APL and the Search for
the Ultimate Prime Number Program
(part 1)

D. McCormick

For some time now I have made a hobby of finding
prime numbers. Over the years I've written and collected a
number of different methods for finding primes. My most
recent program is in C but most of the preceding ones have
been in APL.

For anyone who may not know: a prime number is a
positive integer with exactly 2 integral divisors: itself and 1.
Historically, primes have had little practical value; they have
been of interest mainly to mathematicians, especially those
concerned with number theory. However, the importance of
primes is reflected in the statement of the fundamental
theorem of arithmetic: every positive whole number other than
1 is either prime or a product of a unigue collection of primes.
(Parts of this essay are based on an article by Dr. Keith Dev-
lin, Factoring Fermat numbers, in the 25 September 1986
issue of New Scientist magazine.)

Since the time of Buclid (a covert APL user), primes
have remained fundamentally important to mathematicians
and no one else. The past 10 years or so have seen an awak-
ening of a more general interest in primes. Large prime
numbers form the basis of the RSA Public Key System, a
method for encrypting data very securely. The U.S. Defense
Department considered this method to be sensitive informa-
tion when it was first discovered and they attempted to res-
trict it in the interest of national security.

This new interest in large primes has given rise to
some sophisticated methods for finding them. However, we
will get to these later. Right now, let’s look at some decid-
edly unsophisticated “‘brute force’’ approaches to finding
primes.

Anyone who has ever written a prime number program
in APL probably first came up with something similar to the
following:

V R<PRINEO N;CO:0I0
[01] OI0«1 o R« 2 3 o CO«5 o >(R>3)pGO °©
«[(C1+(R<SN)10)4R o »0
[02] CGO:R<R,(~0e(((RSTCO*0.5)10)+R)|CO)IPCO
o +(N2CO<C0+2)PGO
v

Like many algorithms, this one starts with a few “seed”
primes (the injtial value of R.) We then search for successive
primes (up to number N.) by setting a counter €0) and
checking for primality using the “residue” function. Nolice
that we increment the counter by 2 each time since we know
that even numbers greater than 2 are all non-prime.

Note further that the left argument to the residue func-
tion is all the primes up the the test number’s square root.
This is a reflection of the fundamental theorem (“either
prime or a product of - - - primes.”) Furthermore, we only

APL Quote Quad 20 1

check primes up to the test number’s square root because any
factor greater than the square root will have a corresponding
one less than the square root; we need only find one factor to
disqualify the test number as a prime.

The main problem with prime number generators in
APL is that they are so numerically intensive that they run a
long time for any great number of primes. In studying the
above function, I realized that selecting primes up to the
square root is quite time-consuming. Up to a certain point,
it’s faster to use too many primes for the left argument rather
than select only those needed.

The following function incorporates these observations:

V R<«PRIME1 N;C
[01] >(N>PR«2,0+3)pCO ¢ R«N4R & >0
[02] CGO(+(N>pR<R, (~0€R|C)PC+C+2)PCO
v

Note too that PRIME1 construes its argument N differently
than does PRINE0. Whereas PRINEO finds primes up to N
(inclusive), PRIME1 finds the first N primes. There is a
well known formula to approximate the number of primes up
to the number N:

V NP«NUMPRIMESTO N
fo1] NP<«Ni®N
v

This is an approximation which is less accurate for smaller
values of N and more accurate for larger values N. I don’t
know the inverse of this function though the following

approximates it:

V N<PRIMESTONUN NP
[o1] NeNPx (®NF )+ (@®NP )+ . 140®eNP
v

Can you come up with a better inverse function? This one
falls short somewhere between 1E13 and 1E14.

P.O. Box 6821

FDR Station

New York, NY 10150
US.A.

15 September 1989



