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Abstract 

A survey of proposed extensions to the 
APL language is made with emphasis placed 
on the motivations for various proposals, 
the differences between them and the 
consequences of their adoption. Some 
issues of a more general nature concerning 
the purpose, process and direction of 
language extension are also discussed. An 
extensive bibliography is provided with 
annotations concerning the nature, 
development and influence of various 
authors' works. Areas of extension 
encompassed by the survey include nested 
arrays, complex numbers, uniform 
application of functions, laminar 
extension, primitive functions, control 
structures, direct definition, operators, 
system functions and variables, name scope 
control and event trapping. 

I. Introduction 

APL was originally conceived by Dr. 
Kenneth Iverson in the late 1950's as a 
powerful new mathematical notation which 
embodied the principles of uniformity, 
generality and brevity of expression in a 
functional form. As its development 
proceeded APL was implemented on a digital 
computer as an interpreted language for 
interactive use. The implementation 
process necessitated certain changes in 
the language and subsequent experience 
with interactive use motivated still other 
modifications. Throughout this early 
process of change the original design 
principles of uniformity, generality and 
brevity were used as guidelines to help 
maintain and enhance the power and utility 
of the language (for more on the design 
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and evolution of APL, see Falkoff and 
Iverson [Fal, Fa2]). 

The combined power and simplicity of 
APL were instrumental in its rise to 
widespread popularity after its public 
release in 1968. This popularity in turn 
soon brought the language to a diverse 
number of applications, many of them far 
removed from its original use in 
mathematical exposition. As the 
popularity and range of application of APL 
grew, certain deficiencies in the language 
became evident, both in the form of 
anomalies and irregularities in its 
original definition, and in the need to 
extend its capabilities to an even broader 
domain and an even greater expressiveness 
(see Abrams [2], Bork [Bol] and Elliot 
JEll]). Consequently many researchers 
began to propose modifications and 
extensions to the language in order to 
meet these needs, some of which have since 
been incorporated into new implementations 
and others of which continue to be 
discussed by the APL community. 

It is the purpose of this paper to 
survey these proposals for extensions to 
APL, to compare alternative proposals 
where they conflict and to draw some 
general conclusions about the motivations, 
directions and consequences of APL 
language extension. Before undertaking 
this task, it is necessary to better 
define the notion of an extension: for the 
purposes of this paper, extensions are 
defined to be refinements, proper 
extensions or additions(in the sense of 
Brown [20]) to APL as it is widely 
accepted today. Of course this definition 
leaves some room for judgement about what 
is currently accepted in APL, but an 
attempt will be made to at least discuss 
most of the borderline cases (e.g., files 
and shared variables). 

The organization of this paper 
partitions the extension proposals into 
four major groups according to the areas 
with which they are concerned: Data Types 
and Structures, Functions and Operators, 
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Evaluation and the System Environment, and 
Miscellaneous Extensions. These groups 
are then further subdivided to various 
degrees in order to provide more structure 
to the paper and to allow easier location 
of specific topics. In addition to the 
paper, an extensive bibliography of 
published work on APL and related topics 
is provided, with annotations concerning 
the nature, development and influence of 
some works where such notation would seem 
helpful. 

Unfortunately, due to a number of 
factors (including unintended bias on the 
author's part, the lack of availability of 
some research, the large number of 
extensions which have been proposed, and 
the necessary limits imposed on the length 
of this paper), many of the proposals are 
not covered with the detail which they may 
merit, and some proposals may have been 
omitted entirely. There are a few 
specific problems of accuracy and detail 
which should be stated more explicitly to 
avoid some anticipated misunderstandings: 
since the research surveyed spans some 20 
years, it should be understood that the 
views of some of the researchers whose 
works are discussed may have changed since 
they were originally expressed; the 
references made are to the publications 
cited and do not necessarily reflect the 
authors' current views. It is also 
difficult in many cases to trace an idea 
for an extension back to its original 
source, especially if that source is not 
a widely available published work. 
Finally, this author's own research 
interests are reflected in the fact that 
the different areas of extension covered 
are not all treated at a uniform level of 
detail. 

It is hoped that these shortcomings 
can be overcome at some future date with 
the publication of an expanded and updated 
version of this paper. Any comments or 
suggestions regarding omissions or 
corrections to this paper or its 
bibliography, or regarding the design of 
an expanded update will be greatly 
appreciated by the author. 

A note on the references: all 
referenced papers having a specific 
relevance to extensions are gathered in 
the bibliography and are referred to by 
number (e.g., [12] or [12, 20]). All 
other referenced papers are listed in the 
references section and are referred to by 
letters and a number (e.g., [Fa2]). 

II. Data Types and Structures 

Much of APL's power and simplicity 
result from its novel approach to data 
types and structures. APL recognizes only 
two distinct types of data, numeric and 
character, and only one type of data 
structure, the arbitrary rank rectangular 

array of scalar data. The limitation of 
the number of data types which are 
recognized in the language eliminates the 
need for explicit type declarations for 
variables and formal parameters. The 
recognition of array structure allows 
functions and operators to be applied to 
whole arrays and thus implicitly to 
components or sections of an array, or 
between components of the same or 
different arrays. This implicit 
application eliminates the need for the 
detailed looping control of other 
languages. However, the simplicity of 
APL's data types and structures also 
limits the usefulness of the language for 
some applications; proposals for 
extensions which would alleviate some of 
these problems are discussed in this 
section. For more information on related 
topics, see these sections: on overlays, 
the Miscellaneous section in Names, Naming 
and Data Access; on arrays of functions, 
the Miscellaneous Extensions section; and 
on packages, contexts and namespaces, the 
section on Collections of Named Data. 

II.A Files 

Systems for accessing sequential files 
of arrays kept in off-line storage are now 
so common in implementations of APL that 
it is reasonable to consider them as 
"fully accepted in current APL". Most 
implementors also consider their file 
systems to be separate from their APL per 
se, and thus they are not truly extensions 
to the language. However, because they 
have become indispensable in many 
applications and because of their 
implications for other extensions, they 
will be discussed here briefly. 

The addition of files to APL was 
largely motivated by the deficiencies of 
arrays for handling large, 
business-oriented applications: first, 
their homogeneous rectangular structure 
was too restrictive to easily represent 
complex structures of numeric and 
character data; second, their residence in 
main memory severely limited their size; 
and last, their idiosyncratic 
representation kept them from being easily 
accessed by other processors. 

The incorporation of file systems 
largely solved these problems by providing 
a systems interface in APL to a file 
processor which can create, activate or 
drop files and insert, remove or update 
components of these files (the components 
are usually APL data arrays). This 
interface is usually provided through such 
means as system functions or shared 
variables, although some implementations 
provide pseudo-primitive functions for 
file manipulation (e.g., Burroughs 
APL/700, [193]). Although they solve many 
of the problems of arrays, files have also 
revoked many of their advantages: first, 
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most file systems can handle only linear 
structures, as opposed to rectangular 
ones; second, the limitation to reading 
and storing a component at a time 
necessitated a return to the 
"word-at-a-time" looping and processing 
style of other languages, albeit at one 
level removed. In these ways, files 
represent not so much an extension to APL 
data structures as they do a more 
conventional superstructure in which to 
embed APL arrays. 

II.B Trees 

Proposals for adding a tree structure 
to APL have been made by several authors 
including Alfonseca and Tavera [4], Murray 
[139] and Vasseur [183]. In most of these 
proposals, new functions are defined to 
manipulate tree structures whose nodes or 
leaves in turn hold APL arrays. None of 
these proposals seem to have gathered much 
support in recent year~ however, as more 
attention has been focused on an extension 
of arrays to nested arrays. The tree 
structure extensions are largely 
isomorphic to the nested array proposals, 
but they tend to promote diversity rather 
than uniformity, in that they introduce a 
whole new structural type (trees), whereas 
the nested array proposals simply 
generalize an already existing structure. 

II.C Nested Arrays 

A more "APL-ish" solution to the 
problem of the limited structure of arrays 
is the extension of APL arrays to hold 
non-scalar data, i.e., arrays which may 
hold other arrays as components, which in 
turn may hold other arrays, etc. (though 
one proposal would limit this recursion to 
two levels of nesting; see Lowney and 
Perlis [104]) in a manner similar to the 
nesting of lists in LISP (see Jenkins 
[85]). Such structures would retain the 
advantages of arbitrary rank 
rectangularity and the application of 
functions and operators to arrays as 
wholes, but would allow the representation 
of even richer and more complex structures 
than can be represented with sequential 
files. 

Proposals for extending APL to handle 
nested arrays began appearing as early as 
1966 (by Abrams [i]), and have since 
become predominant in the extension 
literature. Much of the work on nested 
arrays was consolidated and rationalized 
with the advent of the Array Theory of 
Trenchard More [130-138]. Although 
originally inspired by thoughts of 
extensions to APL, Array Theory has grown 
to become a discipline in its own right, 
with a syntax somewhat different than that 
of APL and with a flavor more akin to that 
of axiomatic set theory. However, some of 
the results of research in Array Theory 
have inspired further thoughts aSout 

extensions to APL, and the two fields 
remain closely linked (see especially 
Jenkins [84, 85, 87] and Singleton [174]). 

Floating vs. Grounded Arrays. 
Although there is in general much 
agreement that nested arrays are the 
logical extension to APL data structures 
(for two exceptions see Orgass [146] and 
Orth [147]), one major issue still divides 
the community of researchers working in 
this area: the so-called "Floating vs. 
Grounded" array controversy. This 
controversy hinges on the definitions of 
two functions which are fundamental to the 
manipulation of nested arrays, and in 
particular on the effect of these 
functions on simple (i.e., non-nested) 
scalars. These functions are enclose, 
which encloses its argument into a 
(nested) scalar which may then become a 
component of another array, and its left 
inverse disclose, which extracts the 
enclosed item(s) of a nested array (note: 
the need to enclose arrays before 
inserting them into other arrays stems 
from the desire to preserve certain 
indexing identities; see Gull and Jenkins 
[56]. At least one proposal for nested 
arrays (that of Edwards [33]) does not 
make this requirement, but it seems to 
have gained comparatively little support 
in recent years). 

In the "floating" theory of nested 
arrays, the enclose or disclose of a 
simple scalar is again a simple scalar, 
implying a sort of infinitely recursive 
nesting for these entities. In the 
"grounded" theory, the enclose of a scalar 
is different from that scalar, and the 
disclose of a scalar is undefined (though 
some systems employ a "permissive" 
disclose that returns the scalar 
unchanged). Although these may seem like 
minor points, they critically affect the 
behavior and flavor of the two systems: 
proposals for grounded arrays tend to have 
the flavor of current APL with an extra 
feature for enclosing (or encoding) 
arrays; proposals for floating arrays tend 
to embrace the nesting philosophy more 
completely, incorporating it into the very 
fabric of the language. The floating 
system must also allow heterogeneous 
arrays (mixed character and numeric data) 
because of this difference between the 
systems, as demonstrated by Gull and 
Jenkins [56] (for more on this subject, 
see the section on Heterogeneous Arrays). 
However, it should be stressed that the 

choice of a floating or grounded system 
does not affect certain other issues, such 
as the definition of certain operators 
(see Jenkins and Michel [83]) or the 
choice of a more or less conservative 
approach to the extension process. 

AS was mentioned above, major figures 
in the research community differ in their 
stances on the issue of floating versus 
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grounded arrays: Iverson [9, 73, 76] and 
Bernecky [9] (both of I. P. Sharp 
Associates) prefer the grounded system, 
whereas More [81, 130-138] and Brown 
[18-21] (both of IBM), Jenkins [84, 85] (of 
Queen's University), and Smith [177] (of 
STSC, Inc.) prefer the floating system 
(note especially that More's Array Theory 
employs the floating system definitions). 
It is interesting to note that at least 
two of these have "changed sides" on the 
issue during the course of their research: 
Bernecky from the grounded to the floating 
and then back again [192] and Jenkins from 
the grounded to the floating [84]. 
Singleton [174] concludes that although 
there exist translations of More's Array 
Theory from the floating to the grounded 
systems, none of the grounded versions 
preserve the simplicity and elegance of 
the original. 

At this time there seems to be little 
hope for an easy resolution of the issue; 
adherents of both views seem committed in 
their beliefs (see Anderson [5] and 
[192]). If not resolved soon, the 
controversy threatens at best to delay the 
process of extension to nested arrays (or 
its easy acceptance) and at worst to 
produce two markedly different dialects of 
APL. In fact, the two major time-sharing 
bureaus have both implemented nested array 
extensions, one (I. P. Sharp Associates, 
Inc.) using the grounded system and the 
other (STSC, Inc.) using the floating 
system. To make matters even more 
confusing, the two implementations 
sometimes use the same symbols for 
entirely different meanings. Such 
diversification may be especially 
unwelcome at a point when the language is 
undergoing its first major standardization 
process [Wil]. 

II.C.i Functions and Operators for Nested 
Arrays 

In order to take full advantage of the 
power of nested arrays, it is desirable to 
define certain new functions and operators 
which act primarily on the nested 
attributes of data (some proponents of the 
grounded system would disagree with this; 
see especially Iverson [73]), as well as 
to define the manner in which existing 
functions and operators apply to the new 
structures. The conventional structural 
functions are normally extended in the 
obvious manner, i.e., they manipulate the 
(possibly enclosed) items of nested arrays 
instead of the scalar components of 
conventional arrays. Extensions of other 
functions and the addition of new 
functions and operators are described 
below. 

Pervasiveness. Floating array 
proposals usually extend the primitive 
scalar functions to be pervasive, in the 
sense that they apply recursively at all 

levels of nesting until they reach simple 
scalar arguments. In the case of dyadic 
functions this definition requires that 
the arguments share a parallel structure 
(notwithstanding scalar extension). 
Proposals for grounded array systems 
usually require that nested items be 
explicitly disclosed before scalar 
functions are applied to them, although 
some proposals supply operators which when 
applied to scalar functions yield very 
similar results (see the section on Depth 
Operators and [56, 83]). 

Level Mgdifyin~ Functions. It is 
often desirable when manipulating nested 
arrays to modify the level of nesting of 
the arrays or their items. The most 
obvious examples of this concept are the 
enclose and disclose functions described 
above (usually denoted c and ~ or < and > 
in the floating and grounded systems, 
respectively). Ghandour and Mezei [47] 
provide the link and pair functions (~ and 
;)to simplify construction of nested 
vectors (in some proposals this is 
effectively achieved in a syntactic manner 
with strand notation; see below and 
Iverson et. al. [77]). The restricted 
versions of raise and lower (see below) of 
Gull and Jenkins [56] enclose or disclose 
the items of their arguments, and are of 
special utility in the grounded system 
where it is often necessary to enclose the 
simple scalar items of an array before 
they can be applied to certain functions 
(this is unnecessary in the floating 
system because of the definition of simple 
scalars). 

Nesting-Rectan@ularit~ Conversion. A 
related capability allows the rectangular 
aspects of structure (ordered by axis) to 
be re-expressed as nested aspects of 
structure (ordered by depth) or vice 
versa. For example, the conversion of a 
2 by 5 matrix to a vector of 5 
column-vectors or to a vector of 2 
row-vectors. Bernecky and 
Iverson [9] define the disclose function 
on non-scalar arrays with enclosed 
elements so as to laminate together the 
disclosed arrays, which must be of a 
common shape. Gull and Jenkins [56] and 
Ghandour and Mezei [47] both define 
functions called raise and lower (÷ and i) 
to convert axes into a new level oF 
nesting. These capabilities are included 
as the split and mix functions (monadic 
and ) on STSC Inc.'s NARS TM system [23]. 

Depth Operators. One capability which 
is fundamental to the use of nested arrays 
is the ability to apply a function at 
different levels of nesting within a 
nested array. For example, consider the 
difference between reversing a vector of 
matrices and reversing each of the 
matrices within that same vector. In 
order to allow this type of application, 
most of the floating system proposals 
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provide an each (or itemwise) operator (") 
which applies its function argument to 
each of the (possibly nested) items of an 
array. In the grounded system proposals 
of Gull and Jenkins [56] and Jenkins and 
Michel [83], similar operators are 
supplied as well as others which apply 
their function arguments to the leaves or 
the scalar levels of nested arrays. 
Bernecky and Iverson [9] provide a similar 
facility through the use of a dual 
operator and their version of the disclose 
function. 

Indexin@. The extension to nested 
arrays allows an index to an array to be 
enclosed and thus allows the construction 
of arbitrarily shaped arrays whose items 
are enclosed indices into a given array. 
An indexing function which accepts such an 
array of indices and which returns a 
corresponding array of items selected by 
those indices is usually called choose 
indexing, and is denoted in a variety of 
ways (e.g.,o ,0 or I). The choose 
function relieves the restriction of 
current indexing to rectangular blocks of 
components, allowing what Cheney [23] 
calls "scatter-point indexing". The 
choose function also allows the current 
semi-colon delimited index "lists" to be 
rationalized as the outer product 
concatenations of position vectors (see 
Cheney [23]). The index generator 
(monadic t) can be extended along similar 
lines by allowing it to take a vector 
argument specifying the shape of its array 
result. Each component of the resulting 
array is an enclosed vector representing 
an index into the location occupied by 
that component (see [137, 83, 23]). 
Another capability which is useful in 
manipulating nested arrays is a form of 
indexing which specifies successively 
deeper levels of nesting with a nested 
vector. Functions which embody this form 
of indexing are called reach (o) by 
Ghandour and Mezei [47] and GuT1 and 
Jenkins [56], and pick (=) by More 
[136-137], Brown [19-20] and Smith 
[176-177]. 

Partitionin 9. Various proposals have 
been made to allow a vector or array to be 
split up (or partitioned) according to 
some specified criterion into an array 
holding groups of items from the original. 
Gull and Jenkins [56], Brown [20] and 

Smith [176-177] describe functions which 
partition vectors or arrays along some 
axis according to a boolean selector so 
that, for example, a sentence may be 
easily broken up into a vector of words by 
a boolean control indicating the positions 
of blanks in the sentence. Bernecky and 
Iverson [9] propose a more general 
partitioning operator which uses a numeric 
matrix control to allow an arbitrary 
function to be applied to overlapping 
partitions along a single axis. Benkard 
[6] describes two partitioning functions 

which allow either simple (boolean 
controlled, non-repeated) or overlapping 
partitions of vectors, matrices or higher 
rank arrays. 

II.C.3 Type, Emptiness and Fill Elements. 

Several inter-related issues concern 
the notion of type as applied to 
non-simple arrays, the representation of 
empty nested arrays and the definition of 
fill elements for nested arrays. Current 
APL retains type information for arrays 
based on whether the elements of the array 
are character or numeric, and retains both 
type and shape information for empty 
arrays (the shape vector of an empty array 
contains at least one zero element). 
Since all of the elements of simple arrays 
are scalars, current APL defines the fill 
element for an array to be a scalar zero 
or a scalar blank, depending on the type 
of the array (fill elements are used to 
"fill in" gaps in an array created by the 
take and expand functions). 

All of the above concepts become less 
well-defined in a system with nested 
arrays and the issues involved in their 
definitions become further complicated by 
the related issues of heterogeniety vs. 
homogeniety and floating vs. grounded 
systems. In a homogeneous nested array 
system, the elements of an array must be 
either all numeric, all character or all 
nested arrays, whereas in a heterogeneous 
system the elements of an array may 
encompass any or all of these types (for 
more information on this issue, see the 
section on Heterogeneous Arrays). The 
relation between these various issues is 
explored thoroughly by Gull and Jenkins 
[57] . 

Ghandour and Mezei [47] propose that 
empty arrays carry information concerning 
their structure, but limit that structure 
to be of uniform length at each level. 
This proposal requires separate semantics 
for the application of different functions 
to empty arrays. Ghandour [48] 
demonstrates that a more general and 
consistent scheme results from preserving 
only the top level of shape information 
for empty arrays (i.e., all empty arrays 
are simple). A similar approach is 
followed by Jenkins and Michel [83]. 

In More's Array Theory [134], the type 
of an array is defined to be an array of 
the same structure but with all of the 
motes (simple scalars~ replaced by their 
typical values (i.e., zeros for numbers 
and blanks for characters). The fill item 
for an array is then defined to be the 
prototype of that array, which is the type 
of its first item. Empty arrays carry 
information about their type and structure 
through their prototype, which is defined 
to be the prototype of the array from 
which they were derived. This scheme is 
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followed by several proposals and 
implementations which include floating 
nested arrays (see Brown [20], Cheney [23] 
and Jenkins [88]). It is also the scheme 
preferred by Gull and Jenkins [57] for all 
but homogeneous grounded systems. 

II.C.4 Nested Array Input and Output 

Some controversy surrounds the 
question of the input and output formats 
to be used for nested arrays. Many of the 
supporters of the floating system also 
support an input format called strand 
notation, while many of those who support 
the grounded system criticize it (see 
Iverson et. al. [77]). Using strand 
notation, a sequence of juxtaposed arrays 
is interpreted as a vector of enclosed 
items; for example, the expressions "A B C" 
and "A (i?B) (2xC)" would both be 
interpreted as three-element vectors. 
Proponents of the floating system see this 
notation as defaulting to the current 
notation for vector constants in the case 
where all items are simple scalars, 
because the floating system definition of 
enclosure does not affect simple scalars. 
Falkoff [38] claims that strand notation 
is not a true extension of the notation 
for vector constants because it fails to 
preserve some of the properties of that 
notation. 

Those who criticize strand notation 
consider it to be an implicit function 
application and claim that it is not as 
clear, brief or useful as an explicit 
application of functions (usually the link 
and pair functions; see the section on 
Level Modifying Functions). Those who 
favor strand notation claim that it is a 
syntactic construct that is simpler and 
clearer than a set of explicit functions, 
but not necessarily incompatible with 
these functions. A related issue is the 
use of strand notation assignment (see 
the section on Assignment) which raises 
questions about name class determination 
and conversion. For a fuller discussion 
of the advantages and disadvantages of 
strand notation, see Falkoff [38] and 
Iverson, et. al. [77]. 

Another issue concerning nested arrays 
which is largely undecided is that of the 
format to be used in printing such arrays. 
Different proposals tend to stress either 
the content or the structure of the data 
in a variety of ways. Discussions of 
nested arrays in the literature often 
employ diagrams consisting of labeled 
trees [18, 56, 58, 123] or nested box 
drawings for the purposes of illustration. 
Both Jenkins and Michel [83] and Bernecky 
and Iverson [9] present proposals for 
functions which recursively format and pad 
nested arrays with blanks to achieve a 
regular format for output (a version of 
the latter proposal has been implemented 
on the SHARP APL system). Schmidt and 

Jenkins [166] describe schemes for 
providing either simple sketches or fully 
formatted versions of array "drawings", 
both of which use character symbols to 
draw boxes around nested items. STSC 
Inc.'s NARS system uses two different 
forms of output: the default form displays 
shape information and the elements of the 
array; use of the explicit quad form of 
output produces a fully formatted version 
which uses parentheses to highlight 
nesting (see Smith [178]). 

II.D Heterogeneous Arrays. 

In current APL, all of the elements of 
an array must be of the same type, i.e., 
they must be all character or all numeric; 
such arrays are said to be homogeneous 
arrays. Several proposals have been made 
to allow arrays to hold elements of 
varying types; these are called 
heterogeneous arrays. Although 
heterogeneous arrays are often discussed 
within the context of nested array 
proposals, their inclusion in a system is 
independent of the inclusion of nested 
arrays (however, the definitions of the 
floating nested arrays system all but 
necessitate the existence of heterogeneous 
arrays; see [56]). 

Probably the single overriding factor 
which has delayed the extension to 
heterogeneous arrays is the difficulty of 
their internal representation: since most 
computers represent character and numeric 
data with codes of different lengths, the 
indexing and retrieval of elements of 
heterogeneous arrays is considerably 
complicated relative to that of 
homogeneous arrays. 

Another difficulty is the definition 
of fill elements for heterogeneous arrays 
which are needed for applications of such 
functions as take and expand. Current APL 
defines the fill element for a homogeneous 
array to be zero for numeric arrays and 
blank for character arrays; neither choice 
seems preferable for heterogeneous arrays, 
since they may contain both types of data. 
Both Brown [18] and Haegi [58] suggest 
defining a scalar value which is neither 
numeric nor character in type to be used 
as the fill element for heterogeneous 
arrays. More [134] uses a fill element 
based on the type of the array's first 
element; this is the approach used in STSC 
Inc.'s NARS system implementation of 
heterogeneous arrays (see Cheney [23]). 
The choice of fill elements for arrays and 
the relation of this issue to issues 
concerning heterogeniety and types of 
nested array systems is discussed in Gull 
and Jenkins [57]. 

A final question involving 
heterogeneous arrays is that of their 
output format; although few proposals have 
discussed this issue in the context of 
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simple heterogeneous arrays, STSC Inc.'s 
NARS system seems to use a convention 
which separates characters and numbers 
horizontally with spaces in output (see 
Cheney [23]). 

II.E Complex Numbers 

For many years there has been 
discussion in the APL community about 
extending the numeric data type of the 
language to the set of complex numbers. 
Such an extension would be of great 
utility in many scientific and engineering 
applications which up until now have had 
to simulate complex arithmetic in APL with 
user-defined functions. The extension of 
numeric data to complex numbers is largely 
a proper extension because the complex 
numbers include the real numbers just as 
the real numbers include the integers, and 
thus the extension to complex numbers 
involves little change for users who are 
concerned exclusively with real or integer 
values (see Penfield [155] or McDonnell 
[120] ) . 

Penfield has made several reports on 
the choices involved in a complex number 
extension [151-153], has reviewed the 
reactions of the community to these 
reports [154] and has made two detailed 
proposals for a specific set of extensions 
[155-156]. These proposals have now been 
implemented by I. P. Sharp Associates, 
Inc. on the production system version of 
SHARP APL [119, 120]. 

The major issues that have been 
examined with regard to complex numbers 
include the notation to be used for 
complex constants, the extension of 
arithmetic functions, the definition of 
principal values and branch cuts for 
complex functions, the application of 
comparison tolerance to complex functions 
and the definition of complex floor and 
ceiling functions (for more on the last 
two topics, see [39, 60, iii, 112]). Of 
these issues, only the last is still in 
contention, the major competing proposals 
being those of McDonnell [112] and Forkes 
[39]. 

II.F Infinite Values and Arrays 

Mathematicians regularly deal in their 
work with infinite (and even transfinite) 
quantities; for example, in such 
constructs as summation over some index to 
infinity. Since APL was originally 
designed as an alternative mathematical 
notation, it seems reasonable that it 
should also have the capability to 
manipulate infinite values. Iverson [73] 
suggests the use of the underbar and 
overbar symbols ( and -) to denote 
infinity and nega[ive infinity, 
respectively. However, he uses the 
symbols only for limited purposes: to 
separate lists of values, to denote limits 

for the power operator and to specify an 
alternate fill element for the expand 
function. McDonnell and Shallit [117] 
discuss a variety of topics related to the 
use of infinite values in APL, including 
the creation and manipulation of arrays 
with infinite axes. They discuss the 
application of primitive scalar functions 
to infinite values, motivating their 
choices with accepted usage from 
mathematics, and stressing the difference 
between a truly infinite value and a value 
of "machine infinity" which results from 
representation limitations. They also 
stress here the difference between 
undefined (infinite) values and 
indeterminate values (for which several 
choices may make sense), and make 
suggestions for the internal 
representation of infinite values. 

An extension of some mixed functions 
(e.g., monadic ,) to infinite values is 
seen to imply the creation of arrays with 
axes of infinite length. Such arrays can 
be represented as transformations on 
indices into the arrays; these 
representations can be further transformed 
to reflect the actions of function 
application. One very practical use of 
such arrays which is demonstrated is in 
effecting arbitrary-precision calculations 
and other "WHILE"-type constructions. 

Shallit [172] continues this work, 
giving new examples of the use of infinite 
arrays both for implemented systems and in 
mathematical exposition, where they can be 
employed with fewer restrictions. He also 
discusses the diagonalization function 
defined in the previous work, giving it an 
APL symbol (~) and using it in exposition 
to present classical proofs in APL 
notation. The diagonalization function is 
used to transform arrays with infinite 
length axes into infinite-length vectors 
by selecting elements from successive 
diagonals. 

II.G Sets 

Several proposals have been made to 
include sets as a data structure in APL, 
both formally as a new recognized 
structural type and informally by defining 
APL functions representing traditional set 
operations to act on arrays representing 
sets. The difference between these two 
types of representation reflects the 
differences between sets and arrays as 
formal structures: sets lack many of the 
properties of arrays such as axes, 
well-ordering and preservation of 
repetitions (see More [136]). An array 
representation of a set, for example, 
would have to have its elements arranged 
in a specific order, whereas a set would 
not. 

Soop [180] describes a way to 
construct sets through the reshaping of 
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arrays. He defines certain useful 
functions on sets and also discusses some 
problems with sets which result from their 
lack of ordering, specifically in the 
areas of display and selection. 
McAllister [ii0] compares three different 
ways of representing sets: as boolean 
selectors for some universe of elements, 
as integer encodings of these boolean 
values, and as vectors of elements without 
repetitions. This last type of 
representation is also described by 
Iverson [73], who defines many useful set 
functions on such vectors. This approach 
to set representation is notable in that 
it introduces no new data structures to 
the language and that the functions which 
it introduces are thus potentially 
extendable to arrays. Implementations of 
some of the functions of [73] have been 
done by Burroughs [193] and by STSC, Inc. 
on their NARS system [23]. For more 
information on these functions see the 
section on Set Functions. 

II.H User-Defined Types 

In current APL the concept of data 
type is quite simple; two types of data 
are recognized in the language, numeric 
and character, although there are usually 
more types represented internally in an 
actual implementation (e.g., bit, integer, 
real, etc.). These internal types are 
largely invisible to the user because of 
APL's use of type-generic arithmetic 
functions; i.e., functions whose arguments 
are automatically type-converted by the 
interpreter, if necessary. On the other 
hand, such type conversions can also be 
effected explicitly with functions such as 
[ and [. Because the interpreter can 
differentiate character and numeric types 
from context, this scheme frees the 
programmer from the necessity of making 
data type declarations for variables and 
formal parameters. 

However, this freedom from concern 
with data types runs counter to some of 
the latest trends in mainstream 
programming language design. Many 
designers currently support not only the 
declaration of types for variables, but 
also the flexibility afforded by allowing 
users to define their own data types. The 
proponents of this concept of data 
abstraction cite several reasons for the 
use of these data typing facilities: they 
allow programmers to define the types 
of structures which are natural to 
an application; they provide a summary of 
the properties of objects of a given type; 
and they prevent functions from being 
erroneously applied to the wrong types of 
data. 

Several proposals have been made to 
incorporate user-defined data typing 
facilities into APL. The APL-inspired 
languages X\APL (Braffort and Michel [16]) 

and ALICE (Jenkins [86]) provide means for 
users to define data types through a 
mechanism of tagged structures and, in 
ALICE, to define variant versions of 
functions to apply to these different 
types. Jenkins and Michel [82] 
demonstrate that different interpretations 
can be made when tags are associated with 
recursive data structures such as nested 
arrays. Hardwick [61] employs a record 
structuring facilities and typing to an 
application involving graphics data 
structures. Kajiya [90] discusses a new 
scoping mechanism, called downward scoping, 
and demonstrates how it can be used to 
obtain generic functions and thus a data 
"class" effect. In spite of the above 
proposals, no general scheme for 
introducing data abstraction facilities 
into APL has yet become widely accepted. 
This may be due to the fact that many 
people feel that strong data typing of any 
kind is foreign to the spirit of APL. For 
this reason, it may be some time before 
even an elegant proposal will be accepted 
by the APL community. 

III. Functions and Operators 

In order to manipulate its data 
arrays, APL contains a wide variety of 
primitive scalar and mixed functions. 
These functions are not assigned to any 
hierarchy of precedence, but simply apply 
to the results of the whole expression on 
their right and (if dyadic) to the 
argument to their immediate left (these 
rules can be modified through the use of 
parentheses). In order to augment these 
primitive functions, APL allows users to 
create their own functions defined through 
the composition of primitive functions and 
data values. Such defined functions 
follow the same syntax rules as primitive 
functions, and are therefore called simply 
by appropriate placement of their name in 
an expression. APL further augments the 
power of its primitive functions with 
entities called operators, which act upon 
data and functions to produce functions as 
results. 

Even though these functions and 
operators provide a powerful functional 
facility in APL, many proposals have been 
made to enhance this facility by defining 
additional primitive functions and 
operators, by removing some of the 
restrictions placed on defined functions, 
and by formalizing operators and 
increasing their role in the language. 

III.A Primitive Functions 

The discussion of primitive functions 
below is divided up into sections which 
cover proposals for changes in the 
behavior of primitives in general, groups 
of related functions to which changes have 
been proposed and a section for 
miscellaneous proposals concerning 
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primitives. For information on arrays of 
functions, see the Miscellaneous 
Extensions section. 

Ranks Uniformity and Symmetry. Some 
proposals would change not just a single 
primitive function, but would change the 
way in which all primitives behave in 
certain cases. Proposals concerning 
uniformity and symmetry affect the way in 
which structural and mixed functions apply 
to arguments of higher than "normal" rank. 
Iverson [73] defines the notions of 
argument rank and result rank for functions 
in order to clarify the notion of the 
"normal" rank of argument to which a 
function applies (a formal definition is 
referred to in Orth [148], though none is 
given in [73]). For example, the reversal 
function (¢) has both argument and result 
ranks of one, whereas the derived function 
summation (+/) has an argument rank of one 
and a result rank of zero. Both of these 
functions are extended to arguments of 
higher rank by applying them along the 
last axes of those arguments, or along 
some other single axis of the array 
through the use of an axis specification. 
In some cases functions are also defined 
to apply to arguments of a rank smaller 
than their function rank, e.g., the 
degenerate cases of inner product and 
matrix inversion for vectors and scalars, 
or reversal for scalars. 

In order to generalize the way in 
which functions apply to arguments of rank 
greater than their function rank, Iverson 
observes that functions extended in this 
way must be uniform in the sense that when 
applied to arguments of a given shape, 
they return results of a shape fully 
determined by the shape of the argument. 
For example, the reversal function when 
applied to a vector always returns a 
vector of the same shape as the original, 
whereas the summation function when 
applied to a vector always returns a 
scalar. Such uniform functions can be 
applied to arguments of high rank by 
splitting the arguments into collections 
of arrays along their last axes, applying 
the functions to the resultant arrays of 
appropriate rank, and then reassembling 
the results (which will share a common 
shape because of the uniformity 
requirement). 

In some cases, these rules for uniform 
application would conflict with other 
proposals to extend certain functions. 
For example, under the rules of uniform 
application the grade functions (4 and ~) 
would apply separately to the individual 
vectors within a matrix, but another 
proposal (see Sykes [181]) would apply the 
grades to a whole array at once, 
interpreting positions on different axes 
as having different significances for 
ordering the final result. Uniform 
application also conflicts with the notion 

of symmetric function definitions. 

Michel and Jenkins [83] propose 
alternative definitions for several 
primitive and derived functions, calling 
the functions so defined symmetric 
functions. These functions are symmetric 
in that they apply equally to all axes of 
an array and thus are not biased towards 
the last axes. For example, they define 
reduction so that the summation function 
(+/) would sum along all axes, returning 
a scalar result when applied to an array 
of any rank; similarly they define 
reversal so that it would reverse an array 
along all of its axes. In effect, the 
symmetric functions so defined have 
unbounded or infinite argument ranks (the 
same may be said of some current 
primitives such as ravel). This means 
that the symmetric functions require an 
explicit use of the axis operator in order 
to be applied to any limited number of 
axes of an array, whereas the uniform 
application rules require an explicit use 
of the axis operator only when the 
function is to be applied to axes other 
than the last. An issue closely related 
to those of uniform application and 
symmetric function definitions is the 
design of more sophisticated axis 
operators for APL; for more on this issue 
see the section on Axis Operators. 

Scalar, Laminar and Rank Extension. 
APL's rules for scalar extension are a 
simple but useful way of allowing 
functions to be applied between scalars 
and arrays of higher rank where conforming 
arguments would normally be needed: the 
scalar argument is simply replicated to 
the appropriate shape before being applied 
to the array. For example, in the 
expression "3 + 4 4p0", the scalar 3 is 
extended to an array of shape 4 4 before 
it is added to the other argument. Scalar 
extension rules are currently used only 
with primitive scalar dyadic functions 
when applied between scalars and higher 
rank arrays, but proposals have been made 
to generalize this facility to be 
applicable in other contexts as well. 

Several authors [89, 115, 121] propose 
a generalization of scalar extension that 
would allow one argument (of a dyadic 
scalar function) of any rank to be 
replicated along new axes in order to 
conform to another argument of higher 
rank. This facility would allow, for 
example, a vector to be added to each row 
or column of a matrix, or for a matrix to 
be added to the planes of a rank 3 array. 
Different proposals achieve this effect 
in different ways: Breed proposes an 
extension to the rules for applying dyadic 
scalar functions to arrays of differing 
rank (see Brown [18]). Jizba [89] 
proposes a new operator called the 
distributed product. Mebus [121] suggests 
using the expand function to allow the 
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replication of laminae of an array prior 
to function application (see below). 
McDonnell [115] proposes extending the 
axis operator to act on dyadic scalar 
functions (e.g., "V+[i] @" or "V+[2]M " to 
add a vector to a matrix). This last 
proposal has been implemented in Burroughs 
APL/700 [193] and on STSC, Inc.'s NARS 
system [23] (on the Burroughs system the 
axis information may be elided to default 
to the last axes of the array). Jenkins 
and Michel [83] note that the suggested 
default rules for their axis operator 
by-slice yield this interpretation for 
scalar functions. 

Another generalization to scalar 
extension can be made by allowing a 
similar facility to be used in the 
application of mixed functions to 
arguments whose ranks do not agree for the 
purposes of the function application; this 
facility is called laminar extension by 
Mebus [121]. He notes that this facility 
is general enough to encompass the case of 
scalar function application and is 
currently implicit in the mixed functions 
encode and decode and in functions derived 
from the inner product operator 
(Jayasekera (see Keenan [91]) notes that 
encode and decode are anomalous for this 
reason). Mebus' proposal calls for the 
expand function to be extended to allow 
replication of laminae along axes of 
length one and along new axes created with 
a fractional axis specification. The 
generalization of scalar extension to 
higher rank arrays and to mixed functions 
can also be achieved through the use of 
more sophisticated axis operators; see the 
section on Axis Operators. 

Mebus [121] notes that his proposal 
allows the creation of new axes of length 
one in an array even when replication is 
not specified. This facility is called 
rank expansion by Lucas [105], who 
decomposes the capabilities inherent in 
lamination into rank expansion, axis 
specification and function action along 
newly created axes. He continues by 
proposing several operators which would 
combine these capabilities in various 
combinations with a function specified for 
action along the new axes. Gilmore [51] 
proposes the shake function (from "shape" 
and "take") to allow explicit rank 
expansion without replication or function 
action, and to allow the "coalescence" of 
several axes into a single axis. 

Indexing. Indexing is probably the 
most commonly used array function, and is 
indeed a necessity in standard programming 
languages which do not manipulate whole 
arrays. Unfortunately, indexing is also 
syntactically anomalous as it is currently 
defined, for it is a single function 
denoted by two widely separated symbols ([ 
and ]), and it employs the semi-colon as 
a non-functional separator. These 

anomalies might seem balanced by the 
familiarity of this notation but they lead 
to three major problems with indexing: in 
its current form, indexing is 
syntactically bound to the rank of the 
indexed array, and instances of indexing 
thus cannot be easily generalized to 
higher ranks; the index argument is not a 
simple APL array (some call it a list), 
and thus cannot be easily manipulated or 
assigned a name; and finally, it would be 
difficult to use indexing in its current 
form as the argument to an operator. On 
the other hand, the current form of 
indexing is a powerful facility, which 
encompasses at least three different 
capabilities (after Lewis [i00]) : simple 
indexing, which selects a single element 
of an array by specifying only one 
position per axis; combinational indexing, 
which selects an array of elements by 
specifying vectors of positions for each 
axis; and slice indexing, which allows the 
selection of all elements along an axis 
through the elision of position 
specifications for that axis. One form of 
indexing which is often desired but which 
is not available through the current 
facility is one in which a number of 
unrelated elements are selected by 
specifying the indices of each of the 
elements separately (this is called 
scatter-point indexinq by Cheney [23]). 

Several proposals have been made to 
add new forms of indexing to APL which 
would encompass the capabilities of the 
current form but under a more regular 
syntax; other proposals would add new 
forms of indexing entirely. Lewis [I00] 
defines several successively more powerful 
systems of functions in order to realize 
all of the capabilities covered by current 
indexing. Iverson [73] defines the from 
function (denoted by n) to treat the rows 
of its left argument as indices into an 
array right argument, thus allowing 
scattered points to be selected. Pesch 
[157] defines an operator (1) which, when 
applied to a nested array of position 
specifications, produces an ambivalent 
derived function that allows both indexing 
and indexed replacement. Several other 
proposals for indexing which employ nested 
arrays are discussed in the section on 
Nested Arrays; of these, Jenkins and 
Michel [83]note that their choose function 
could be implemented for non-nested 
indices in a manner similar to Iverson's 
from function. 

Both Iverson [73] and Ghandour and 
Mezei [47] propose that negative indices 
be interpreted as counting backwards from 
the last position on an axis just as 
non-negative indices currently count 
forward from the first position. This 
facility, called complementary indexing by 
Bernecky and Iverson [9], allows 
references to be made relative to the last 
positions on an axis without actually 

286 



computing the length of that axis. This 
scheme can also be used for axis indices 
with an axis operator (see Ghandour and 
Mezei [47]). 

Many proposals have also been made to 
generalize the index generator (1), 
usually to allow it to apply to vectors. 
Holmes [68] suggests an extension that 
would simplify the generation of 
arithmetic progressions. Many nested 
array proposals define an index generator 
extended to take vector arguments to 
produce an array of enclosed indices into 
an array of the shape specified by the 
vector argument (see the section on Nested 
Arrays); in particular, Jenkins and Michel 
[83] note that their index generator 
(called odometer) could be modified to 
produce non-nested arrays, the rows of 
which would comprise the generated 
indices, in a manner compatible with the 
non-nested version of their choose 
function. Brown [18] defines his index 
generator interval to accept negative 
values, but notes that it does not behave 
as desired for vector negative arguments. 

Other Selection Functions. A variety 
of proposals have been made to extend the 
selection functions take, expand and 
compress. Abrams [2] has described the 
take function as "overburdened" in bearing 
the capabilities for both selection and 
expansion, suggesting that the "overtake" 
portion of the function be handled by a 
new function or by other primitives. 
However, several other proposals have been 
made which would increase rather than 
decrease the capabilities encompassed by 
the take function: Nater [143] suggests 
that both the take and drop functions be 
defined to act along the last axis of an 
array if given a scalar left argument, 
that they be allowed to take an axis 
specification, and that "first axis" 
versions of each be defined analogous to 
first dimension reduction, scan and 
reversal. Iverson [73] uses the variant 
operator to allow fill elements to be 
specified for both the take and expand 
functions. On STSC Inc.'s NARS system, 
the take function is extended to allow the 
specification of a fill element by means 
of a dyadic function derived through the 
composition of take with its selector 
argument. This approach is used uniformly 
to extend the expansion and compression 
functions to mesh and mask (see the 
section on Mesh and Mask). 

There is some controversy over the 
status of the expand and compress 
functions: although originally defined as 
functions, Iverson [73] has suggested that 
they be considered operators, both to 
rationalize their relationship to the scan 
and reduction operators and to allow the 
mesh and mask functions of Iverson [70] to 
be defined through them under this 
interpretation. 

Bernecky has defined a proper 
extension of compression called 
repliqation which allows non-negative 
integer values on the left to specify the 
number of times the corresponding element 
of the right argument is to be replicated 
in the result. The replication function 
has been implemented by I. P. Sharp 
Associates, Inc. and by STSC Inc. [ii, 23] 
and has been extended on STSC Inc.'s NARS 
system to allow negative values on the 
left to specify replications of the right 
argument's fill element in the result. 
This system also extends expansion to take 
signed integer values on the left in a 
manner similar to the extended version of 
replication. 

Several proposals have been made to 
allow other selection functions to be used 
on the left of assignment as indexing is 
currently used; for a discussion of these 
proposals see the section on Assignment. 

Searching. Searching for elements in 
an array can be done in two ways: either 
for a specific element or for a pattern of 
elements. The former is exemplified by 
the index-finder (dyadic i) of current 
APL, which searches within its vector left 
argument for the first occurrence of each 
of the elements of its array right 
argument. Several authors have proposed 
extending this definition to find first 
occurrences (in row-major order) of 
elements in arrays of rank greater than 
one (see Brown [18], Ghandour and Mezei 
[47] and Jenkins and Michel [83]), using 
either nested vectors or rows in the 
result to hold the vector indices 
returned. The find function defined by 
Ghandour and Mezei [47] finds the indices 
of all occurrences (not just the first) of 
the elements sought. 

In current implementations of APL, if 
an element is sought, but no occurrence is 
found, the index returned is one greater 
than the length of the vector being 
searched. This result is thus not a legal 
index for the vector, and subsequent 
indexing with this value will produce an 
error. Brown [18] defines the position 
scalar (9) to be returned as the index for 
elements not found in the array being 
searched, following Iverson's early use of 
the null character [70]. 

The second type of searching mentioned 
above locates not individual elements but 
rather the pattern formed by a series 
(vector) or array of elements. This kind 
of pattern searching is embodied in the 
where function (~) described by Mercer 
[125], which returns a boolean vector with 
ones indicating the beginning of an 
occurrence of a pattern within the vector 
being searched. A similar function is 
implemented as "string search" (~SS) on 
STSC Inc.'s APL*PLUS ® system. Falkoff 
[36] gives models for a search function 
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which takes arguments of any (but equal) 
rank, with an optional axis argument to 
allow searching for a low-rank array 
within one of higher rank, and another 
optional parameter to specify "don't-care" 
elements for patterns which are not solid 
infixes. 

Sorting and Grading. Two kinds of 
proposals have been made to extend the 
grade functions (4 and V). The first, 
suggested by Sykes [181], would extend the 
domain of the grade functions to higher 
rank numeric arrays by treating vectors 
within an array as composite values for 
grading purposes, or by independently 
grading parallel vectors within an array. 
The second proposal, made by Smith [179], 

is to define dyadic versions of the grade 
functions to grade character arrays. The 
left argument of these functions is an 
array describing an alphabet used for 
ordering, with differences in positions 
along different rows, planes, etc., having 
correspondingly different significance for 
ordering. The right argument is the array 
which is to be graded, and in Smith's 
proposal it is treated as a matrix by 
raveling together all but the first of its 
axes. 

Set Functions. Although several 
proposals have been made to include sets 
in APL as a formal data type (see the 
section on Sets in Data Types and 
Structures), many functions can be defined 
which informally treat vectors (or arrays) 
as sets. An example is the membership 
function (e) of current APL. In order to 
treat vectors more like sets, several 
authors have defined a function which 
ravels its array argument and eliminates 
all duplicate instances of its elements. 
Iverson [73] calls this function hub (u) 
and defines an "ordered" counterpart that 
sorts the unique elements in ascending 
order, as well as distribution and ordered 
distribution functions which facilitate 
the reconstruction of an array from its 
hub. He also defines subset and 
containment propositions (c ands ) and the 
familiar proper analogues to each (c and 
~). A function similar to nub but ~alled 
• n ique is implemented on STSC Inc.'s NARS 
system [23]. 

Several authors define functions to 
obtain the union, intersection and set 
difference (u, n and ~) of two "sets". In 
some of these proposals, the functions are 
defined to ravel array arguments or to 
take their nub before operating on them. 

Scalar Arithmetic Functions. A number 
of changes and additions have been 
proposed to the scalar arithmetic 
functions of current APL. McDonnell [113] 
proposes proper extensions of the logical 
functions and and or (^ and v) to 
represent the least common multiple (LCM) 
and greatest common divisor (GCD) 

functions. His proposal has been 
implemented by I. P. Sharp Associates, 
Inc. on their SHARP APL system. McDonnell 
[114] also proposes a refinement to the 
division function, suggesting that the 
result of 0÷0 should be 0 rather than i, 
for both practical and theoretical 
reasons. Others (DeKerf [30] and 
Eisenberg [34]) have suggested rather that 
the expression should produce a domain 
error, or that its result should be 
specifiable through a system variable. 

The circular function has been 
criticized for the rather unprecedented 
way in which its numeric left argument 
selects a function from the family of 
functions associated with the symbol. 
Several additions and refinements to this 
family of functions have been proposed by 
Penfield [155] to aid in the manipulation 
of complex numbers (for more information 
on complex numbers, see the section on 
Complex Numbers in Data Types and 
Structures). 

Matrix Functions. Many functions of 
interest in linear algebra are arithmetic 
functions that are not scalar functions 
but which rather utilize both the array 
structure and numeric contents of their 
arguments. Examples from current APL are 
the plus-times inner product (+.×) and the 
matrix divide function (~). Several 
proposals have been made to extend the 
domain of the latter to singular and 
rank-deficient systems using 
generalizations such as the Moore-Penrose 
pseudo-inverse [32, 67, i01]. Another 
matrix function inspired by linear algebra 
is the eigenproblem primitive (9) proposed 
by Jenkins [79], which finds eigenvalues 
or eigenvectors of its matrix argument. 
The common matrix determinant is a special 
case (denoted -.x) of the more general 
determinant operator defined by Iverson 
[72]. The definition of the operator 
allows non-square matrices and uses a 
monadic derived form of the inner product 
syntax. 

Miscellaneous Primitives. Following 
are descriptions of several miscellaneous 
primitive function extensions which have 
been proposed (or implemented) by a 
variety of sources. The equivalent 
function (also called match or identical) 
defined by various sources [9, 23, 47, 56] 
compares its whole array arguments for 
equality in rank, shape and all elements. 
Some proposals for convenience define a 

similar function called inequivalent (see 
for example Cheney [23]). Although they 
are often defined in the context of nested 
arrays, these functions are also very 
useful in comparing simple arrays. 
Another function defined in the context of 
nested arrays, but which is useful with 
simple arrays is the type function (T) 
implemented on STSC Inc.'s NARS system: it 
returns (for simple, heterogeneous 
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arguments) a zero if the argument is 
numeric and a blank if it is character 
(see Cheney [23]). 

The same system also allows a 
first-dimension version of catenate (;) 
defined as an analogue to the familiar 
first dimension reduction, scan and rotate 
functions (/, ~ and ¢) , and extends the 
reshape function to empty arrays by 
returning the reshape of the prototype of 
the array. 

III.B Defined Functions 

In order to supplement its wide 
variety of primitive functions, APL allows 
users to define their own functions, these 
being composed from both primitives and 
from other defined functions. These 
defined functions can then be used in much 
the same way as primitive ones: they are 
called by placing their name in an 
expression, between or in front of their 
arguments, and their results are returned 
as a value at the point of call. 
Unfortunately, there are at least two 
cases in which defined functions may not 
be used exactly as primitives in current 
APL: they may not be ambi-valent and they 
may not be used with operators. Proposals 
which have been made to remedy these 
problems, as well as some that allow new 
forms of function definition, are 
discussed below. For information on 
comments and statement separation within 
defined functions, see the Miscellaneous 
section. 

Syntax. In many cases, two primitive 
functions are represented by a single 
symbol which is interpreted as the monadic 
or dyadic form based on the context in 
which the function is called. On most 
systems this property, called ambi-valence 
by Iverson [75], is not extendable to 
defined functions. However, on both the 
SHARP APL system and STSC Inc.'s NARS 
system, functions can be defined with both 
a monadic and a dyadic form. Thus, on 
these systems, defined functions can be 
written which simulate primitives whose 
monadic behavior supplies an elided 
argument, or whose monadic and dyadic 
forms perform completely different 
functions. 

Another way in which defined functions 
differ from primitives is in their 
exclusion from the domain of operators. 
Several proposals have been made to extend 
the domain of operators to include defined 
functions (see Ghandour and Mezei [47], 
Iverson [73] and Jenkins and Michel[83]), 
and at least one implementation (STSC 
Inc.'s NARS system; see Cheney [23]) has 
actually realized this extension. Part of 
the difficulty of this extension lies with 
the problem of extending the domain of 
operators to mixed functions, since 
defined functions are often mixed, and 

since this fact may be difficult for an 
implementation to recognize. The NARS 
system implementation overcomes this 
difficulty by using its nested array 
facilities to define the results of the 
application of operators to mixed 
functions. 

Canonical Representation. In order to 
define a function in current APL, a 
character matrix representation of the 
function is constructed and then used to 
"fix" the definition of the function (this 
is often done with the aid of a function 
editor). This character matrix form, 
called a canonical representation, 
consists of a header line indicating the 
function's syntax and name localizations 
and several lines representing statements 
which are to be executed upon function 
invocation. These statements are 
executed sequentially (unless the flow of 
control is modified by a branching 
statement) and when execution is complete 
the result is returned as the value of 
the function through the 
variable designated for this purpose 
in the function's header. Several 
criticisms have been raised against the 
canonical representation form of function 
definition: one author [Ell] notes the 
fact that it will not preserve simple 
indentations which would aid in 
readability. Other authors (see Holmes 
[68]) criticize its non-function-like 
ability to act without arguments, or to 
return no results, and thus its ability to 
cause "side-effects" (changes to the 
environment outside the function). But 
certainly the most controversial feature 
of the canonically defined function is its 
control structure, the branch arrow. 

Control Structures. Ever since the 
doctrln~ structured programming rose to 
popularity, APL has been criticized for 
its simple (and sole) control structure, 
the branch arrow (+). Critics complain 
that the branch is too easily misused and 
that its misuse leads to non-modular code; 
they seek instead the traditional sorts of 
control structures found in other 
languages: explicit iteration control, 
block formation, conditional statements, 
etc. In response to these criticisms, 
several proposals have suggested new 
control structures for APL which would be 
implemented in a variety of ways. 

Foster [40] defines a statement 
structuring syntax which allows statements 
to be grouped and to be performed 
conditionally or repeatedly. In a later 
work [41] he describes a scheme which 
combines a restricted form of branching 
with a generalized function calling 
mechanism to achieve better potential for 
program modularity. Kelley et. al. [92, 
93] describe processors for two versions 
of the APLGOL language which compile 
APL-like programs with structuring 
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keywords into normal APL code (APLGOL-2 
[93] allows de-compilation and editing). 
Kemp [94] describes similar facilities for 
pre-processing structured APL programs. 

Reeves and Besemer [160] define new 
control "primitives" (represented by +and 
4) which can be used to construct several 
standard structural schemes. Ching [25] 
has recently described a new construct 
called a module (inspired by similar 
constructs in the MODULA language) which 
can be used to effect better structuring 
by improving scope control and 
readability. Oates [144] proposes a 
combination of local directly defined 
functions (see below) and a flow control 
mechanism to allow for more modular 
program design. 

In reaction to this plethora of 
control structure proposals, Wiedmann 
[187] considers that the structured 
programming fervor has abated somewhat and 
that the current view of the community is 
that the control structures of traditional 
scalar languages may be inappropriate for 
APL. 

Direct Definition. Although most 
current APL systems offer only the 
canonical form for defining functions, 
many of them supply software which 
simulates a form called direct definition, 
which was first defined by Iverson [71]. 
This form of function definition takes a 
single APL expression in the variable 
parameters ~ and ~ and interprets the 
explicit result of the function to be the 
value of that expression given when the 
parameters are assigned the values of the 
function's arguments. Any variables which 
are assigned within the expression are 
automatically localized, and thus directly 
defined functions are free from side 
effects. The direct form of definition 
also allows a simple conditional 
construct: a propositional (boolean 
valued) expression determines which of two 
alternative expressions will define the 
actual result of the function. These 
three expressions are separated by colons 
with the proposition in the middle: if the 
proposition evaluates to 0, the left-hand 
expression defines the result; if it 
evaluates to i, the right-hand expression 
is used. Given the ability to reference 
a function within its own definition, this 
construction allows a simple way of 
defining recursive functions. 

A number of proposals have been made 
(and at least one has been implemented) to 
supply APL with an extended version of 
direct definition through an operator 
which takes as its argument a character 
string denoting the expression to be used 
for the direct definition, and which 
returns the corresponding function as its 
result. Iverson [73] defines such an 
operator as a special case of composition 

between character arguments or character 
and null arguments. This early definition 
is somewhat different from more recent 
proposals in that it allows abstraction 
with respect to one or two variables as 
well as the familiar ~-~ form (Iverson has 
since argued against this type of 
abstraction; see "Direct Definition" in 
[Asilomar]. Iverson and Wooster [78] 
define an operator (V) which may take one 
or two character strings as its arguments 
to return an ambi-valent derived function 
(one argument may be replaced by the null 
symbol in order to obtain a monovalent 
result). Their definition provides for 
statement separation and control of 
sequential execution of these statements, 
as well as reference to the function 
within its own definition. A very similar 
operator has been implemented on STSC 
Inc.'s NARS system as described in Cheney 
[23]. Metzger [128] discusses a facility 
which he calls extended direct definition 
which allows such constructs as statement 
sequences, explicit globalization of 
variables, a conditional ("WHILE") loop 
structure, a loop initialization feature, 
allowance for early termination of loops 
and a "CASE"-Iike construction. 

III.C Operators 

Besides arrays of data and the 
functions used to manipulate them, APL has 
a third class of objects called operators. 
Operators are similar to functions in 
that they take arguments and return 
results, but different from functions in 
that their arguments are functions 
themselves (or data) and their results are 
functions; these resultant functions are 
called derived functions. Examples of 
operators are reduction (as in x/), inner 
product (the " " in ^.=) and the axis 
operator (as in 4[3])- Operators are only 
now being fully explored and were in fact 
fairly late in becoming recognized as a 
separate class of objects (see Falkoff and 
Iverson [Fal]). 

For information on direct definition 
operators, see the section on Direct 
Definition in Defined Functions. 

Syntax and Valence. Most of the 
recent proposals to formalize operators 
define them to be monovalent (i.e., either 
strictly monadic or strictly dyadic) in 
order to remain consistent with the syntax 
of current APL and also to cut down on the 
number of parentheses needed in 
expressions (see [75]). However, Iverson 
[73] suggests that the null (or jot o) be 
used as an empty argument to achieve 
effectively ambivalent operators (as in 
o.x as opposed to +.x). Note also that 
most proposals allow the derived function 
results of operators to be themselves 
ambi-valent (e.g., both "#[3] A" and 
"i ~[3] A"). There is also much agreement 
that operators should have higher 
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precedence than functions so that, for 
example, the operator in R+.xXy acts on 
the times function before the function 
itself acts on the array. 

There is less agreement as to whether 
monadic operators should take their 
arguments on the left or on the right; 
several proposals claim that the argument 
should occur on the left (as in +/), thus 
following an earlier precedent that the 
syntax of monadic operators should mirror 
that of monadic functions. Adherents to 
this view usually also define operators to 
have long left scope (i.e., to take the 
entire operator sequence to their left as 
their left argument), again mirroring the 
syntax of functions (for example, the 
expression ,,+.x.÷,, is interpreted as 
.(+.x).÷,,). Proposals which do not follow 
these rules include some earlier works 
(see Ghandour and Mezei [47], Gull and 
Jenkins [56] and Jenkins and Michel [83]) 
and most works treating (or inspired by) 
Array Theory (see More [130-138], Jenkins 
[86-88]). 

In order to facilitate the 
construction of operator expressions using 
these rules, parentheses are allowed to 
surround expressions which result in 
(derived) functions. 

Domain and Range. In current APL, 
operators are largely limited to scalar 
primitive functions for their arguments 
(the exceptions being for some mixed 
functions, e.g., ~[2]). Proposals for 
formalizing operators often suggest that 
these restrictions be removed so that 
mixed functions, derived functions (the 
results of operator expressions) and even 
defined functions would be allowed as 
operator arguments. Of course, the 
discussion of the scope and binding of 
operators in expressions such as "+.×.÷" 
implies that derived functions would be 
allowed as arguments to further operators. 
Operator sequences of this type have been 

suggested by several proposals (see 
Ghandour and Mezei [47], Iverson [73] and 
Jenkins and Michel [83]) but have been 
implemented only on STSC Inc.'s 
experimental NARS system (see Cheney 
[23]). This system also allows some 
operators to be applied to functions which 
return no results (see Smith [178]). 

It is difficult to understand how some 
operators would be applied to some mixed 
functions because the results of these 
functions are of in general of rank 
greater than zero and not of uniform 
shape; thus they could not easily be 
assembled into a result array of the 
appropriate shape. This problem is solved 
in some proposals [20, 21, 23, 47, 83] 
through the introduction of nested arrays 
and thus through the incorporation of 
nested array functions into the 
definitions of the operators themselves. 

Orth [148] considers this a bad solution 
to the problem, and gives examples of some 
difficulties that arise when using this 
method. 

The same difficulty which accompanies 
the extension of operators to mixed 
functions is probably the largest single 
difficulty in extending operators to 
defined functions, since most systems do 
not retain information on the scalar or 
mixed properties of defined functions, and 
since many defined functions are mixed. 
Two other difficulties with allowing 
defined functions as operator arguments 
are the association of an identity element 
with a function for use with the reduction 
operator, and the calculation of the 
inverse of a defined function for use with 
the power or dual operators. 

Some proposals have suggested that the 
range of operators be extended to include 
operators themselves (see Iverson [73, 
74]) although there has been little 
discussion of the semantics of such 
extensions. The APL-inspired language 
ALICE (see Jenkins [86]) defines a 
hierarchy of objects based on their order. 
The order of an object is defined to be 
0 for arrays, 1 for functions, and higher 
values for ALICE functionals, which are 
operators generalized to act upon and 
return results of mixed orders. A syntax 
for applying operators to operators is 
given by Georgeff et. al. [45, 46], based 
upon the needs of established parsing 
methods. Some have questioned the 
application of operators to exclusively 
data arguments, especially the 
rationalization of compression as an 
operator which takes a left boolean 
argument and returns the appropriate 
selection function as a result (discussed 
by Iverson [73]). 

Reduction and Scan. Iverson [73] 
describes extensions of the reduction and 
scan operators to allow dyadic functions 
to be derived from either of these. In 
the case of reduction, the derived 
function's integer left argument specifies 
the length of a "moving window" over which 
the reduction is performed; thus the 
expression "2 -/V" returns the pair-wise 
differences between elements of the vector. 
For negative left arguments of the 
derived function, the sense of the 
arguments is reversed. The dyadic 
reductions derived from scan are defined 
similarly. 

One problem associated with extending 
the domain of reduction to new types of 
functions (mixed, derived or defined) is 
the question of how to define identity 
elements for cases when the derived 
functions are applied to empty arguments. 
Hoskin [69] describes a scheme which 
provides "pseudo-identity" elements for 
some primitives. Brown and Jenkins [21] 
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describe progress towards defining 
identity element expressions for certain 
functions and classes of functions, but 
also demonstrate that no identity 
expressions exist for certain other 
functions. 

Combinational Operators. The inner 
and outer product operators of current APL 
have been called combinational because of 
the way in which their results depend upon 
different combinations of their elements. 
Brown [18], Ghandour and Mezei [47] and 
Jenkins and Michel [83] all re-define the 
outer product with a new syntax, replacing 
the two symbols (o.) with one, in seeming 
criticism of the notion of a two-symbol 
primitive operator. Keenan [91] has 
criticized the inner product as being too 
specialized in that, e.g., an internal 
scan cannot be specified in place of the 
internal reduction. He also suggests that 
the definition of inner product be refined 
so that the last axes of both arguments be 
eliminated from the results rather than 
the last axis of the left argument and the 
first axis of the right as is currently 
the case (the former definition is more 
compatible with the last axes bias of 
uniform application, while the latter is 
more consistent with the traditional 
definition of matrix multiplication in 
linear algebra). 

Iverson [72] has defined two new 
operators for the monadic derived cases of 
the inner and outer product symbols. The 
first is a generalized version of the 
determinant which takes any two scalar 
primitive functions as its arguments, so 
that the special case -.x is the familiar 
determinant function (he also describes an 
extension to non-square matrices). This 
operator has recently been implemented on 
SHARP APL. The monadic derived case for 
the outer product symbol (o.) is called 
the function table operator and produces 
a function table of the shape given by the 
function's argument by performing outer 
products between index-generated vectors. 
This operator has been implemented on 

STSC Inc.'s NARS system [23]. 

Also implemented on STSC Inc.'s NARS 
system is a dyadic operator called 
convolution (¥) which produces a dyadic 
derived function that performs a 
"moving-window" inner product while 
reversing the selected portion of the left 
argument. The operator can be used to 
find the products of polynomials in 
coefficient-vector form (using +~x) and to 
perform string searches [23]. 

Axis operators. The bracketed axis 
specification used with many functions was 
not initially considered an operator (see 
Falkoff and Iverson [Fal]), but has since 
been widely recognized as such. 
Undoubtedly this delay in recognition was 
in part due to its anomalous syntax 

relative to other operators: although it 
takes its function argument to the left, 
it takes its data argument (axis 
information) between two separate symbols 
([ and ]). Several proposals have been 
made to extend the axis operator or to 
define new axis operators to replace or 
augment the current one. 

One of the most common extensions to 
the axis operator is to allow vector axis 
specifications for at least some functions 
(e.g., x/). Brown [18] defines such 
extensions for many functions using the 
bracketed axis specification syntax but 
expresses them in terms of "indexed 
functions" rather than explicitly as 
functions derived from an operator. He 
uses nested array functions to define a 
general method of extending functions to 
indexed versions: the arrays are first 
split along the specified axis or axes 
into subarrays; these subarrays are 
enclosed and the function is applied to 
all subarra~s separately; and finally the 
enclosed subarrays are disclosed and 
reassembled into one array. Many 
subsequent proposals for axis operators 
define them in similar terms. Ghandour 
and Mezei [47] define an axis operator (:) 
and supply definitions for its results 
when applied to a variety of functions, 
often with vector axis specifications and 

with complementary axis indices (see the 
section on Indexing). 

Jenkins and Michel [83] criticize both 
of these early proposals for axis 
operators as being too function dependent, 
noting that in both schemes separate 
definitions must be supplied for each 
function extended. In order to supply a 
more function-independent semantics, they 
first define an axis operator called 
by-slice in terms of nested array 
functions, and then give new definitions 
for many primitives which they call 
szmmetric definitions (see the section on 
Rank, Un{formity and Symmetry). They 
attempt to supply default rules for the 
less general axis operator and 
non-symmetric functions of current APL in 
terms of their proposal, but find this 
impossible because of inconsistencies in 
the current interpretations of certain 
functions derived with the axis operator. 
The by-slice operator takes 2 or 3 data 

arguments (all potentially vectors) to 
specify the axes along which the argument 
(or arguments) are to be sliced, and the 
axes along which the results are to be 
placed. The syntax used is that of a 
bracketed semicolon list, the semicolons 
separating the vector slice 
specifications. 

Iverson [73] defines two axis 
operators called nuax and coax(~ and ~) 
which allow functions to be applied along 
a certain axis (if of rank i) or axes (if 
of higher rank), or to be applied along 
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the complementary set of axes to those 
specified (coax). He emphasizes that the 
result of these operators is different 
from that of axis specification since the 
latter specifies both argument and result 
axes whereas the former specifies argument 
axes only and always places the results 
along the last axes. Bernecky and Iverson 
[9] re-define these two operators (as 
forms of the on operator, denoted by ~) in 
terms of nested arrays, allowing two 
enclosed vector right arguments to specify 
left and right argument axes, but still 
forcing all results to be placed along the 
last axes. They also define a separate 
operator called a!on @ (o) that splits an 
array into a collection of subarrays along 
some axis and applies its function 
argument to this collection before 
reassembling the subarrays. 

Keenan [91] criticizes the by-slice 
and nuax operators as being "multi-adic" 
and suggests in their place a combination 
of several facilities. He first defines 
uniform functions following Iverson [73] 
and suggests that they be applied to the 
appropriate last axes of an array. He 
then defines the unit rank operators 
(left,~ , and right ~) to limit their 
function arguments to apply to the 
specified ranks, and the endspose function 
(~) to move the specified axes of an array 
into the last positions. In this way he 
spreads the capabilities of the axis 
operators over several facilities, none of 
which need be multi-adic. 

The experimental NARS system of STSC 
Inc. does not currently support any new 
axis operators, but has extended the 
familiar bracketed scalar axis 
specification to take and drop, dyadic 
scalar functions and derived functions 
produced through the each operator. Orth 
[148] has criticized the lack of more 
sophisticated axis operators on the NARS 
system, as he feels that the support of 
such operators is an important issue in 
language extension. 

Compositional Operators. One of the 
fundamental capabilities which is 
necessary to facilitate the construction 
of operator sequences is that of 
functional composition. Composition 
provides a means of binding functions 
together so that they may be applied as a 
unit as arguments to other operators or to 
data arguments. Several forms of 
composition are widely recognized, the 
simplest of these being the composition of 
a dyadic function with a single data 
argument to produce a monadic function 
similar to the dyadic one, but with one 
argument fixed. The supplied data 
argument may be composed on either side of 
the function to produce fixed-left and 
fixed-right cases. 

Composition between functions is 
somewhat complicated by the fact that the 
argument functions may be either monadic 
or dyadic, as may be the composite 
function produced. Thus composition may 
be defined to combine its function 
arguments and and the data arguments of 
its derived result in a number of ways. 
To help separate these cases from each 
other, both the SHARP APL and STSC Inc. 
NARS system implementations of composition 
provide several cases through the use of 
different composition operators (see 
Bernecky and Iverson [9] and Smith [178]). 
A special form of composition called the 

dual operator is defined by Iverson [73]. 
This dyadic operator produces a derived 

function which is a composite of its right 
and left function arguments and the 
inverse of its right function argument. 
Iverson notes that this operator provides 
an extension of the concept of duality as 
expressed, for example, in DeMorgan's laws 
(^ and v are dual with respect to ~). 

Keenan [91] has criticized composition 
as being a special case of function 
definition and thus as insufficiently 
general for consideration as an operator. 
Orth [148] also notes that composition 

cannot be used to easily define certain 
functions, but seems to regard it rather 
as an adjunct to functional abstraction as 
embodied in the direct definition 
operator. 

One difference between the composition 
operators as they have been implemented on 
SHARP APL and on STSC Inc.'s NARS system 
has been stressed by both Orth [148] and 
Bernecky and Iverson [9]. The difference 
lies in the manner in which a composite 
function derived from two mixed functions 
is applied to its array arguments; in 
particular, the composite function defined 
on the NARS system behaves exactly as 
would the two mixed functions applied 
sequentially, whereas on the SHARP APL 
system the two composed functions are 
applied as a whole to the units 
appropriate to the right function 
argument. For example, consider a 
function derived from the domino and 
reversal functions as it applies to a 
matrix argument. On the SHARP APL system 
the function would split the matrix into 
row vectors (as appropriate units for 
reversal), apply both reversal and domino 
in sequence to each of the vectors so 
obtained, and then reassemble the 
resultant vectors into a whole matrix 
result. On STSC Inc.'s NARS system, the 
matrix as a whole would be reversed along 
the last axis and then the domino function 
would be applied to the whole reversed 
matrix to yield the final matrix result. 
Orth [148] in particular considers this an 
important difference between the two 
implementations and favors the SHARP APL 
approach. 

293 



Power Operators. The power (or fold) 
operator is defined in several proposals 
(see Ghandour and Mezei [47], Iverson [73] 
and Cheney[23]). This operator is dyadic, 
taking a monadic function and an integer 
scalar (say N) as its arguments, and is 
defined to return a monadic derived 
function which applies the given function 
to its argument N times sequentially. For 
example, if we use ~ to denote the power 
operator then the expression "(F~3) A" is 
equivalent to the expression "F F F A". 
If the function argument has a computable 
inverse, then the derived function can be 
defined for negative integer powers as the 
corresponding power of the inverse of F. 
The power limit operator defined by 
Iverson [73] applies its function argument 
repeatedly until the results of two 
successive applications are equal. This 
operator thus provides a facility similar 
to the "WHILE" control structure of other 
languages. STSC Inc.'s NARS system [23] 
features both of these power operators, as 
well as the power series operator which 
accumulates the results of a series of 
increasingly higher power inner products 
between a square matrix and itself until 
two successive results are equal. Smith 
[177] describes a number of useful 
applications of this operator, including 
paragraph formation, mini-max problems and 
other problems involving the transitive 
closure or least-cost traversal of 
directed graphs. A dyadic derived form of 
the power series operator has also been 
added to the NARS system [178] to allow a 
vector of coefficients to be specified as 
the derived function's left argument. 

Mesh and Mask. Iverson describes two 
functions called mesh and mask in his 
original work on APL [70] that have not 
been included in current APL, probably 
because they require three arguments. 
However, Iverson [75] describes how the 
expand and compress functions could be 
interpreted as operators, freeing them for 
new dyadic derived forms which could be 
used to denote mesh and mask. McDonnell 
[118] has suggested an extension to this 
scheme which allows positive or negative 
integer vectors (as opposed to boolean 
vectors) to be used as arguments to the 
mesh and mask operators. These integers 
would be interpreted as specifying 
replication factors, with negative factors 
selecting from the left argument (of the 
derived function) and positive factors 
selecting from the right. Zero-valued 
factors would select either from neither 
argument (mask) or select the fill element 
of the right argument (mesh). Versions of 
the mesh and mask operators have been 
implemented on STSC Inc.'s NARS system, 
but with a syntax slightly different from 
Iverson's (they are expressed as dyadic 
forms derived from the composition of the 
selection vector with the expand and 
compress functions rather than as dyadic 
derived forms of expand and compress 

operators; see Cheney [23]). 

Another operator called mesh but 
having different semantics is defined by 
Jenkins and Michel [83]; see the section 
on Assignment. 

Miscellaneous Operators. A number of 
miscellaneous operators are defined by 
Iverson [73]: the scalar operators are 
defined from the scalar functions as a 
type of composition between the given 
scalar function and the operator's two 
arguments. For example, the scalar 
operator ¥ is defined so that the 
expression "A FYG B" is equivalent to 
"(A F B) +A G B" and similarly for monadic 
F and G. The derivative and difference 
operators are defined from the derivative 
operator and the related difference 
quotient expression from calculus. The 
commutator operator (Z) commutes the sense 
of a function's arguments (so that 
A -~ B ÷+ B - A) and is especially useful 
in building certain operator sequences 
(this operator has been implemented on 
STSC Inc.'s NARS system under the name 
commute; see Cheney [23]). 

The identit Z operator yields the 
identity function of its function argument 
in the sense that x and * are the identity 
functions of + and × respectively (see 
Iverson [73] for more information). The 
variant operator (?) is used to obtain 
variant versions of functions which depend 
on some implicit argument such as DIO or 
DCT; thus iTK yields a vector whose origin 
is K. The domain operator (~o) derives 
from a function a proposition which 
determines whether or not the propositions 
arguments are in the domain of the 
function. The valence operator (~) may 
be used to fix its function argument as 
either specifically monadic or 
specifically dyadic..through expressions 
such as "+AI" or "+A2". 

User-defined Operators. Several 
proposals have been made which suggest 
that users should be able to define their 
own operators, just as they can define 
functions in current APL. The APL-based 
language ALICE allows the definition of 
functionals, which may be operators or 
even higher or mixed order objects (see 
Jenkins [86]). Georgeff et. al. [45, 46] 
describe a syntax which could be used for 
operator abstractions, noting that under 
their parsing schemes separate operators 
would have to be used for monadic and 
dyadic operator abstraction. 

IV. Evaluation and the System Environment 

Although its data structures and the 
functions used to manipulate them form the 
core of the APL language, in order to be 
of practical use in an implementation they 
must be embedded in a system which will 
allow them to be applied to solving real 
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problems. The APL system achieves this by 
allowing users to evaluate expressions; to 
read, write and store data; to assign 
meaningful names to data and functions; to 
manipulate and query the systems 
environment; and to control and monitor 
the actions of the system itself. APL is 
notable among programming languages for 
its interactive nature and for its 
self-contained system environment which 
shields users from outside operating 
systems. This feature makes APL 
particularly well-suited to those who 
desire the use of a computer but who do 
not wish to immerse themselves in the 
intricacies of a large operating system 
which encompasses several processors. On 
the other hand, this self-contained nature 
also makes it difficult for more 
sophisticated users to interface APL with 
other processors in a natural way. 

Other areas where APL's system 
environment is found to be lacking 
include: difficulties in combining 
functions and data into easily interfaced 
packages, a lack of control over name 
scopes and bindings, problems with system 
manipulation from program control and with 
the automation of processes, and 
inflexibility in handling errors. 
Although less research has been done to 
formalize this area of concern than has 
been done in the areas of data structure 
and functional extensions, many proposals 
have been made that would help solve these 
problems. 

IV.A. Names, Naming and Data Access 

In order to store data (and functions) 
for use in later calculations, APL allows 
names to be assigned to theseentities 
through the use of the assignment arrow 
(÷). Sets of named entities are gathered 
together into collections called 
workspaces, which typically hold the 
functions and arrays that combine to 
handle some particular applications 
problem. Named data may also be shared 
between different users or shared across 
the environmental boundaries of function 
execution. The proposals discussed below 
suggest extensions to these facilities 
which would allow more general forms of 
assignment, which would generalize the 
concept of collections of named data and 
which would allow more flexibility in 
specifying name scopes. 

Assignment. The assignment arrow is 
an exceptional "function" in APL because 
of its unique properties; unlike other 
primitive functions, assignment does not 
return a result (or at least does not 
print its returned result) when it occurs 
as the root (or principle) function of an 
expression, although it does return a 
result when used in the middle of an 
expression. Assignment is the only 
primitive function (aside from system 

functions) which causes side effects; 
i.e., changes in the system environment. 
Finally, assignment is the only function 
which does not evaluate one of its 
arguments, but rather acts upon an 
unevaluated name. 

Assignment does not always take a 
simple name as its left argument: the 
indexed form of assignment (e.g., 
"A[I]÷B") allows an expression involving 
a selection function and a name to be used 
as the target of assignment. This has the 
effect of assigning a value not to a named 
array itself, but to some location within 
a named array. Several proposals [18, 47, 
68, 83] have suggested that this facility 
be extended to a more general one in which 
expressions involving named arrays and any 
selection function (not just indexing) be 
allowed on the left of assignment. Brown 
[18] achieves this through the 
manipulation of arrays in the name 
domain on the left of assignment using 
selection functions. Jenkins and Michel 
[83] demonstrate that expressions of this 
kind may be achieved through a purely 
syntactic transformation of expressions 
involving an explicit operator called mesh 
(~). One advantage to their approach is 
that the whole modified array is returned 
as a result (i.e., not just the modified 
portion), and it may be assigned to any 
variable and not just to the named array. 
Simple assignment in current APL is 
limited to taking a single name as its 
left argument, but STSC Inc.'s NARS system 
(see Cheney [23]) allows multiple names to 
be assigned simultaneously using strand 
notation. This form of assignment takes 
a list of names on the left and a vector 
of equal length (or a scalar) on the 
right, and assigns elements of the vector 
(or the extended scalar) to the 
corresponding names. Strand notation is 
still somewhat controversial, however, and 
strand notation assignment is particularly 
controversial (see Iverson et. al. [77]). 
Brown's definition of the name domain 
(see [18]) to the left of assignment also 
allows the specification of multiple 
names. Another proposed generalization of 
assignment would allow expressions of the 
form "I÷I+l" to be shortened by allowing 
the assignment arrow to act somewhat like 
an operator, taking a function left 
argument and producing a function which 
modifies the value of its named left 
argument. For example, the incrementation 
expression above would be written "I+÷i". 
This form of assignment has been 
implemented on Burrou?hs' APL/700 [193] 
and also on STSC Inc. s NARS system (see 
Smith [178]). 

Iverson [73] defines a new form of 
assignment ($) which is used to assign a 
name to a function-valued expression 
(i.e., an expression whose evaluation 
results in a function). Sernecky and 
Iverson [9] use the assignment arrow of 
current APL to assign names to derived 
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functions (i.e., the function results of 
operators). In combination with a direct 
definition operator (see the section on 
Defined Functions), assignment facilities 
of this type allow the assignment of a 
name to a defined function without 
recourse to the current function fixing 
methods. 

Collections of Named Data. Current 
APL supports a tw--o- (and sometimes three-) 
tiered system for storing and manipulating 
collections of named objects. The first 
tier of this system is the library, which 
is a collection of workspaces which is 
referenced by a number, and which 
typically contains a single user's data. 
The second tier of the system is the 
workspace, a collection of named functions 
and arrays which is itself referenced by 
name and which typically holds the 
functions and data which combine to solve 
some applications problem. Some current 
APL systems still support a third tier of 
this system called the group, which is a 
collection of named functions, arrays and 
other groups, and which is itself 
referenced by name; most systems, however, 
are withdrawing their support for the 
group facility. All of these types of 
collections are manipulated in current APL 
through the use of system commands; system 
commands are extra-linguistic inquiries 
and directives that may be entered in 
APL's immediate execution mode. 

This system for accessing collections 
of named objects presents one major 
problem for the development of 
general-purpose applications packages: 
because of the extra-linguistic nature of 
the system commands, there is no way for 
these objects to be manipulated under 
program control. Some systems have 
attempted to solve this problem by 
allowing system commands to be executed 
under program control indirectly through 
the execute function. Several other 
systems have attempted to solve this 
problem by replacing their system command 
set with a set 9~ sy~t~ fp~ctions an d 
variables that ile wltnln tne scope or the 

language and are thus able to be used 
under program control. For example, many 
systems now support the system function 
DNL, which allows the name usages in the 
current environment to be examined under 
program control. For more on the move 
from system commands to system functions 
and variables, see the section on the 
System Interface. 

Another solution to the problem of 
manipulating named data under program 
control is the package data type 
implemented on the SHARP APL system (see 
Berry [ii, 12] and [191]). A package is 
a collection of named functions and arrays 
(and possibly other packages) which has no 
external structure but which may be used 
to store, retrieve and, in general, 

exchange its contents. Packages are 
manipulated with system functions and are 
in general not in the domain of other 
primitive functions; this is largely due 
to the fact that they have no external 
structure (and thus are not suitable 
arguments to structural functions) and are 
not allowed to be items of an array. 

Several proposals have discussed 
generalizations of the collections of 
named entities which exist in current APL. 
Ryan [163] briefly describes objects 
called name contexts which generalize 
properties of workspaces and function 
execution environments and which allow 
greater control over name bindings. 
Murray [140] defines similar objects 
called namespaces which provide facilities 
for gathering named data and functions 
into collections and for specifying the 
kinds of interactions that may occur 
between them. Finally, Crick [29] has 
discussed a very broad scheme to 
generalize many APL entities (arrays, 
functions, libraries, workspaces, groups, 
etc.) into a single type of entity called 
generalized objects. His scheme calls for 
the use of nested arrays that may be 
indexed with character strings and that 
provide better facilities for sharing and 
access control, and also for a new data 
representation for functions. The 
generalization provided through this 
scheme makes possible a uniform syntax for 
the manipulation of libraries, workspaces, 
arrays, functions and other objects. 

Data Sharing, Access and Security. 
APL systems are typically interactive, 
multi-user environments. It is often 
desirable in such an environment to allow 
different users to share the same stored 
data and functions, but it is also 
desirable that users be able to protect 
sensitive data from being accessed by 
unauthorized parties. In order to allow 
data to be shared between different users, 
most current APL implementations include 
a shared variable facility. With this 
facility, two users share access to a 
single variable, and may explicitly assign 
values to this variable and query its 
state through shared variable system 
functions. Falkoff [35] discusses some of 
the implications of the shared variable 
facility, including the rationalization of 
system variables and system input and 
output facilities (D and ~) as being 
variables shared between the user and the 
system. Shared variables are also used in 
many implementations to allow APL users to 
communicate with outside processes and 
system facilities, especially with file 
system processors (see the section on 
F11es in Data Types and Structures). 

Shared variables have been criticized 
for being insufficiently general in that 
they allow sharing between only two users 
(or processors); Shastry [173] describes 
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a shared variable facility which allows 
sharing between multiple users. 

A less explicit form of data sharing 
is available through APL's library system, 
which allows users to access the libraries 
of other users as well as the "public 
libraries" available on most systems. In 
order to provide better security for user 
libraries, most systems allow passwords to 
be attached to libraries and workspaces by 
their creator. Although the password 
system provides some measure of security, 
it is insufficiently powerful and flexible 
for the needs of most users (see Wheeler 
[185]). Wheeler [185] describes the use 
of access matrices to provide better 
control over access to libraries and 
workspaces. These matrices have long been 
used to provide better security within 
file processing subsystems and would under 
this proposal allow users to specify 
exactly who may read, write, copy, save, 
etc. into or out from a given workspace or 
library. 

Another security device found on many 
APL systems is a facility for lockin~ 
function definitions, which bars them from 
all further scrutiny. This facility is 
again quite restrictive, as it does not 
allow any differentiation as to who can 
access the function, barring even the 
function's creator from further inspection 
of the definition. In his proposal for 
generalized objects, Crick [29] requires 
that access matrices be extended to all 
arrays and their components, and thus to 
the generalized objects representing 
libraries, workspaces, arrays, functions, 
etc. This scheme provides full and 
uniform security facilities to all parts 
of a system. 

Name Scope Control. In current APL, 
the calling of a defined function 
initiates a new local environment for the 
duration of function execution (an 
environment being a combination of system 
information and a set of bindings between 
variable names and objects). The function 
definition specifies a list of variable 
names whose values in the calling 
environment are to be blocked from access 
from within the local environment; the 
values of all other variables from the 
global (calling) environment remain 
accessible during function execution. 
This dynamic scoping mechanism is simple 
and easy to use, but its very simplicity 
can lead to problems with name scope 
control. For example (following Seeds et. 
al. [170]), a calling function or 
environment is unable to protect itself 
from a called function because the 
responsibility for specifying scopes rests 
with the called function. Another problem 
is that the inadvertent omission of names 
from the list of local variables can lead 
to unforseen (and difficult to trace) name 
conflicts. Seeds et. al. [170] have 

described an extended scope control 
facility which allows a variety of scopes 
to be declared linking (or barring 
linkage) of variable bindings between the 
calling, current and called environments. 
The proposed facilities allow different 
types of scope to be declared for each 
variable in the function header list and 
also allow a default scope to be specified 
for any variables not mentioned. This 
proposal and several other ideas for scope 
control mechanisms are discussed briefly 
by Gilmore [52]. 

Miscellaneous. Both Abrams [2] and 
Brown [18] have expressed a desire for a 
"call-by-name" facility in APL which would 
allow a name (and its binding in the 
global environment) to be passed to a 
function unevaluated. This is similar to 
the FEXPR facility in LISP and to the 
treatment of the left argument to 
assignment in current APL. As 
demonstrated by Abrams [2], the passage of 
a character string representing a name and 
the subsequent use of the execute function 
is an insufficient solution since the name 
may be shadowed in the local environment 
by a localization and redefinition of the 
variable. Brown [18] shows how his define 
function and definition-of operator can be 
used to effect a similar facility which 
allows the passage of unevaluated 
functions and expressions to a called 
function. He notes that this method 
associates the "call-by-name" property 
with the actual parameter to the function 
(as opposed to the formal parameter or to 
the function itself). He also 
demonstrates that this method does not 
solve the problem with passing a shadowed 
name. 

Brown [18] and Holmes [68] both 
discuss ways to implement what are 
commonly known as overlays, i.e., 
variables which refer not to separate 
locations in memory but rather to 
locations shared by some other variable. 
For example, such a facility would allow 
the main diagonal of some named array to 
be named itself, so that changes in the 
value of one would be reflected in the 
other. Brown achieves this facility 
through the use of specificatiDn in the 
name domain to the left of assignment or 
through the use of his activation 
function. Holmes defines the aspect 
function to allow the indexing of arrays 
through "aspects" of the arrays, which may 
be shaped dlfferently from the original; 
the ability to name these aspects realizes 
the overlay capability. Brown notes in 
his proposal that strong conformability 
requirements are placed on overlays, and 
that re-specification of the overlayed 
array may invalidate future specifications 
or references to the overlay. Holmes 
suggests several ways in which these 
problems may be overcome by special 
interpretations of non-standard aspects 
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such as empty or character arrays. 

IV.B. The System Interface 

Current APL provides several means for 
users to query and otherwise interact with 
the system environment. These facilities 
allow users to perform a variety of tasks: 
signing on and off of the system; managing 
libraries, workspaces and other 
collections of named data; setting various 
system parameters; querying the state of 
system execution; and canonically defining 
functions. Although early APL 
implementations largely kept these 
functions out of the domain of the 
language itself, current trends seem to be 
in favor of greater program control over 
these facilities (see Falkoff and Iverson 
[Fa2] ) . 

System Commands and I-Beams. Early 
implementations of APL provided access to 
workspace management facilities, execution 
state information and other system 
interfaces largely through 
extra-linguistic entities called system 
commands. At that stage in the 
development of APL these facilities were 
still considered to be separate from the 
language itself and so they were provided 
in a form which allowed their use only 
directly by the user in immediate 
execution mode. 

This limitation was imposed through 
the use of the right parenthesis as an 
escape character which preceded all system 
command keywords and which therefore 
signalled the need for extra-linguistic 
action. These keywords were followed by 
one or more parameters which, being again 
outside the scope of the language, could 
only be constants and not variables or 
expressions to be evaluated by the system. 

The desire to allow at least some sort 
of communication with the system from 
within program control led to the 
implementation of the I-beam functions 
(I). These pseudo-primitive "functions" 
allowed a small set of system parameters 
and account and timing information to be 
set or queried. However, the action of 
these functions were controlled by rather 
arbitrary numeric encodings, and they were 
still quite limited in application; a more 
syntactically regular and powerful form of 
system interface was needed to truly bring 
system management into the domain of the 
language itself. 

System Functions and Variables. With 
the advent of shared variables in IBM's 
APLSV release of APL came the 
rationalization of a system interface as 
a set of variables shared between the 
system and a user's workspace (see Falkoff 
[35] for more on the implications of 
shared variables). This led to the 
definition of a large number of system 

functions and system variables which were 
given reserved names beginning with the 
quad character (D). System functions are 
able to handle a wide variety of tasks 
including function definition, name class 
and name usage queries, object erasure, 
data formatting and timing, account and 
execution state information. System 
variables are used to set and query a 
number of system parameters including 
index origin, comparison tolerance and 
printing precision. In addition, all of 
these facilities are available under 
program control, and system variables can 
even be localized within a defined 
function just as other variables are. 

Now that the use of system functions 
and variables has become widespread, they 
have begun to be used to rationalize 
access to a wide variety of 
implementation-dependent facilities such 
as file systems, event trapping mechanisms 
and certain pseudo-primitive functions 
which have yet to be fully accepted as 
part of the APL language. Nonetheless, a 
number of facilities which are available 
through system commands still have no 
equivalents among the current set of 
system functions common to most 
implementations. 

A notable example is the case of 
workspace management facilities; most 
systems have yet to define system function 
equivalents to system commands such as 
OLOAD and ~COPY. Crick [26] has praised 
the "clean" implementation of such 
functions on the University of 
Massachussets APLUM system (see Wiedmann 
[188]). Wheeler [185] has recently 
proposed a similar but even more complete 
set of system functions for workspace 
management. 

Myrna [141] has expressed concern over 
the proliferation of system functions and 
variables and over the lack of uniformity 
in their names; he suggests some 
conventions for both the semantics and 
naming of system objects which might help 
to alleviate these problems. 

IV.C Input and Output 

One system facility which is certainly 
necessary for real computing tasks is the 
ability to read and write information to 
and from the user. Current APL offers a 
variety of ways to perform these tasks. 
Input may be made in immediate execution 
mode (where the given input is interpreted 
as an expression to be evaluated), in an 
evaluated input mode (where the input is 
evaluated and the result passed to the 
calling function) or in an unevaluated 
mode (where the character string actually 
read is returned to the calling function. 
Output may occur either by default (if 
the result of an expression is not 
assigned to a variable the result is 
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printed out) or through the use of the 
explicit output facilities ~ and ~ . All 
of the output facilities mentioned above 
default to the same output formatting 
conventions, but the formatting of numeric 
output may be explicitly controlled with 
the dyadic primitive format function (v). 

Several proposals have been made to 
provide new facilities which would allow 
better and more flexible control over the 
environment in which input is evaluated, 
the occurrence and format of output and 
the kinds of input and output facilities 
which are available. 

Evaluated Input. Wells [184] has 
suggested that the expressions which are 
read during evaluated input mode should be 
evaluated in the global environment of the 
workspace rather than in the local 
environment of the calling function. This 
refinement would solve problems that 
result from conflicts between global and 
local definitions of variables referenced 
in the input which is to be evaluated. 

Sink and Display Potential. STSC 
Inc.'s NARS system recognizes a property 
of functions called display potential 
which controls whether or not the result 
of the function will display by default 
when executed from within a defined 
function. The display potential of a 
defined function may be turned off by 
placing the name of the function's result 
in braces in the function header. The 
display potential of certain system 
functions such as ~EX is defined to be 
turned off. This facility is especially 
useful when used with functions whose 
results are sometimes useful but often not 
needed. STSC Inc.'s NARS system also 
provides a primitive facility called sink 
(monadic use of ÷) which prevents its 
argument from being displayed. Default 
display of the results is provided in both 
cases (i.e., sink and display potential 
off) if the function line being executed 
is traced. 

Arbitrary Input and Output. Several 
implementations of APL now provide output 
facilities which allow arbitrary 
transmission codes to be sent to a 
terminal unedited by the system, and input 
facilities which allow unedited codes to 
be dead from a terminal. These facilities 
are particularly useful for sending 
control code commands to intelligent 
terminals and graphics devices. Some 
implementations use system functions to 
provide these facilities (e.g., the ~ARBIN 
and DARBOUT functions of SHARP APL; see 
Berry [II]); others use primitive 
facilities similar to ~ and ~ (e.g., the 
facility of UNIVAC ii00 APL; see [195]). 
Myrna and Ryan [142] discuss the extension 
of APL's input and output facilities to 
better accommodate modern terminals 
directly in order to provide more 
convenience and flexibility. 

Formatting. Current APL provides 
monadic and dyadic primitive format 
functions (v) to convert numeric data to 
character form and to allow control of 
column alignment and digit display. These 
facilities are of limited usefulness by 
themselves because of their simplicity, 
and several proposals have been made to 
extend their capabilities or to provide 
other, more powerful formatting functions. 
The original proposal for the dyadic 
format function by Seeds and Arpin [169] 
allowed for greater control over the type 
of formatting used by adding a third 
element to the left control argument of 
the function. 

Many APL implementations now support 
a system function DFMT which provides a 
very versatile formatting facility that 
allows inserted text and decorations, 
qualified display fields and a variety of 
special format field types. However, this 
function has been criticized for its use 
of a "list" argument specified with 
semicolons to separate expressions for 
several arrays. 

Falkoff [37] defines a pictorial 
format function which uses a character 
vector left argument to specify the form 
used to display its array right argument. 
The format picture argument uses blanks, 
text symbols and digit codes to specify a 
wide variety of format types, and is 
notable in that its length corresponds 
exactly to the width of the formatted 
result (scalar extension notwithstanding). 

For information on the formatting of 
nested arrays, see the section on Nested 
Array Input and Output. 

IV.D Control of Execution 

It is often very useful to allow the 
users of a system to monitor and control 
the system's execution or to allow 
different processes within a system to 
monitor or control one another in an 
automated way. Early implementations of 
APL included little if any facilities to 
monitor, control or automate the execution 
of the system. However, with the growth 
of the language into larger and more 
diverse applications within commercial 
production environments, such facilities 
have become very desirable. The proposals 
discussed below concern refinements and 
additions to APL in the areas of debugging 
facilities (such as tracing and monitoring 
facilities), the automation of processes 
and explicit user control over the 
handling of errors and other events. 

Stopping, Tracing and Monitoring. 
Often during the development of an 
application it is convenient to be able to 
monitor the execution of functions, and 
thus to determine whether or not they are 
performing as intended. Because of its 
dynamic, interactive nature, APL has 
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always been a particularly good 
environment in which to perform such 
debugging tasks. 

In current APL, debugging facilities 
are supplied through the stop and trace 
vector controls: lines of a defined 
function are set for stopping or tracing 
by specifying the appropriate control 
vector to be equal to a vector of the 
desired line numbers. The name of the 
control vector is gotten by prefixing the 
function's name with one of the prefixes 
SA or TA. Upon execution of the line of 
the defined function, the function's name 
and the line number will be printed and 
either function execution will be suspended 
for lines set to stop) or the value of the 
result of the expression on that line will 
be printed (for lines set to trace). Stop 
and trace control values cannot be queried 
or otherwise obtained for use in 
calculations and are removed by assigning 
the empty vector to the appropriate 
control vector. 

Several systems have regularized these 
facilities by implementing them as system 
functions called ~STOP and DTRACE, which 
in their dyadic forms take a function name 
and a vector of the line numbers to be 
affected as their arguments, and which in 
their monadic forms return the current 
line numbers which are set for the 
specified function (see for example the 
APLUM system; see Wiedmann [188]). 

Another facility which would be 
helpful for debugging and especially for 
tuning algorithms would be one which would 
allow function execution time to be 
monitored. On the University of 
Massachussets APLUM system (see Wiedmann 
[188]) this facility is supported through 
the ~LTIME system function which is 
defined to parallel the DSTOP and DTRACE 
~unctions. Burroughs APL/700 implements 
a symmetric set of functions to set, reset 
and query settings for stopping, tracing 
and monitoring of function lines. 

Kline [95] suggests a facility which 
would allow variable access to be stopped 
or traced; i.e., controls similar to the SA 
and TA controls for functions would halt 
execution or print a value upon every 
reference or re-specification of a 
variable. Samson and Ouellet [164] 
recognize all of these debugging 
facilities as being based on the trapping 
of certain events (e.g., the events of a 
function line being executed or of a 
variable being set), and thus subsume 
these facilities within the context of a 
more general event trapping facility. 

Automated Execution. APL has 
traditionally been implemented as an 
interpreted interactive system which 
communicates directly with the user. 
Other programming systems have often been 

implemented in such a way as to allow 
their execution to be controlled 
automatically (such systems are often 
called "batch" systems). Abrams and Myrna 
[3] note that although most applications 
systems are most easily developed in an 
interactive mode, as an application 
matures and stabilizes an automated mode 
of execution becomes desirable. An 
overview of the automated execution 
facilities provided by two implementations 
(those of I. P. Sharp Associates, Inc. and 
STSC Inc.) is presented below. For 
further information on the facilities of 
these systems see Berry [ii] and Abrams 
and Myrna [3]. 

Both of these implementations allow 
APL processes, or tasks, to be executed 
automatically by allowing the user to 
specify two files related to the task: one 
which represents a sequence of inputs for 
the task (a source file) and one which is 
specified to receive the output produced 
by the execution of the task (a sink 
file). Once these files are specl~ed, a 
system function is used to specify other 
information about the task including 
identification, execution time limits, 
etc. 

In general, two types of automated tasks 
can be run: those which run concurrently 
with the initiating (user's) task and those 
which are specified to be run 
automatically by the system at some later 
time. These two types of tasks are called 
non-terminal and batch tasks, 
respectively, by I. P. Sharp Associates, 
Inc. and detached and deferred tasks, 
respectively, by STSC Inc. 

Event Trapping. Certain expressions 
in APL can be impossible to evaluate for 
a variety of reasons: the expression may 
be ill-formed or contain references to 
variables which have not been assigned a 
value; functions may be applied to 
arguments which are outside the function's 
defined domain or to arguments whose 
structures do not conform in an allowable 
way; and in some cases there may not be 
sufficient system resources available to 
evaluate an expression. In all of these 
cases, current APL systems suspend 
evaluation of the expression and print an 
error message to the user indicating the 
type of problem encountered and the point 
in the expression where the problem 
occurred. Current APL also allows the 
user to suspend evaluation manually by 
generating an interrupt signal from the 
terminal. In both of these cases, control 
is returned to the user and evaluation 
continues in immediate execution mode 
within the environment that was current 
when the error or interrupt occurred. 

Although this kind of action by the 
system is desirable under certain 
circumstances (for example, during casual 
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exploration in immediate execution mode, 
or when an application is being developed 
and debugged), it is often desirable to 
allow other kinds of actions to be taken 
by the system, as specified by the user or 
programmer (for example, in 
security-sensitive situations or in 
applications where APL's role is not meant 
to be visible). Several implementations 
now support facilities for specifying 
alternative system action upon the 
occurrence of certain events; such 
facilities are often called event trappin9 
mechanisms. 

In general, three kinds of 
capabilities constitute an event trapping 
mechanism: a means for the system to 
specify the type of event which has 
occurred, a means for the user to specify 
the alternative action which is to be 
taken and (sometimes) a means for the user 
to simulate normal error handling with a 
specified error message. In most 
implementations the system specifies the 
type of event that has occurred by setting 
a system variable to contain a character 
matrix representing the normal error 
message. This information can then be 
used by a user-specified error handler to 
respond appropriately to different types 
of errors. 

Several different methods are used in 
different implementations to allow 
specification of the action to be taken 
upon the occurrence of a trappable event: 
Hewlett Packard's APL\3000 uses the dyadic 
system function 0EMODto specify an 
expression to be executed when an event of 
a specified type occurs (see Marcum 
[106]). The University of Massachussets 
APLUM system (see Wiedmann [188]) uses the 
system function 0TRAP to force a branch to 
a specified line of the executing 
function. I. P. Sharp Associates, Inc.'s 
SHARP APL uses a system variable, also 
called 0TRAP, to specify which of several 
different kinds of action will be taken 
upon the occurrence of events of the 
correspondingly specified type (see Berry 
[ii]). Both STSC Inc.'s APL*PLUS system 
(see Gilmore and Puckett [72]) and a 
proposal by Samson and Ouellet [164] use 
system variables to specify latent 
expressions which are to be executed upon 
the occurrence of different events. 

Both the SHARP APL and APL*PLUS 
systems and the latter proposal allow 
users to simulate error message interrupts 
by specifying the message with a DSIGNAL 
or OERROR system function. 

The proposal by Samson and Ouellet 
[164] suggests generalizations of several 
capabilities over some previous proposals, 
including a larger variety of trappable 
events and greater control over 
manipulation of the execution stack. This 
proposal also allows access to the context 

of evaluation which was current when an 
event occurred through system variables 
which hold the name of the currently 
executing function (0F) and the values of 
its left and right arguments (DX and 0Y). 

V. Miscellaneous Extensions 

Several proposals are discussed below 
which are difficult to classify because 
they do not seem to fit into any of the 
above categories or because they seem to 
fit well into more than one of these 
categories. 

Comments. APL currently allows 
canonically defined functions to be 
documented through the use of comments 
(denoted by the comment symbol A) ; the 
comment symbol is placed at the beginning 
of a line and all subsequent characters in 
that line are ignored for the purposes of 
function execution. Many implementations 
now allow comments to be placed at the end 
of a line, following an executable 
statement, and some allow this usage in 
immediate execution mode. Mengarini [124] 
has suggested that APL be extended to 
include a more functional type of 
commentary called formal comments (denoted 
by n). These comments are simply 
boolean-valued expressions (propositions) 
that describe conditions which are desired 
or expected at some point during a 
function's execution; if these conditions 
are found not to hold (i.e., if any zeros 
occur in the result of the proposition) a 
formal error is reported and function 
execution is suspended. Thus this type of 
comment provides both documentation of a 
programmer's intent and a means for 
verifying that a function is executing as 
intended. 

Statement Separation. Several APL 
implementations now allow a number of 
statements to be entered on a single line, 
separated by a statement separator symbol 
(usually the diamond symbol 0). The 
statements entered in this way are 
executed sequentially, just as they would 
be if entered on separate lines (except 
for some differences concerning 
branching). Most implementations that 
allow the use of the statement separator 
allow its use both in immediate execution 
mode and within canonical function 
definitions, although others define it 
only as a less powerful aid to function 
definition, interpreting each statement as 
a separate function line (see Crick [26]). 

Crick [27] describes a more powerful 
syntactic construct called recipe idiom, 
which he claims allows APL statements to 
be written and read in a more natural 
fashion. Recipe idiom allows several 
expressions to be joined by a statement 
separator and provides a way to pass the 
results of these expressions on as 
arguments to subsequent expressions using 
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a stack facility. 

Arrays of Functions. Several 
proposals have discussed the possibility 
of allowing arrays to hold functions as 
their elements. Iverson [75] mentions this 
idea in the context of concatenation and 
selection operators that would be used to 
manipulate such arrays. Cherlin [24] 
expresses a desire for this capability in 
new implementations, but does not describe 
any plans for its design. Brown [18] 
gives a proposal for creating arrays of 
functions and also describes rules for 
applying such arrays to data array 
arguments. 

Alternate Token Forms. Since most 
terminals in common use do not support the 
full APL character set, many APL 
implementations allow special code-forms 
constructed from available characters to 
be interpreted as APL symbols. The 
schemes used to construct these code-forms 
encompass a wide variety of techniques 
ranging from mnemonic single-symbol 
substitutions to escape character 
sequences and complete spellings of the 
symbol names. 

Crick [28] has described a complete 
and consistent proposal for for an ASCII 
notation for APL. The proposal includes 
ASCII symbol and keyword equivalents for 
all APL functions as well as a special 
construct for binding arguments to 
operators. He motivates adoption of the 
proposal from several points of view, 
including standardization, the broader 
acceptance of APL and the economics of 
printing terminals. 

Graphics Capabilities. A common 
computer application which APL does not 
support directly is the creation, 
manipulation and drawing of graphics 
structures. Several proposals have been 
made to incorporate more primitive support 
for graphics in APL. 

Bork [13, 14] has suggested that a 
primitive graphics facility be included in 
the language in the form of primitive 
input and output facilities which plot 
points and specify such output controls as 
scaling and transformation parameters. 
Galbraith [43] describes an implementation 
of such facilities. Hardwick [61] uses an 
extensible version of APL to define 
various graphic structures and the 
functions that manipulate them. This last 
approach avoids the addition of primitive 
facilities designed specifically for 
graphic objects and also provides for 
extensions to other user-defined data 
types. 

VI. Conclusions 

In this section I hope to draw some 
general conclusions about the past, 

present and future of APL language 
extension. The topics covered will 
include a discussion of the changing 
circumstances surrounding the language 
design effort and how they affect that 
effort; the identification of some major 
themes in current research and thei[ 
relation to mainstream language design 
theory; and some questions about the 
ultimate goals of APL language extension. 

APL's early design phase was 
characterized by a number of circumstances 
which influenced its character and which 
were beneficial to its development 
(following Falkoff and Iverson [Fal, 
Fa2]) : the design was carried out by a 
small group which included all parties 
involved in the research and 
implementation effort; all decisions were 
arrived at by Quaker consensus so that 
disagreements were resolved before any new 
feature was implemented; and finally, the 
design itself was motivated solely by the 
aesthetic, theoretical and practical 
concerns of the designers, relatively free 
from the influence of other languages and 
from commercial imperatives, so that major 
design changes could be made without 
concern for conformance to popular trends 
or for their effect on compatibility. 

Since this time many changes have 
taken place in the circumstances 
surrounding APL language design: a large 
number of groups and individuals are 
independently involved in the research and 
implementation of extensions to the 
original language on systems supported by 
a wide variety of commercial and academic 
institutions. Although there is a good 
deal of communication between these 
parties, it is necessarily less frequent 
and less effective than it was among the 
members of the single small group that 
performed the original design. Often the 
research efforts and even the 
implementations of two groups diverge 
sharply in the absence of consensus 
agreement. Finally, the growth of the 
popularity and thus the visibility of the 
language has placed pressure on 
implementors to enhance its commercial 
appeal, to conform to the popular 
trends of mainstream language design and 
to remain highly compatible with previous 
versions of the language. 

Some of these changes may not 
necessarily have a negative effect on the 
language; for example, the growth in the 
number of different research projects 
aimed at language design could easily 
benefit the extension effort by providing 
it with a broader, more diverse base of 
ideas upon which to draw. The commercial 
success of the language is certainly 
crucial in providing support for language 
extension research and implementation. 
Finally, the influence of other languages 
could also be of great benefit to APL in 
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its present stage of development; although 
in the past APL has often seemed far 
removed from the mainstream of language 
design research, a comparison of the major 
trends which are current in these two 
areas reveals some striking similarities. 

The two most obviously important 
extensions which are currently being 
incorporated into APL are the 
generalization of arrays to nested arrays 
and the formalization and generalization 
of operators. Another important set of 
extensions which may not be so obvious is 
the move toward the subsumption of APL's 
naming and execution environments into the 
domain of the language itself. This trend 
is indicated by the increasing favor of 
system functions and variables over system 
commands and the incorporation in the 
language of ever more powerful facilities 
for scope control, environmental 
manipulation and controlled execution. A 
major unifying influence on trends in this 
area may be Michael Crick's proposal for 
generalized objects which would bring 
together workspaces, data, functions and 
even processes under a single construct 
(see Crick [29]). 

How do these trends relate to trends 
in the design of other programming 
languages? For example, as Giloi observes 
[Gil], language designers outside of APL 
such as Edsger Dijkstra are finally 
beginning to recognize the power of 
treating arrays as whole entities. APL 
was also clearly a major influence on John 
Backus' concept of functional programming 
(see Backus [Bal]). Now that operators 
are becoming fully recognized in APL~ it 
is possible that research in functional 
programming may converge in many respects 
with research on operator extensions and 
generalizations. Finally, the unification 
of APL entities brought about through 
Crick's generalized objects is very 
similar to the unification of objects in 
object-generic languages like Smalltalk. 
Experience with these languages may help 
determine whether or not such extensions 
might be appropriate for APL. 

A question raised by Abrams [2] seems 
particularly relevant in the light of 
these comparisons: at what point do we 
stop extending APL and start designing an 
entirely new language? As he points out, 
attempting to extend the language 
indefinitely while preserving weaknesses 
or simple stylistic differences inherent 
in the original design may result in a 
clumsy, constrained or inconsistent 
language. Should we stop adding to APL 
and start designing new languages which 
better embody its basic principles or 
which exploit entirely new concepts? Can 
we continue to extend the language freely 
when faced with the compatibility 
requirements of a rapidly growing base of 
serious users? 

Since Abrams first posed these 
questions, several languages have been 
implemented which are based on APL, but 
which occasionally generalize some of its 
capabilities and which depart from its 
unique style in other respects. Examples 
of such languages are the extensible 
languages X\APL and ALICE (see Braffort 
and Michel [16] and Jenkins and Michel 
[86], respectively), the Array Theoretic 
language NIAL (see Jenkins [88]) and the 
structured language APLGOL (see Kelley et. 
al. [92, 93]). Are the changes which 
these languages introduce for the better 
or the worse, or are they simply 
different? And are they truly 
incompatible with the basic assumptions of 
APL's design? 

One controversial issue which 
currently threatens the unity of the 
language and its community of supporters 
is that of the definitional system to be 
used for nested array generalizations. 
The two major time-sharing services which 
offer APL have taken firm stances on their 
incompatible routes of extension in this 
area. Each of these services offers APL 
to a large and growing number of customers 
who use the language in serious production 
environments. As Anderson [5] notes, if 
one of these systems eventually changes in 
regard to its choice on this matter, the 
decision could have drastic consequences 
for the users of that system. Will the 
pressure of this possibility manage to 
preserve the differences between the 
systems and eventually create two dialects 
of APL? 

One positive indication that at least 
some of the differences between different 
implementations of APL can be settled is 
the progress being made towards an 
international standard for the language. 
Whether such standards efforts can settle 
larger differences remains to be seen, but 
they have performed a great service by 
managing to resolve many of the 
irregularities which have been 
incorporated in the language up to this 
time. 

Another promising sign for APL is the 
continuing evidence of support at the 
deepest levels for the original design 
principles of uniformity, generality and 
brevity of expression. Although some 
disagreements do exist over particular 
extensions, a strong, common sense of 
aesthetics based on these principles seems 
to exist in the community as a whole. 
This common sense of aesthetics is 
reflected in the parallelism of motives 
and methods that exists among the best of 
the extension proposals; these proposals 
strive to eliminate anomalies and special 
cases, to find new ways of generalizing 
seemingly disparate concepts into unified 
wholes, and to maintain a good correlation 
between simple notation and the powerful 

303 



concepts which it can express. Whatever 
course the language takes, close attention 
to these most fundamental principles will 
certainly continue to guide its form and 
character toward the highest ideals of 
power, simplicity and utility. 
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Describes shake primitive 
(shape-take) to extend arrays with 
singular axes. 

52. ---; et. al. Name Scopes. Asilomar. 
(Nam) 

Discusses different proposals for 
name scope control. 

53. Grossman, Richard. Programmed Error 
Recovery for APLSV. APLQQ v7#3, 
7-11, Fall 1976. (Evt) Describes 
error-trapping system using latent 
expression-like construct and 
character matrix error 
representation. 

54. Gull, W. E.; Michael A. Jenkins. A 
Contribution to the Development of 
Recursive Data Structures in APL. 
QUTR 75-38, 1975. (NA, Ops, PrF) 

Early proposal for grounded nested 
arrays system. 

55. ---; ---. Recursive Data Structures 
and Related Control Mechanisms in 
APL. APL76, 201-210. (NA, Ops, PrF) 

Continues work from [54] with 
applications. 

56. ---; ---. Recursive Data Structures 
in APL. Communications of the ACM, 
v22#2, 79-96. (NA, Ops, PrF, Emp) 

Compares various nested array 
proposals and continues work of [54, 
55] with some changes. 

57. ---; ---. Decisions for 'Type' in 
APL. 6th Annual Principles of 
Programming Languages Cdnference 
proceedings, 190-196. (Typ, NA) 

58. Haegi, Hans R. The Extension of APL 
to Treelike Data Structures. APLQQ 
v7#2, 8-18, Summer 1976. (NA, PrF, 
Ops, Idx) 

Proposes what is actually a nested 
arrays system (using a canonical tree 
representation), stressing indexing. 
Also discusses composition as a 
generalization of reduction. 

59. Hagerty, Patrick E. More on Fuzzy 
Floor and Ceiling. APLQQ v8#4, 
20-24, June 1978. (CT) 

Replies to [17] suggesting some 
changes. 

60. ---. Floor. Asilomar. (CT, Cpx) 
Presents revised opinions from 

[59] with regard to the complex 
domain. 

61. Hardwick, Martin. Graphical Data 
Structures in APL. APL81, 129-136. 
(PrF, NA) 

Describes nested extensible 
graphics structures and functions for 
manipulating them. 

62. Harris, L. R. A Logical Control 
Structure for APL. APL73, 203-210. 
(cs) 

63. Harris, Thomas, J. Event 
Variables--ON Conditions for APL. 
APL75,177-180. (Evt) 

64. 

65. 

66. 

67. 

68. 

69. 

Hartigan, Bruce J. APi9 - A Shared 
Variable Terminal I/O Interface for 
APL Systems. APL81, 137-141. (IO) 

Haspel, Chuck. More APL Symbols. 
APLQQ v6#4, p. 2, Winter 1976. 

Gives further overstruck symbol 
possibilities (see [150]). 

Hassitt, A.; L. E. Lyon. Array 
Theory in an APL Environment. APL79, 
110-115. (NA) 

Describes APL-like system for 
testing models of Array Theory. 

Von Hohenbalken, B.; W. C. Riddel. 
A Compact Algorithm for the 
Moore-Penrose Generalized Inverse. 
APLQQ v10#2, 30-32, Dec. 1979. 

Holmes, W. N. Of Noughts and IF's 
and Matrices -- Some Comments on 
APLQQ[9;2;]. APLQQ v10#3, 7-11, 
March 1980. (PrF, Idx, Lam) 

Makes suggestions for axis 
specification for scalar functions, 
extended index generation for 
arithmetic sequences, and others. 

Hoskin, Zeke. Redefining Reduction 
Along an Empty Axis. APLQQ vll#3, 
17-18, March 1981. (Emp, Ops, PrF) 

Describes scheme which provides 
pseudo-identity elements for some 
primitives. 

70. Iverson, Kenneth E. A Programming 
Language. John Wiley & Sons, Inc., 
New York, 1962. 

The original work describing APL 
as a mathematcal notation; uses a 
notation very different from 
current APL and includes some 
functions not yet incorporated into 
the language. 

71. ---. Elementary Analysis. APL 
Press, 1976. 

72. ---. Two Combinatoric Operators. 
APL76, 233-237. (Ops) 

Describes operators for a 
generalized determinant and for 
function table generation. 

73. ---. Operators and Functions. IBM 
Research Report #7091, IBM Corp., 
April 1978. (Ops, PrF, NA, DDf, Idx, 
Unf, Set) 

Presents a rich and diverse set of 
ideas for extensions; later works 
expand on only some portions of this 
one. 
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74. ---. The Derivative Operator. 
APL79, 347-354. (Ops) 

Discusses a derivative operator 
and its use in exposition. Gives 
functions for use in experimentation. 

75. ---. The Role of Operators in APL. 
APL79, 128-133. (Ops, ArF) 

Discusses syntax of operators and 
other general issues. Gives a number 
of examples of operators. 

76. ---. Operators. Transactions on 
Programming Languages and Systems 
vl#2, 161-176, ACM, October 1979. 
(Ops, DDf) 

Discusses operator concept and 
gives some proposals. Some 
differences from [73, 75]. 

77. ---; R. Smith; J. A. Brown. On 
Strand Notation. APLQQ vll#3, 3-8, 
March 1981. (NA, PrF) 

A lively discussion of Strand 
notation; Iverson against it and 
Smith and Brown in favor of it. 

78. ---; Peter K. Wooster. A Function 
Definition Operator. APL81, 142-145. 
(DDf, Ops, CS) 

Proposal includes facility for 
control of multiple statement 
execution. 

79. Jenkins, Michael A. The Design of an 
APL Primitive for the Eigenproblem. 
APL75. (PrF) 

80. ---. The APL Workshop Session on 
Extensibility. APLQQ v8#2, 14, Dec. 
1977. 

Describes the development of ideas 
on extensibility and an 
implementation at Universite Laval. 

81. ---; Trenchard More. The APL 
Workshop Session on General Arrays. 
APLQQ v8#2, 12-13, Dec. 1977. (NA) 

Discusses the differences between 
the various systems. 

82. ---; Jean Michel. On Types in 
Recursive Data Structures: A Study 
from the APL Literature. Proceedings 
of the 5th Jerusalem Conference on 
Info. Tech., 523-538, August 1978. 
Also QUTR 77-59, Dec. 1977. (Typ, 
NA) 

83. ---; ---. Operators in an APL 
Containing Nested Arrays. APLQQ 
v9#2, 8-20, Dec. 1978. Also QUTR 
78-60. (NA, Ops, Idx, Unf, Lam, PrF, 
SLA) 

Presents powerful depth and axis 
operators for use with nested arrays, 
as well as other functions and 
operators. Discusses symmetry in 
primitives and other issues. Uses a 
new formal notation for discussion of 
arrays. 

84. ---; et. al. General (Nested) 
Arrays. Asilomar. (NA) 

Jenkins reports his "conversion" 
to the floating nested array scheme. 

85. ---. On Combining the Data Structure 
Concepts of LISP and APL. QUTR 
80-109, Sept. 1980. (AT, NA) 

Derives a fundamental equation of 
Array Theory which strongly suggests 
use of the floating system. 

86. ---; Jean Michel. ALICE: An 
Extensible Language Based on APL 
Concepts. QUTR 80-104, Nov. 1980. 
(NA, Ops, Typ) 

Generalizes many APL concepts and 
adds a typing facility to achieve a 
powerful extensible language. 

87. ---. A Development System for 
Testing Array Theory Concepts. 
APL81, 152-159. (AT, NA) 

Describes the implementation and 
use of the NIAL interpreter. 

88. ---. The Q'Nial Reference Manual. 
Queen's University, Kingston, Nov. 
1981. 

89. Jizba, Z. V. Distributed Product. 
APLQQ v6#1, 37, Spring 1975. (Lam, 
Ops) 

Proposes the distributed product 
operator to allow vector/matrix 
operations. 

90. Kajiya, James T. Generic Functions 
by Non-standard Name Scoping in APL. 
APL81, 172-179. (Typ, Nam, MP) 

Achieves generic functions without 
specific data typing through 
hierarchical namespaces and a 
coroutine mechanism. 

91. Keenan, Douglas J. Operators and 
Uniform Forms. APL79, 355-361. 
(Unf, Ops, Lam, PrF) 

Describes extension of uniform 
functions (forms) to higher rank 
arrays. Defines unit rank operators 
to limit function ranks. 

92. Kelley, R. A. APLGOL, An 
Experimental Structured Programming 
Language. IBMJRD, v17#1, 69-73, 
January 1973. (CS) 

Describes an extended APL with 
ALGOL-like control structures. 

93. ---; John R. Walters. APLGOL-2: A 
Structured Programming Language 
System for APL. APL6, 275-280. (CS) 

94. Kemp, Franklin. Design of a 
Structured APL. APLQQ v9#1, 11-13, 
Sep. 1978. (CS) 

Describes an APL preprocessor to 
handle DO and IF constructions. 
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95. Kline, Edward M. Variable Control. 
APLQQ v4#4. (EvT) 

Suggests a stop/trace type of 
control to print information on 
variables each time they are 
accessed. 

96. Lathwell, Richard H. APL Comparison 
Tolerance. APL76, 255-258. (CT) 

Discusses motivations for 
comparison tolerance and derives 
definitions for tolerant functions. 

97. ---. Some Implications of APL 
Order-of-Execution Rules. APL79, 
329-332. 

Examines conventions for 
determining order of execution and 
finds them inadequate. 

98. ---. SHARP APL Multiprocessing and 
Shared Variables. APL Users Meetings 
Proceedings, I. P. Sharp Associates, 
Inc., 1980. (MP, AEx) 

Describes the combination of 
shared variables and a detached 
execution facility to achieve a 
multiprocessing environment. 

99. ---. The SHARP APL S-Task Interface. 
SATN-39, I. P. Sharp Associates, 
Inc., June 1981. (AEx, MP) 

Describes the SHARP APL detached 
task facility. 

I00. Lewis, G. R. A New Array Indexing 
System for APL. APL75. (Idx) 

Suggests the breakdown of indexing 
into more fundamental capabilities. 
Also suggests a hierarchical set of 
APL-like languages. 

i01. Lezotte, D. C.; J. J. Hubert. The 
Generalized Inverse. APLQQ v7#2, 
Summer 1976. 

Discusses the Moore-Penrose 
inverse of non-square, possibly 
singular matrices and demonstrates 
its usefulness. 

102. Lim, A. L.; G. R. Lewis. Towards 
Structured Programs in APL. The 
Computer Journal, v18#2 140-143. 
(CS) 

103. Link, Donald A.; Martin W. Gardner. 
Deferred Execution: An ACE of an 
Application. APL79, 1-7. (AEx) 

Describes the design and 
implementation of STSC Inc.'s 
facility for specifying the deferred 
execution of tasks. 

104. Lowney, Geoffrey; Alan Perlis. Does 
APL Need Arbitrary Nesting? Minnow2. 
(NA) 

Suggests that two levels of 
nesting in nested arrays suffice for 
most applications. 

105. Lucas, Jim. Beyond Laminate: 
Generalizing Creation of New 
Dimensions and Function Action Along 
Them. APL81, 195-198. (Lam, Ops) 

Defines an operator to allow rank 
expansion with possible function 
action along the created dimensions. 

106. Marcum, Alan M. Secure Application 
Environments in APL\3000. APL79, 
257-263. (AEx, EvT) 

Describes a combination of 
exception handling and state 
indicator interrupt~return mechanism 
to achieve greater security. 

107. Multiple Execution Environments 
in APL. APL80, 105-111. (MP, CS) 

Describes the implementation of 
multiprocessing facilities on Hewlett 
Packard's APL\3000. 

108. Martin, G. A. The Solutions of 
Linear Systems in APL: Towards an 
Extension of Matrix Divide. APL80, 
113-121. (PrF, Cpx) 

109. Mayforth, Rick. APLUM - APL at the 
University of Massachusetts. APLQQ 
v6#1, Spring 1975. (SCF, EvT) 

Describes several enhancements 
made to APL at the U. of Mass. 
including: execute primitive, 
tracing and locking facilities, and 
system function equivalents of system 
commands. 

110. McAllister, B. I. Representation and 
Manipulation of Finite Sets. APLQQ 
v10#4, 8-12, June 1980. (Set) 

Presents 3 possible 
representations for sets (vector, 
boolean, integer-encoded boolean) and 
their uses. 

iii. McDonnell, Eugene E. Integer 
Functions of Complex Numbers with 
Applications. IBM/Ph #320-3008, Feb. 
1973. (Cpx) 

112. ---. Complex Floor. APL73, 299-305. 
(Cpx, CT) 

113. ---. A Notation for the GCD and LCM 
Functions. APL75, 240-243. (PrF) 

Proposes extension of v and ^ to 
the GCD and LCM functions. 

114. ---. Zero Divided by Zero. APL76, 
295-296. (PrF) 

Presents reasons for changing the 
result of 0÷0 from 1 to 0. 

115. ---. Sauce for the Gander (or Adding 
a Vector to a Matrix). APLQQ v9#3, 
64-66, March 1979. (Lam, Ops, PrF) 

Discusses various proposals for 
laminar extension and suggests 
extending the domain of the axis 
operator to scalar functions. 
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116. ---. Fuzzy Residue. APL79, 42-46. 
(CT, Cpx, PrF) 

Discusses tolerant versions of 
residue and their effects on complex 
arguments and the representation 
function. 

117. ---; Jeffrey O. Shallit. Extending 
APL to Infinity. APL80, 123-132. 
(PrF) 

Discusses the motivations for, 
representation of, and use of 
infinite values and arrays with 
infinite axes. 

118. ---. Mask and Mesh. Minnow2. (PrF, 
Ops) 

Proposes the implementation of 
mesh and mask functions with the 
selector vectors extended from 
boolean to signed integer. 

119. ---. An Implementation of Complex 
APL. APLQQ vll#3, 19-22, March 1981. 
(Cpx, PrF) 

Describes the SHARP APL 
enhancements for handling complex 
numbers (follows Penfield [155]). 

120. ---. Complex Numbers. SATN-40, I. 
P. Sharp Associates, Inc., June 1981. 
(Cpx, PrF) 

121. Mebus, George. Laminar Extension: 
An Overlooked Capability and the 
Search for its Proper Home. APL79, 
36-41. (Ops, PrF) 

Suggests that laminar extension be 
available through the expansion 
function~operator. Discusses 
compatibility with the by-slice 
operator of [83]. 

122. Mein, Wm. J. Data Structure 
Extensions to APL: A Survey. M. Sc. 
thesis, Dept. of Comp. and Info. 
Science, Queen's University, 
Kingston, 1975. (NA, Ops, PrF) 

123. ---. Toward A Data Structure 
Extension to APL. APL76, 308-313. 
(NA, Ops, PrF, Idx) 

Reviews proposals for nested 
arrays, identifying critical issues 
and minimal capabilities. 

124. Mengarini, William. Formal 
Commenting in APL. APLQQ v7#1, ii, 
Summer 1976. (EvT) 

Describes formal comment 
expressions (signalled by "n") which 
return a FORMAL ERROR if any element 
of the result is false. 

125. Mercer, R. L. WHERE - ~. APLQQ 
v4#3, 18, April 1973. (PrF) 

Describes a primitive which 
searches for occurrences of the right 
argument pattern in the left 
argument. 

126. ---. Extensions of APL to Include 
Arrays of Arrays. Tech. Report COINS 
701, Univ. of Mass., Amherst, 1976. 
(NA) 

127. ---. A Based System for General 
Arrays. APLQQ v12#2, 18-21, Dec. 
1981. 

Describes an alternative to the 
floating and grounded array systems 
that purports to solve some problems 
of both. 

128. Metzger, Robert C. Extended Direct 
Definition of APL Functions. APL80, 
143-148. (DDf, CS) 

Motivates and describes the 
addition of control structure and 
multi-statement capabilities to 
direct definition proposals. 

129. Mezei, Jorge E. Uses of General 
Arrays and Operators. APL6, 334-348. 
(NA, Ops) 

130. More, Trenchard. Axioms and Theorems 
for a Theory of Arrays. IBMJRD 
v17#2, 135-175, March 1973. (AT, NA) 

Presents the formal axiomatics of 
Array Theory. 

131. ---. Notes on the Axioms for a 
Theory of Arrays. IBM/Ph #320-3017, 
May 1973. (AT, NA) 

132. ---. Notes on the Development of a 
Theory of Arrays. IBM/Ph #320-3016, 
May 1973. (AT, NA) 

133. ---. A Theory of Arrays with 
Applications to Data Bases. IBM/Ca 
#G320-2016, Sep. 1975. (AT, NA) 

134. ---. Types and Prototypes in a 
Theory of Arrays. IBM/Ca #G320-2112, 
May 1976. (AT, NA) 

135. ---. On the Composition of 
Array-Theoretic Operations. IBM/Ca 
#320-2113, May 1976. (AT, NA) 

136. ---. The Nested Rectangular Array as 
a Model of Data. APL79, 55-73. (AT, 
NA) 

Overview of Array Theory, its 
development and the choices it makes 
on key issues. 

137. ---. Nested Rectangular Arrays for 
Measures, Addresses and Paths. 
APL79, 156-163, (AT, NA, Idx) 

Demonstrates the generalization of 
measures, addresses and paths for 
arbitrary arrays (i.e., not just 
simple integer vectors). 

138.. Notes on the Diagrams, Logic 
and Operations of Array Theory. 
Structures and Operations in 
Engineering and management Science, 
Tapir Publishers, Norway, 1981. (AT, 
NA) 
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139. Murray, Ronald C. On Tree Structure 
Extensions to the APL Language. 
APL73, 333-338. 

140. ---. Namespaces: Semipermeable 
Membranes for APL Applications. APL 
Applications. APL81, 220-226. (Nam, 
SCF) 

Describes the addition of 
namespace and interface structures, 
and functions to manipulate them, to 
achieve packages with highly 
controllable name sharing. 

141. Myrna, John. Names for System 
Functions. Minnow2. (SCF) 

Notes proliferation of system 
functions and suggests naming 
conventions. 

142. ---; Jim Ryan. New Directions in 
Terminals. Minnow2. (IO) 

Notes the need for APL to more 
fully recognize the abilities of 
powerful new display terminals. 

143. Nater, Feico. APL\360 Enhancements. 
APLQQ v6#1, Spring 1975. (PrF, SCF) 

Suggests scalar extension, axis 
specification, and first axis 
versions for ÷ and ~. Also suggests 
SAVE system function. 

144. Oates, Richard H. Iota Flow with 
Direct Local Functions. APLQQ vll#3, 
9-17, March 1981. (CS, DDf) 

Describes the use of a forking 
function and directly defined local 
functions to improve program 
structure. 

145. O'Dell, Michael D. APL/XAD: An 
Extension of APL for Abstract Data 
Manipulation. APL6, 405-413. 

146. Orgass, Richard J. The iE6?iE6 APL 
Workshop: Another Overview. APLQQ 
v8#2, 8-11, Dec. 1977. (NA, Nam) 

Describes nested arrays as both 
too general and too restricted a 
solution to APL's data structure 
problem. Also gives a description of 
namespaces. 

147. Orth, Donald A. A User's View of 
General Arrays. IBM Research Report 
#RC 8782, IBM Corp., Apr., 1981. 
(Ops, NA) 

Examines the utility of adding 
nested arrays to APL (using either 
the grounded or floating systems) and 
concludes that they may be 
undesirable in the language. 

148. ---. A Comparison of the IPSA and 
STSC Implementations of Operators and 
Nested Arrays. APLQQ v12#2, 11-18, 
Dec. 1981. 

149. Penfield, Paul Jr. Proposed Notation 
and Implementation for Derivatives in 
APL. APL V, 12-1 - 12-5. (Ops) 

150. ---. APL Symbols. APLQQ v6#1, 
Spring 1975. 

Discusses aesthetic choices in 
picking overstruck symbols; suggests 
several symbols and names for them. 

151. ---. Notation for Complex "Part" 
Functions. APLQQ v8#1, Sep. 1977. 
(Cpx, PrF) 

Presents 5 proposals for notation 
of real, imaginary (parts), magnitude 
and phase functions. Prefers the 
circular fucntion proposal. 

152. ---. Extension of APL Primitives to 
the Complex Domain. APLQQ v8#2, Dec. 
1977. (Cpx, PrF) 

Second in a series of articles on 
extension of APL to the complex 
domain. 

153. ---. Design Choices for Complex APL. 
APLQQ v8#3, 8-15, March 1978. (Cpx, 
PrF) 

Third paper in a series; covers 
miscellaneous issues (notation, polar 
form, default interpreter, etc.). 

154. ---. Complex APL - Comments from the 
Community. APLQQ v9#1, 6-10, Sept. 
1978. (Cpx, PrF) 

Reviews comments received in reply 
to the author's series of papers on 
complex number extensions to APL 
[151-153]. 

155. ---. Proposal for a Complex APL. 
APL79, 47-53. (Cpx, PrF) 

Culmination of the author's 
explorations into a complex number 
extension. 

156. ---. Principle Values and Branch 
Cuts in Complex APL. APL81, 248-256. 
(Cpx, PrF) 

Presents choices for values of 
complex functions where such values 
are ill-defined or non-unique. 

157. Pesch, Roland H. Indexing and 
Indexed Replacement. APL81, 258-261. 
(Idx, NA) 

Proposes an indexing operator for 
use with nested array indices; 
monadic and dyadic derived functions 
provide for both selection and 
replacement. 

158. Puckett, Thomas H. Improved Security 
in APL Applications Packages. APL6, 
438-441. 

159. ---. New Mexico State University 
Enhancements to APL\360. APLQQ v4#2, 
Jan. 1973. (EvT, SCF) 

Describes an implementation of an 
event trapping facility and an 
execute function extended to act on 
system commands. 
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160. Reeves, A. P.; J. Besemer. Special 
Control Structures for APL. APLQQ 
v9#2, 23-31, Dec. 1978. (CS) 

Derives several control structure 
patterns using new function-like 
control facilities• 

161. Robichaud, Louis P. A. *\APL, An 
Extensible APL System• Centre de 
Traitement de L'Information, 
Universite Laval, Quebec, August 
1977. 

162. Ryan, James. Generalized Lists and 
Other Extensions• APLQQ v3#1, June 
1971. 

163. ---. Name Contexts• Minnow2. (Nam) 
Mentions the name context idea for 

generalizing access to named objects 
and its facilities for scope control 
and data sharing• 

164. Samson, Denis; Yves Ouellet. 
Convivial Error Recovery• APL81, 
271-279. (EvT) 

Surveys various facilities for 
event control, noting common 
qualities and generalizing these• 
Describes an implementation based on 
these findings. 

165• Sarachik, P. E.; U. Ozguner. An APL 
Algorithm for Finding the Generalized 
Inverse of a Matrix• APLQQ v9#3, 
39-43, March 1979. 

166. Schmidt, Fleming; Michael A. Jenkins• 
Array Diagrams and the NIAL Approach. 
QUTR #81-131 Nov. 1981. (AT, NA, 
Fmt) 

Describes and discusses a scheme 
for displaying nested arrays in both 
sketched and fully formatted forms• 

167. Seeds, Glen M. APL Character 
Mnemonics• APLQQ v5#2, Fall 1974. 

Suggests ANSI FORTRAN symbol 
equivalents for all APL characters• 

168. ---. Fuzzy Floor and Ceiling. APLQQ 
v5#4, Winter 1974. (CT, PrF) 

Suggests changes to definitions of 
tolerant definitions of floor and 
ceiling. 

169. ---; A. Arpin. A Numeric-Controlled 
Formatter. APL76, 388-391. (Fmt) 

Describes a formatting function 
with numeric controls for width, 
precision and format type. 

170. ---; ---; M. LeBarre. Name Scope 
Control in APL Defined Functions• 
APLQQ v8#4, June 1978. (Nam) 

Proposes a scheme for specifying 
5 types of name scope and proves the 
exhaustiveness of this set in a 
general situation• 

171. ---. Tolerant Representation• APLQQ 
vll#2, 15, Dec. 1980. (CT, PrF) 

Motivates and describes a tolerant 
version of the representation 
(encode) primitive• 

172. Shallit, Jeffery O. Infinite Arrays 
and Diagonalization. APL81, 281-285• 

Discusses applications of infinite 
arrays in programming and exposition• 
Defines 2 diagonalization functions 
and discusses their implementation• 

173. Shastry, S. K. A Generalized APL 
Shared Variable System• APL75. 

174. Singleton, Sheila M. An 
Investigation of More's Array Theory• 
QUTR #80-99, April 1980. 

Describes More's Array Theory and 
demonstrates that there is no 
translation of the floating system 
into grounded terms which can 
preserve the elegance and simplicity 
of the former• 

175. Smith, Bob. A Programming Technique 
for Non-Rectangular Data. APL79, 
362-369. (Prt, Ops) 

Gives motivations, definition and 
applications for a partitioning 
operator for non-nested arrays. APL 
functions for simulating the operator 
are also presented. 

176. ---. Nested Arrays: The Tool for 
the Future. APL In Practice, Wiley, 
1980. (NA, Ops, PrF) 

Brief, non-technical discussion of 
motivations and advantages of nested 
arrays. 

177. ---. Nested Arrays, Operators and 
Functions• APL81, 286-290• (NA, 
Ops, PrF) 

Describes some features and 
applications of STSC Inc.'s 
experimental NARS system. 

178. • NARSNEWS Supplements to NARS 
Reference Manual• Available through 
STSC Inc.'s NARS system. 

Describes extensions and 
modifications made to STSC Inc.'s 
NARS system since the publication of 
the reference manual, including new 
composition operators, modify 
assignment, new types of indexing, 
etc. 

179. Smith, Howard J. Jr. Sorting - A 
New/Old Problem• APL79, 123-127. 
(Srt, PrF) 

Discusses history of alphabetic 
sorting and presents APL functions 
which generalize the grade functions 
to allow higher rank arrays and 
specification of complex collating 
sequences. 
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180. Soop, Karl. Thoughts on Sets in APL. 
APLQQ vll#1, i0, Sep. 1980. (Set, 
PrF) 

Describes a representation for 
sets in APL and functions defined on 
such sets. 

181. Sykes, Roy. Multi-Rank Grade. 
Asilomar. (Srt) 

Discusses extension of grade 
functions to higher rank arrays by 
grading subarrays as composite 
values. 

182. Thompson, Norman D. Some Geometrical 
Consequences of Complex APL. APL80, 
137-142. 

183. Vasseur, J. P. Extension of APL 
Operators to Tree-like Structures. 
APL73, 457-464. 

184. Wells, J. M. Quad Functions in 
APL\360o APLQQ v6#l, 38, Spring 
1975. (IO) 

Asks if quad input should not be 
evaluated in a global naming 
environment, as opposed to the 
current local environment. 

185. Wheeler, James G. Improved Sharing 
of APL Workspaces and Libraries. 
APL81, 327-334. (Nam, SCF) 

Discusses a re-design of APL 
workspaces and libraries to allow 
sharing and access control, and an 
expanded set of system functions with 
which to manipulate them. 

186. Wiedmann, Clark. APL Problems with 
Order of Execution. APLQQ v8#3, 
25-29, March 1978. 

Raises some questions about APL 
order of execution and suggests the 
adoption of a consistent set of 
rules. 

187. ---. Whither (Wither?) Control 
Structures? APLQQ v9#2, 21-22, Dec. 
1978. (CS) 

Suggests that control structures 
may be unnecessary and undesirable in 
APL. 

188. . APLUM Reference Manual. 
Control Data Corp., Sep. 1979. 

189. Wilhelmi, G. Formal Differentiation 
Using APL. APLV, Ii-i - 11-9. 

190. N-Tasks and B-Tasks. SATN-4, Rev. 2, 
I. P. Sharp Associates, Inc., April 
1978. (AEx) 

Describes SHARP APL facilities for 
running detached and deferred tasks 
under program control. 

191. Package - A New Variable Type. 
SATN-14, Rev. 2, I. P. Sharp 
Associates, Inc., August 1978. (Pkg, 
Nam) 

Describes SHARP APL package data 
type used to aggregate named 
functions and data. 

192. General Array Systems -- A Panel 
Discussion. APLQQ v12#2, 5-6s Dec. 
1981. (NA, Ops) 

Presents a summary of the panel 
discussion on nested arrays that was 
held at APL 81. 

193. Burroughs APL/700 Users Reference 
manual. Burroughs Corp., March 1977. 

194. APLSF Programmer's Reference Manual. 
Digital Equipment Corporation, 
Maynard Mass., May 1977. 

195. APL ii00 Level 7R2 Programmer 
Reference. Sperry Corp., 1981. 
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