1;])=0×0=C+( [ /X)-D+1 /X
  [1]  F+FG+10*10*F+|C+H+SM×1((6,PI)×2ρA)+SM*[16|SM| 1 5
  [2]  F+G×ST[+ /F,•,≤ST+10,ST[ΨST]
  [3]  X+(Cρ 0 0 .5)+(Cρ;F)×X-(Cρ;F)ρG+G×(0<G-C+C)ν0>G+C×|D:C+F×SM| 2
  [4]
  V

```



```

VMPLOT[[]]V
  V A MPLOT X;C;D;F;G;H;P;P2;HS;A;ST
  [1]  INITIAL
  [2]  AUTOSCALE
  [3]  SETAAP
  [4]  MULTIPLOT H*SM*[((X+1)X)+SM
  V

V AND[[]]V
  V L+A AND B;C;D
  [1]  +(( (2<ρA)∨3<ρB).0*ρB)/ 17 3
  [2]  B+ B
  [3]  +( (3=ρB)∧1*ρB).2=ρA)/ 17 7
  [4]  A+A
  [5]  +( ∧/((ρA)×1.D).1×D+1ρ -2φρB)/16
  [6]  A+(( (D×ρA)D[ρA].1)ρA
  [7]  +(1×ρB)/9
  [8]  B+(( (ρB) (1=ρB)×1ρA).1)ρB
  [9]  +( (A/Dx1.1ρA).1xD+1ρ -2φρB)/ 16 11
  [10] B+(( (3=ρB)ρ1).(1ρρA).1ρφρB)ρB
  [11] +(3=ρB)/14
  [12] L+(( (C+1ρφA)ρ0).(1ρφρB)ρ1)\B
  [13] +0×ρL[;1C]+A
  [14] L+((1.((C+1ρφρB)ρ0).(-1+1ρφρB)ρ1)\B
  [15] +0×ρL[;1+1C]+A
  [16] +0=ρ[]+ARGUMENTS OF AND ARE NOT CONFORMABLE.
  [17] AN ARGUMENT OF AND IS OF IMPROPER RANK.
  V

V OUT[[]]V
  V OL OUT R;I;J;MAX
  [1]  +(2=ρρR)/L1
  [2]  R+(1,ρR)ρR
  [3]  L1:→(OL=1)/OFF
  [4]  +0,ρ[]+R
  [5]  OFF;MAX+1↑ρR+0 * .R
  [6]  J+20↑1↑ρR
  [7]  I+1
  [8]  L2:(J↑R[I;]) WRITE APLN
  [9]  +(MAX≥I+I+1)/L2
  V

V TOT[[]]V
  V TOT
  [1]  ARRAY[1;]←,BRRAY[1+,(A-1);]
  [2]  K+1
  [3]  TAB1:K+K+1
  [4]  ARRAY[K;]←((BRRAY[K+(A-K);]).(,BRRAY[1,(K-1);])
  [5]  +(K=(A-1))/TAB2
  [6]  →TAB1
  [7]  TAB2:ARRAY[A;]+,BRRAY[1,(A-1);]
  [8]  →0
  V

V INITIAL[[]]V
  V INITIAL
  [1]  +(0=x/(2ρA).D+ρX)* 2 1 <ρρX)/0 .PL2- 1 0
  [2]  →PL2*D+ρX+((ρ.X).[1.5]) X
  [3]  X+(D+2tD)ρX
  [4]  PL2:X+R90φ(.q 0 1 →X).[1.5](C↔x/D+D- 0 1)ρX[1;1]
  V

```


$\forall SET \Delta APP[\square] \vee$
 $\forall SET \Delta APP$
 $\begin{array}{l} [1] \quad D \star p A \star (A \star A \star 0) \star A \star A \star C \star \neg A \star 2 \star A \star D \star 2 \star 1 \\ [2] \quad + (D \star 1) \star 4 \star p P \star - 1 \star (D \star \underline{P} \underline{C}) \star ((P \star 2 \star (\star p \star \underline{P} \underline{C} 2) \star \sim HS \star \underline{H} \underline{S} \star \sim R 90) \star \underline{P} \underline{C} 2) \star 1 \star \underline{B} \underline{S} \\ [3] \quad \star \sim A \star p \underline{A} \star \sim P 2 \\ [4] \quad A \star 1 \star \star (1 C) \star . \star (D \star . \star \geq D \star + \star 1 D) \star . \star A \end{array}$

$\nabla V S \langle \square \rangle V$
 V
 $M + A \quad VS \quad B; C; D$
 $\langle 1 \rangle \quad + ((\rho B B^* . B) \times \rho B B) . \quad 2 \quad 1 \quad 0 \quad < \rho \rho A > / \quad 8 \quad 8 \quad 4 \quad 3$
 $\langle 2 \rangle \quad A + ((\rho B) . 1) \rho A$
 $\langle 3 \rangle \quad A + ((\times / \rho A) . 1) \rho A$
 $\langle 4 \rangle \quad + (\wedge / (\rho B) \times 1 . 1 \rho \rho A) / 9$
 $\langle 5 \rangle \quad M + (0 . (1 \rho \Phi \rho A) \rho 1) \setminus A$
 $\langle 6 \rangle \quad M \langle \square \rangle ; 1 \downarrow B$
 $\langle 7 \rangle \quad + \times \times \rho \rho M + (1 . \rho M) \rho M$
 $\langle 8 \rangle \quad \rightarrow 0 = \square \langle \square \rangle . A N \text{ ARGUMENT OF } VS \text{ IS OF IMPROPER RANK.}$
 $\langle 9 \rangle \quad \text{ARGUMENTS OF } VS \text{ ARE NOT CONFORMABLE.}$

LIST OF REFERENCES

1. Chatfield, C. and P. Sprent. "Convenient Probability Plotting Positions for the Normal Distribution," Applied Statistics 25: 47-50, 1976.
2. Dixon, M. W. A Statistical Analysis of Deviation from Target Cost in NAVAIRSCOMHQ Fixed-Price Incentive Contracts during the 1949-1965 Time Frame. U.S. Naval Postgraduate School, Monterey, California, 1973.
3. Fishman, G. S. Concepts and Methods of Discrete Event Digital Simulation. John Wiley and Sons, Inc., New York, 1973.
4. Gillman, L. and A. J. Rose. APL An Interactive Approach. John Wiley and Sons, Inc., New York, 1974.
5. Lewis, P.A.W. "A Branching Poisson Process Model for the Analysis of Computer Failure Patterns." The Journal of the Royal Statistical Society Series B (Methodological). 26: 398-456, 1964.
6. Lewis, P.A.W. and D. R. Cox. "A Statistical Analysis of Telephone Circuit Error Data." IEEE Transactions on Communications Systems, Com-14, 382-389, 1966.
7. Lewis, P.A.W. and G. S. Shedler. "Empirically Derived Micromodels for Sequences of Page Exception." IBM Journal of Research and Development 17: 89-90, 1973.
8. Lewis, P.A.W., L. H. Liu, D. W. Robinson and M. Rosenblatt. Empirical Sampling Study of a Goodness of Fit Statistic for Density Function Estimation. U. S. Naval Postgraduate School, Monterey, California, 1975.
9. Miller, R. G. "The Jackknife - A Review." Biometrika 61: 1, 1974.
10. Pearson, E. S. and H. W. Hartley. Biometrika Tables for Statisticians, v. I. Cambridge University Press, Cambridge, 1966.
11. Rosenblatt, M. "Curve Estimates." The Annals of Mathematical Statistics, v. 27, 1956.
12. Weast, R. C. C.R.C. Standard Mathematical Tables, 19th Ed., The Chemical Rubber Co., Ohio, 1971.
13. Wilk, A. and B. Gnanadesikan. "Probability Plotting Methods for the Analysis of Data." Biometrika 55: 1-17, 1968.

INITIAL DISTRIBUTION LIST

	No. Copies
1. Defense Documentation Center Cameron Station Alexandria, Virginia 22314	2
2. Chief, Civil Schools Branch Department of Army U. S. Army Military Personnel Center Alexandria, Virginia 22332	1
3. Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
4. Dr. P.A.W. Lewis, Code 55Lw Department of Operations Research Naval Postgraduate School Monterey, California 93940	15
5. Lt. D. R. Bouchoux, Code 55Bh Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
6. Dr. R. W. Butterworth, Code 55Bd Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
7. Dr. D. T. Gavor, Code 55Gv Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
8. Dr. K. T. Marshall, Code 55Mt Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
9. Dr. R. R. Read, Code 55Re Department of Operations Research Naval Postgraduate School Monterey, California 93940	1
10. Capt. Dennis R. Hutchinson 1333 Capistrano Drive Salt Lake City, Utah 84116	2

3 OCT 78
31 DEC 80
18 JUN 81

25021
26405
26405

167935
Thesis
H964 Hutchinson
c.1 APL histogram, density
estimation and probability plotting routines.
3 OCT 78 25021
31 DEC 80 26405
18 JUN 81 26405

167935
Thesis
H964 Hutchinson
c.1 APL histogram, density
estimation and probability plotting routines.

thesH964
APL histogram, density estimation and p

3 2768 001 03600 7

DUDLEY KNOX LIBRARY