APL 82, W. H. Janko, W. Stucky (ed.),
APL Quote Quad, Vol. 13 No. 1,
(©) 1982 by ACM, Inc.

A SURVEY OF EXTENSIONS TO APL

Karl Fritz Ruehr
Sperry Univac ~ Major Systems Division
2276 Highcrest Road

Roseville,

Minnesota,

55113 USA

(612) 631-6216

Abstract

A survey of proposed extensions to the
APL language is made with emphasis placed
on the motivations for various proposals,
the differences between them and the
consequences of their adoption. Some
issues of a more general nature concerning
the purpose, process and direction of
language extension are also discussed.
extensive bibliography is provided with
annotations concerning the nature,
development and influence of various
authors' works. Areas of extension
encompassed by the survey include nested
arrays, complex numbers, uniform
application of functions, laminar
extension, primitive functions, control
structures, direct definition, operators,
system functions and variables, name scope
control and event trapping.

An

I. 1Introduction

APL was originally conceived by Dr.
Kenneth Iverson in the late 1950's as a
power ful new mathematical notation which
embodied the principles of uniformity,
generality and brevity of expression in a
functional form. As its development
proceeded APL was implemented on a digital
computer as an interpreted language for
interactive use. The implementation
process necessitated certain changes in
the language and subsequent experience
with interactive use motivated still other
modifications. Throughout this early
process of change the original design
principles of uniformity, generality and
brevity were used as guidelines to help
maintain and enhance the power and utility
of the language (for more on the design

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-078-8/82/007/0277

$00.75

277

and evolution of APL, see Falkoff and

Iverson [Fal, Fa2}).

The combined power and simplicity of
APL were instrumental in its rise to
widespread popularity after its public
release in 1968. This popularity in turn
soon brought the language to a diverse
number of applications, many of them far
removed from its original use in
mathematical exposition. As the
popularity and range of application of APL
grew, certain deficiencies in the language
became evident, both in the form of
anomalies and irregularities in its
original definition, and in the need to
extend its capabilities to an even broader
domain and an even greater expressiveness
(see Abrams [2], Bork [Bol] and Elliot
[E11]). Consequently many researchers
began to propose modifications and
extensions to the language in order to
meet these needs, some of which have since
been incorporated into new implementations
and others of which continue to be
discussed by the APL community.

It is the purpose of this paper to
survey these proposals for extensions to
APL, to compare alternative proposals
where they conflict and to draw some
general conclusions about the motivations,
directions and consequences of APL
language extension. Before undertaking
this task, it is necessary to better
define the notion of an extension: for the
purposes of this paper, extensions are
defined to be refinements, proper
extensions or additions{in the sense of
Brown [20]) to APL as it is widely
accepted today. Of course this definition
leaves some room for judgement about what
is currently accepted in APL, but an
attempt will be made to at least discuss
most of the borderline cases (e.g., files
and shared variables).

The organization of this paper
partitions the extension proposals into
four major groups according to the areas
with which they are concerned: Data Types
and Structures, Functions and Operators,

Evaluation and the System Environment, and
Miscellaneous Extensions. These groups
are then further subdivided to various
degrees in order to provide more structure
to the paper and to allow easier location
of specific topics. 1In addition to the
paper, an extensive bibliography of
published work on APL and related topics
is provided, with annotations concerning
the nature, development and influence of
some works where such notation would seem
helpful.

Unfortunately, due to a number of
factors (including unintended bias on the
author's part, the lack of availability of
some research, the large number of
extensions which have been proposed, and
the necessary limits imposed on the length
of this paper), many of the proposals are
not covered with the detail which they may
merit, and some proposals may have been
omitted entirely. There are a few
specific problems of accuracy and detail
which should be stated more explicitly to
avoid some anticipated misunderstandings:
since the research surveyed spans some 20
years, it should be understood that the
views of some of the researchers whose
works are discussed may have changed since
they were originally expressed; the
references made are to the publications
cited and do not necessarily reflect the
authors' current views. It is also
difficult in many cases to trace an idea
for an extension back to its original
source, especially if that source is not
a widely available published work.
Finally, this author's own research
interests are reflected in the fact that
the different areas of extension covered
are not all treated at a uniform level of
detail.

It is hoped that these shortcomings
can be overcome at some future date with
the publication of an expanded and updated
version of this paper. Any comments or
suggestions regarding omissions or
corrections to this paper or its
bibliography, or regarding the design of
an expanded update will be greatly
appreciated by the author.

A note on the references: all
referenced papers having a specific
relevance to extensions are gathered in
the bibliography and are referred to by
number (e.g., [12] or (12, 20]). All
other referenced papers are listed in the
references section and are referred to by
letters and a number (e.g., [Fa2]).

II. Data Types and Structures

Much of APL's power and simplicity
result from its novel approach to data
types and structures. APL recognizes only
two distinct types of data, numeric and
character, and only one type of data
structure, the arbitrary rank rectangular

278

array of scalar data. The limitation of
the number of data types which are
recognized in the language eliminates the
need for explicit type declarations for
variables and formal parameters., The
recognition of array structure allows
functions and operators to be applied to
whole arrays and thus implicitly to
components or sections of an array, or
between components of the same or
different arrays. This implicit
application eliminates the need for the
detailed looping control of other
languages. However, the simplicity of
APL's data types and structures also
limits the usefulness of the language for
some applications; proposals for
extensions which would alleviate some of
these problems are discussed in this
section. For more information on related
topics, see these sections: on overlays,
the Miscellaneous section in Names, Naming
and Data Access; on arrays of functions,
the Miscellaneous Extensions section; and
on packages, contexts and namespaces, the
section on Collections of Named Data.

II.A Files

Systems for accessing sequential files
of arrays kept in off-line storage are now
so common in implementations of APL that
it is reasonable to consider them as
"fully accepted in current APL". Most
implementors also consider their file
systems to be separate from their APL per
se, and thus they are not truly extensions
to the language. However, because they
have become indispensable in many
applications and because of their
implications for other extensions, they
will be discussed here briefly.

The addition of files to APL was
largely motivated by the deficiencies of
arrays for handling large,
business-oriented applications: first,
their homogeneous rectangular structure
was too restrictive to easily represent
complex structures of numeric and
character data; second, their residence
main memory severely limited their size;
and last, their idiosyncratic
representation kept them from being easily
accessed by other processors.

in

The incorporation of file systems
largely solved these problems by providing
a systems interface in APL to a file
processor which can create, activate or
drop files and insert, remove or update
components of these files (the components
are usually APL data arrays). This
interface is usually provided through such
means as system functions or shared
variables, although some implementations
provide pseudo-primitive functions for
file manipulation (e.g., Burroughs
APL/700, [193]). Although they solve many
of the problems of arrays, files have also
revoked many of their advantages: first,

most file systems can handle only linear
structures, as opposed to rectangular
ones; second, the limitation to reading
and storing a component at a time
necessitated a return to the
"word-at-a-time" looping and processing
style of other languages, albeit at one
level removed. 1In these ways, files
represent not so much an extension to APL
data structures as they do a more
conventional superstructure in which to
embed APL arrays.

ITI.B Trees

Proposals for adding a tree structure
to APL have been made by several authors
including Alfonseca and Tavera [4], Murray
[139] and Vasseur [183]. 1In most of these
proposals, new functions are defined to
manipulate tree structures whose nodes or
leaves in turn hold APL arrays. None of
these proposals seem to have gathered much
support in recent years however, as more
attention has been focused on an extension
of arrays to nested arrays. The tree
structure extensions are largely
isomorphic to the nested array proposals,
but they tend to promote diversity rather
than uniformity, in that they introduce a
whole new structural type (trees), whereas
the nested array proposals simply
generalize an already existing structure.

II.C Nested Arrays

A more "APL-ish" solution to the
problem of the limited structure of arrays
is the extension of APL arrays to hold
non-scalar data, i.e., arrays which may
hold other arrays as components, which in
turn may hold other arrays, etc. (though
one proposal would limit this recursion to
two levels of nesting; see Lowney and
Perlis [104]) in a manner similar to the
nesting of lists in LISP (see Jenkins
[85]). Such structures would retain the
advantages of arbitrary rank
rectangularity and the application of
functions and operators to arrays as
wholes, but would allow the representation
of even richer and more complex structures
than can be represented with sequential
files.

Proposals for extending APL to handle
nested arrays began appearing as early as
1966 (by Abrams [1]), and have since
become predominant in the extension
literature. Much of the work on nested
arrays was consolidated and rationalized
with the advent of the Array Theory of
Trenchard More [130~138]. Although
originally inspired by thoughts of
extensions to APL, Array Theory has grown
to become a discipline in its own right,
with a syntax somewhat different than that
of APL and with a flavor more akin to that
of axiomatic set theory. However, some of
the results of research in Array Theory
have inspired further thoughts about

279

extensions to APL, and the two fields
remain closely linked (see especially
Jenkins [84, 85, 87] and Singleton [174]).

Floating vs. Grounded Arrays.
Although there is in general much
agreement that nested arrays are the
logical extension to APL data structures
(for two exceptions see Orgass [146] and
Orth [147]), one major issue still divides
the community of researchers working in
this area: the so-called "Floating vs.
Grounded" array controversy. This
controversy hinges on the definitions of
two functions which are fundamental to the
manipulation of nested arrays, and in
particular on the effect of these
functions on simple (i.e., non-nested)
scalars. These functions are enclose,
which encloses its argument into a
(nested) scalar which may then become a
component of another array, and its left
inverse disclose, which extracts the
enclosed item(s) of a nested array (note:
the need to enclose arrays before
inserting them into other arrays stems
from the desire to preserve certain
indexing identities; see Gull and Jenkins
[56]. At least one proposal for nested
arrays (that of Edwards [(33]) does not
make this requirement, but it seems to
have gained comparatively little support
in recent years).

In the "floating" theory of nested
arrays, the enclose or disclose of a
simple scalar is again a simple scalar,
implying a sort of infinitely recursive
nesting for these entities. 1In the
"grounded" theory, the enclose of a scalar
is different from that scalar, and the
disclose of a scalar is undefined (though
some systems employ a "permissive"
disclose that returns the scalar
unchanged). Although these may seem like
minor points, they critically affect the
behavior and flavor of the two systems:
proposals for grounded arrays tend to have
the flavor of current APL with an extra
feature for enclosing (or encoding)
arrays; proposals for floating arrays tend
to embrace the nesting philosophy more
completely, incorporating it into the very
fabric of the language. The floating
system must also allow heterogeneous
arrays (mixed character and numeric data)
because of this difference between the
systems, as demonstrated by Gull and
Jenkins {56] (for more on this subject,
see the section on Heterogeneous Arrays).

However, it should be stressed that the
choice of a floating or grounded system
does not affect certain other issues, such
as the definition of certain operators
(see Jenkins and Michel [83]) or the
choice of a more or less conservative
approach to the extension process.

As was mentioned above, major figqures
in the research community differ in their
stances on the issue of floating versus

grounded arrays: Iverson [9, 73, 76] and
Bernecky [9] (both of I. P. Sharp
Associates) prefer the grounded system,
whereas More [81, 130-138] and Brown
[18-21] (both of IBM), Jenkins (84, 85}
Queen's University), and Smith [177] (of
STSC, Inc.) prefer the floating system
(note especially that More's Array Theory
employs the floating system definitions).
It is interesting to note that at least
two of these have "changed sides" on the
issue during the course of their research:
Bernecky from the grounded to the floating
and then back again [192] and Jenkins from
the grounded to the floating [84].
Singleton [174] concludes that although
there exist translations of More's Array
Theory from the floating to the grounded
systems, none of the grounded versions
preserve the simplicity and elegance of
the original.

(of

At this time there seems to be little
hope for an easy resolution of the issue;
adherents of both views seem committed in
their beliefs (see Anderson [5] and
{192]). 1If not resolved soon, the
controversy threatens at best to delay the
process of extension to nested arrays (or
its easy acceptance) and at worst to
produce two markedly different dialects of
APL. In fact, the two major time-sharing
bureaus have both implemented nested array
extensions, one (I. P. Sharp Associates,
Inc.) using the grounded system and the
other (STSC, Inc.) using the floating
system. To make matters even more
confusing, the two implementations
sometimes use the same symbols for
entirely different meanings. Such
diversification may be especially
unwelcome at a point when the language is
undergoing its first major standardization
process [Wil].

II.C.1
Arrays

Functions and Operators for Nested

In order to take full advantage of the
power of nested arrays, it is desirable to
define certain new functions and operators
which act primarily on the nested
attributes of data (some proponents of the
grounded system would disagree with this;
see especially Iverson [73]1), as well as
to define the manner in which existing
functjons and operators apply to the new
structures. The conventional structural
functions are normally extended in the
obvious manner, i.e., they manipulate the
(possibly enclosed) items of nested arrays
instead of the scalar components of
conventional arrays. Extensions of other
functions and the addition of new
functions and operators are described
below.

Pervasiveness. Floating array
proposals usually extend the primitive
scalar functions to be pervasive, in the
sense that they apply recursively at all

280

levels of nesting until they reach simple
scalar arguments. In the case of dyadic
functions this definition requires that
the arguments share a parallel structure
(notwithstanding scalar extension).
Proposals for grounded array systems
usually require that nested items be
explicitly disclosed before scalar
functions are applied to them, although
some proposals supply operators which when
applied to scalar functions yield very
similar results (see the section on Depth
Operators and (56, 83]).

Level Modifying Functions. It is
often desirable when manipulating nested
arrays to modify the level of nesting of
the arrays or their items. The most
obvious examples of this concept are the
enclose and disclose functions described
above (usually denoted < and > or < and >
in the floating and grounded systems,
respectively). Ghandour and Mezei [47]
provide the link and pair functions (4 and
;)to simplify construction of nested
vectors (in some proposals this is
effectively achieved in a syntactic manner
with strand notation; see below and
Iverson et. al. [77]). The restricted
versions of raise and lower (see below) of
Gull and Jenkins [56] enclose or disclose
the items of their arguments, and are of
special utility in the grounded system
where it is often necessary to enclose the
simple scalar items of an array before
they can be applied to certain functions
(this is unnecessary in the floating
system because of the definition of simple
scalars) .

Nesting-Rectangularity Conversion. A
related capability allows the rectangular
aspects of structure (ordered by axis) to
be re-expressed as nested aspects of
structure (ordered by depth) or vice
versa. For example, the conversion of a
2 by 5 matrix to a vector of 5
column-vectors or to a vector of 2
row-vectors. Bernecky and
Iverson [9] define the disclose function
on non-scalar arrays with enclosed
elements so as to laminate together the
disclosed arrays, which must be of a
common shape. Gull and Jenkins [56]
Ghandour and Mezei [47] both define
functions called raise and lower (4 and ¥)
to convert axes into a new level oF
nesting. These capabilities are included
as the split and mix functions (monadic +
and) on STSC Inc.'s NARS™ system [23].

and

Depth Operators. One capability which
is fundamental to the use of nested arrays
is the ability to apply a function at
different levels of nesting within a
nested array. For example, consider the
difference between reversing a vector of
matrices and reversing each of the
matrices within that same vector. 1In
order to allow this type of application,
most of the floating system proposals

provide an each (or itemwise) operator (")
which applies its function argument to
each of the (possibly nested) items of an
array. In the grounded system proposals
of Gull and Jenkins [56) and Jenkins and
Michel ([83], similar operators are
supplied as well as others which apply
their function arguments to the leaves or
the scalar levels of nested arrays.
Bernecky and Iverson (9] provide a similar
facility through the use of a dual
operator and their version of the disclose
function.

to nested
array to be

Indexing. The extension
arrays allows an index to an
enclosed and thus allows the construction
of arbitrarily shaped arrays whose items
are enclosed indices into a given array.
An indexing function which accepts such an
array of indices and which returns a
corresponding array of items selected by
those indices is usually called choose
indexing, and is denoted in a variety of
ways (e.g.,o ,[or 1). The choose
function relieves the restriction of
current indexing to rectangular blocks of
components, allowing what Cheney [23]
calls "scatter-point indexing". The
choose function also allows the current
semi-colon delimited index "lists" to be
rationalized as the outer product
concatenations of position vectors (see
Cheney ([23]). The index generator
{monadic) can be extended along similar
lines by allowing it to take a vector
argument specifying the shape of its array
result. Each component of the resulting
array is an enclosed vector representing
an index into the location occupied by
that component (see {137, 83, 23]).
Another capability which is useful in
manipulating nested arrays is a form of
indexing which specifies successively
deeper levels of nesting with a nested
vector. Functions which embody this form
of indexing are called reach (o) by
Ghandour and Mezei [47] and Gull and
Jenkins [56], and pick (=) by More
[136-137], Brown [19-20] and Smith
[176-177].

Partitioning. Various proposals have
been made to allow a vector or array to be
split up (or partitioned) according to
some specified criterion into an array
holding groups of items from the original.

Gull and Jenkins [56], Brown [20] and
Smith [176~-177] describe functions which
partition vectors or arrays along some
axis according to a boolean selector so
that, for example, a sentence may be
easily broken up into a vector of words by
a boolean control indicating the positions
of blanks in the sentence. Bernecky and
Iverson [9] propose a more general
partitioning operator which uses a numeric
matrix control to allow an arbitrary
function to be applied to overlapping
partitions along a single axis. Benkard
[6] describes two partitioning functions

281

which allow either simple (boolean
controlled, non-repeated) or overlapping
partitions of vectors, matrices or higher
rank arrays.
I1.C.3 Type, Emptiness and Fill Elements.
Several inter-related issues concern
the notion of type as applied to
non-simple arrays, the representation of
empty nested arrays and the definition of
fill elements for nested arrays. Current
APL retains type information for arrays
based on whether the elements of the array
are character or numeric, and retains both
type and shape information for empty
arrays (the shape vector of an empty array
contains at least one zero element).
Since all of the elements of simple arrays
are scalars, current APL defines the fill
element for an array to be a scalar zero
or a scalar blank, depending on the type
of the array (fill elements are used to
"fill in" gaps in an array created by the
take and expand functions).

All of the above concepts become less
well-defined in a system with nested
arrays and the issues involved in their
definitions become further complicated by
the related issues of heterogeniety vs.
homogeniety and floating vs. grounded
systems. In a homogeneous nested array
system, the elements of an array must be
either all numeric, all character or all
nested arrays, whereas in a heterogeneous
system the elements of an array may
encompass any or all of these types (for
more information on this issue, see the
section on Heterogeneous Arrays). The
relation between these various issues is
explored thoroughly by Gull and Jenkins
[571.

Ghandour and Mezei [47] propose that
empty arrays carry information concerning
their structure, but limit that structure
to be of uniform length at each level.
This proposal requires separate semantics
for the application of different functions
to empty arrays. Ghandour [48]
demonstrates that a more general and
consistent scheme results from preserving
only the top level of shape information
for empty arrays (i.e., all empty arrays
are simple). A similar approach is
followed by Jenkins and Michel (83].

In More's Array Theory [134], the type
of an array is defined to be an array of
the same structure but with all of the
motes (simple scalars) replaced by their
typical values (i.e., zeros for numbers
and blanks for characters). The fill item
for an array is then defined to be the
prototype of that array, which is the type
of its first item. Empty arrays carry
information about their type and structure
through their prototype, which is defined
to be the prototype of the array from
which they were derived. This scheme is

followed by several proposals and
implementations which include floating
nested arrays (see Brown [20], Cheney [23]
and Jenkins [88]). It is also the scheme
preferred by Gull and Jenkins [57] for all
but homogeneous grounded systems.
II.C.4 Nested Array Input and Output

Some controversy surrounds the
question of the input and output formats
to be used for nested arrays. Many of the
supporters of the floating system also
support an input format called strand
notation, while many of those who support
the grounded system criticize it (see
Iverson et. al. [77]). Using strand
notation, a sequence of juxtaposed arrays
is interpreted as a vector of enclosed
items; for example, the expressions "4 B ("
and "4 (1?B) (2xC)" would both be
interpreted as three-element vectors.
Proponents of the floating system see this
notation as defaulting to the current
notation for vector constants in the case
where all items are simple scalars,
because the floating system definition of
enclosure does not affect simple scalars.
Falkoff [38] claims that strand notation
is not a true extension of the notation
for vector constants because it fails to
preserve some of the properties of that
notation.

Those who criticize strand notation
consider it to be an implicit function
application and claim that it is not as
clear, brief or useful as an explicit
application of functions (usually the link
and pair functions; see the section on
Level Modifying Functions). Those who
favor strand notation claim that it is a
syntactic construct that is simpler and
clearer than a set of explicit functions,
but not necessarily incompatible with
these functions. A related issue is the
use of strand notation assignment (see
the section on Assignment) which raises
questions about name class determination
and conversion. For a fuller discussion
of the advantages and disadvantages of
strand notation, see Falkoff [38] and
Iverson, et. al. [77].

Another issue concerning nested arrays
which is largely undecided is that of the
format to be used in printing such arrays.
Different proposals tend to stress either
the content or the structure of the data
in a variety of ways. Discussions of
nested arrays in the literature often
employ diagrams consisting of labeled
trees [18, 56, 58, 123] or nested box
drawings for the purposes of illustration.
Both Jenkins and Michel [83] and Bernecky
and Iverson [9] present proposals for
functions which recursively format and pad
nested arrays with blanks to achieve a
regular format for output (a version of
the latter proposal has been implemented
on the SHARP APL system). Schmidt and

282

Jenkins [166] describe schemes for
providing either simple sketches or fully
formatted versions of array "drawings",
both of which use character symbcls to
draw boxes around nested items. STSC
Inc.'s NARS system uses two different
forms of output: the default form displays
shape information and the elements of the
array; use of the explicit quad form of
output produces a fully formatted version
which uses parentheses to highlight
nesting (see Smith [178]).

II.D Heterogeneous Arrays.

In current APL, all of the elements of
an array must be of the same type, i.e.,
they must be all character or all numeric;
such arrays are said to be homogeneous
arrays. Several proposals have been made
to allow arrays to hold elements of
varying types; these are called
heterogeneous arrays. Although
heterogeneous arrays are often discussed
within the context of nested array
proposals, their inclusion in a system is
independent of the inclusion of nested
arrays (however, the definitions of the
floating nested arrays system all but
necessitate the existence of heterogeneous
arrays; see [56]).

Probably the single overriding factor
which has delayed the extension to
heterogeneous arrays is the difficulty of
their internal representation: since most
computers represent character and numeric
data with codes of different lengths, the
indexing and retrieval of elements of
heterogeneous arrays is considerably
complicated relative to that of
homogeneous arrays.

Another difficulty is the definition
of £ill elements for heterogeneous arrays
which are needed for applications of such
functions as take and expand. Current APL
defines the fill element for a homogeneous
array to be zero for numeric arrays and
blank for character arrays; neither choice
seems preferable for heterogeneous arrays,
since they may contain both types of data.
Both Brown [18] and Haegi [58] suggest
defining a scalar value which is neither
numeric nor character in type to be used
as the fill element for heterogeneous
arrays. More [134] uses a fill element
based on the type of the array's first
element; this is the approach used in STSC
Inc.'s NARS system implementation of
heterogeneous arrays (see Cheney [23]).
The choice of fill elements for arrays and
the relation of this issue to issues
concerning heterogeniety and types of
nested array systems is discussed in Gull
and Jenkins [57].

A final question involving
heterogeneous arrays is that of their
output format; although few proposals have
discussed this issue in the context of

simple heterogeneous arrays, STSC Inc.'s
NARS system seems to use a convention
which separates characters and numbers
horizontally with spaces in output (see
Cheney [23]).

II.E Complex Numbers

For many years there has been
discussion in the APL community about
extending the numeric data type of the
language to the set of complex numbers.
Such an extension would be of great
utility in many scientific and engineering
applications which up until now have had
to simulate complex arithmetic in APL with
user-defined functions. The extension of
numeric data to complex numbers is largely
a proper extension because the complex
numbers include the real numbers just as
the real numbers include the integers, and
thus the extension to complex numbers
involves little change for users who are
concerned exclusively with real or integer
values (see Penfield [155] or McDonnell
[120]).

Penfield has made several reports on
the choices involved in a complex number
extension [151-153], has reviewed the
reactions of the community to these
reports [154] and has made two detailed
proposals for a specific set of extensions
[155-156]. These proposals have now been
implemented by I. P. Sharp Associates,
Inc. on the production system version of
SHARP APL [119, 120].

The major issues that have been
examined with regard to complex numbers
include the notation to be used for
complex constants, the extension of
arithmetic functions, the definition of
principal values and branch cuts for
complex functions, the application of
comparison tolerance to complex functions
and the definition of complex floor and
ceiling functions (for more on the last
two topics, see [39, 60, 111, 112}). Of
these issues, only the last is still in
contention, the major competing proposals
being those of McDonnell [112] and Forkes
[39].
II.F Infinite Values and Arrays
Mathematicians regularly deal in their
work with infinite (and even transfinite)
quantities; for example, in such
constructs as summation over some index to
infinity. Since APL was originally
designed as an alternative mathematical
notation, it seems reasonable that it
should also have the capability to
manipulate infinite values. Iverson [73]
suggests the use of the underbar and
overbar symbols (and ~) to denote
infinity and negative infinity,
respectively. However, he uses the
symbols only for limited purposes: to
separate lists of values, to denote limits

283

for the power operator and to specify an
alternate fill element for the expand
function. McDonnell and Shallit {117]
discuss a variety of topics related to the
use of infinite values in APL, including
the creation and manipulation of arrays
with infinite axes. They discuss the
application of primitive scalar functions
to infinite values, motivating their
choices with accepted usage from
mathematics, and stressing the difference
between a truly infinite value and a value
of "machine infinity" which results from
representation limitations. They also
stress here the difference between
undefined (infinite) values and
indeterminate values (for which several
choices may make sense), and make
suggestions for the internal
representation of infinite values.

An extension of some mixed functions
(e.g., monadic 1) to infinite values is
seen to imply the creation of arrays with
axes of infinite length. Such arrays can
be represented as transformations on
indices into the arrays; these
representations can be further transformed
to reflect the actions of function
application. One very practical use of
such arrays which is demonstrated is in
effecting arbitrary-precision calculations
and other "WHILE"-type constructions.

Shallit [172] continues this work,
giving new examples of the use of infinite
arrays both for implemented systems and in
mathematical exposition, where they can be
employed with fewer restrictions. He also
discusses the diagonalization function
defined in the previous work, giving it an
APL symbol (%) and using it in exposition
to present classical proofs in APL
notation. The diagonalization function is
used to transform arrays with infinite
length axes into infinite-length vectors
by selecting elements from successive
diagonals.

II.G Sets

Several proposals have been made to
include sets as a data structure in APL,
both formally as a new recognized
structural type and informally by defining
APL functions representing traditional set
operations to act on arrays representing
sets, The difference between these two
types of representation reflects the
differences between sets and arrays as
formal structures: sets lack many of the
properties of arrays such as axes,
well-ordering and preservation of
repetitions (see More [136]). An array
representation of a set, for example,
would have to have its elements arranged
in a specific order, whereas a set would
not.

Soop [180] describes a way to
construct sets through the reshaping of

arrays. He defines certain useful
functions on sets and also discusses some
problems with sets which result from their
lack of ordering, specifically in the
areas of display and selection.

McAllister [110] compares three different
ways of representing sets: as boolean
selectors for some universe of elements,
as integer encodings of these boolean
values, and as vectors of elements without
repetitions. This last type of
representation is also described by
Iverson [73], who defines many useful set
functions on such vectors. This approach
to set representation is notable in that
it introduces no new data structures to
the language and that the functions which
it introduces are thus potentially
extendable to arrays. Implementations of
some of the functions of (73] have been
done by Burroughs (193] and by STSC, Inc.
on their NARS system [23]. For more
information on these functions see the
section on Set Functions.

II.H User-Defined Types

In current APL the concept of data
type is quite simple; two types of data
are recognized in the language, numeric
and character, although there are usually
more types represented internally in an
actual implementation (e.g., bit, integer,
real, etc.). These internal types are
largely invisible to the user because of
APL's use of type-generic arithmetic
functions; i.e., functions whose arguments
are automatically type-converted by the
interpreter, if necessary. On the other
hand, such type conversions can also be
effected explicitly with functions such as
[and L. Because the interpreter can
differentiate character and numeric types
from context, this scheme frees the
programmer from the necessity of making
data type declarations for variables and
formal parameters.

However, this freedom from concern
with data types runs counter to some of
the latest trends in mainstream
programming language design. Many
designers currently support not only the
declaration of types for variables, but
also the flexibility afforded by allowing
users to define their own data types. The
proponents of this concept of data
abstraction cite several reasons for the
use of these data typing facilities: they
allow programmers to define the types
of structures which are natural to
an application; they provide a summary of
the properties of objects of a given type;
and they prevent functions from being
erroneously applied to the wrong types of
data.

Several proposals have been made to
incorporate user~defined data typing
facilities into APL. The APL-inspired
languages X\APL (Braffort and Michel [16])

284

and ALICE (Jenkins [86]) provide means for
users to define data types through a
mechanism of tagged structures and,
ALICE, to define variant versions of
functions to apply to these different
types. Jenkins and Michel [82]

demonstrate that different interpretations
can be made when tags are associated with
recursive data structures such as nested
arrays. Hardwick [61] employs a record
structuring facilities and typing to an
application involving graphics data
structures. Kajiya [90] discusses a new
scoping mechanism, called downward scoping,
and demonstrates how it can be used to
obtain generic functions and thus a data
"class" effect. 1In spite of the above
proposals, no general scheme for
introducing data abstraction facilities
into APL has yet become widely accepted.
This may be due to the fact that many
people feel that strong data typing of any
kind is foreign to the spirit of APL. For
this reason, it may be some time before
even an elegant proposal will be accepted
by the APL community.

in

III. Functions and Operators

In order to manipulate its data
arrays, APL contains a wide variety of
primitive scalar and mixed functions.
These functions are not assigned to any
hierarchy of precedence, but simply apply
to the results of the whole expression on
their right and (if dyadic) to the
argument to their immediate left (these
rules can be modified through the use of
parentheses). 1In order to augment these
primitive functions, APL allows users to
create their own functions defined through
the composition of primitive functions and
data values. Such defined functions
follow the same syntax rules as primitive
functions, and are therefore called simply
by appropriate placement of their name in
an expression. APL further augments the
power of its primitive functions with
entities called operators, which act upon
data and functions to produce functions as
results.

Even though these functions and
operators provide a powerful functional
facility in APL, many proposals have been
made to enhance this facility by defining
additional primitive functions and
operators, by removing some of the
restrictions placed on defined functions,
and by formalizing operators and
increasing their role in the language.
II1.A Primitive Functions

The discussion of primitive functions
below is divided up into sections which
cover proposals for changes in the
behavior of primitives in general, groups
of related functions to which changes have
been proposed and a section for
miscellaneous proposals concerning

primitives. For information on arrays of
functions, see the Miscellaneous
Extensions section.

Rank, Uniformity and Symmetry. Some
proposals would change not just a single
primitive function, but would change the
way in which all primitives behave in
certain cases. Proposals concerning
uniformity and symmetry affect the way in
which structural and mixed functions apply
to arguments of higher than "normal" rank.
Iverson [73) defines the notions of
argument rank and result rank for functions
in order to clarify the notion of the
"normal" rank of argument to which a
function applies (a formal definition is
referred to in Orth [148), though none is
given in [73]). For example, the reversal
function (¢) has both argument and result
ranks of one, whereas the derived function
summation (+/) has an argument rank of one
and a result rank of zero. Both of these
functions are extended to arguments of
higher rank by applying them along the
last axes of those arguments, or along
some other single axis of the array
through the use of an axis specification.
In some cases functions are also defined
to apply to arguments of a rank smaller
than their function rank, e.g., the
degenerate cases of inner product and
matrix inversion for vectors and scalars,
or reversal for scalars.

In order to generalize the way in
which functions apply to arguments of rank
greater than their function rank, Iverson
observes that functions extended in this
way must be uniform in the sense that when
applied to arguments of a given shape,
they return results of a shape fully
determined by the shape of the argument.
For example, the reversal function when
applied to a vector always returns a
vector of the same shape as the original,
whereas the summation function when
applied to a vector always returns a
scalar. Such uniform functions can be
applied to arguments of high rank by
splitting the arguments into collections
of arrays along their last axes, applying
the functions to the resultant arrays of
appropriate rank, and then reassembling
the results (which will share a common
shape because of the uniformity
requirement).

In some cases, these rules for uniform
application would conflict with other
proposals to extend certain functions.

For example, under the rules of uniform
application the grade functions (4 and ¥)
would apply separately to the individual
vectors within a matrix, but another
proposal (see Sykes [1811) would apply the
grades to a whole array at once,
interpreting positions on different axes
as having different significances for
ordering the final result. Uniform
application also conflicts with the notion

285

of symmetric function definitions.

Michel and Jenkins [83] propose
alternative definitions for several
primitive and derived functions, calling
the functions so defined symmetric
functions. These functions are symmetric
in that they apply equally to all axes of
an array and thus are not biased towards
the last axes. For example, they define
reduction so that the summation function
(+/) would sum along all axes, returning
a scalar result when applied to an array
of any rank; similarly they define
reversal so that it would reverse an array
along all of its axes. In effect, the
symmetric functions so defined have
unbounded or infinite argument ranks (the
same may be said of some current
primitives such as ravel). This means
that the symmetric functions require an
explicit use of the axis operator in order
to be applied to any limited number of
axes of an array, whereas the uniform
application rules require an explicit use
of the axis operator only when the
function is to be applied to axes other
than the last. An issue closely related
to those of uniform application and
symmetric function definitions is the
design of more sophisticated axis
operators for APL; for more on this issue
see the section on Axis Operators.

Scalar, Laminar and Rank Extension.
APL's rules for scalar extension are a
simple but useful way of allowing
functions to be applied between scalars
and arrays of higher rank where conforming
arguments would normally be needed: the
scalar argument is simply replicated to
the appropriate shape before being applied
to the array. For example, in the
expression "3 + 4 u4p0", the scalar 3 is
extended to an array of shape 4 4 before
it is added to the other argument. Scalar
extension rules are currently used only
with primitive scalar dyadic functions
when applied between scalars and higher
rank arrays, but proposals have been made
to generalize this facility to be
applicable in other contexts as well.

Several authors [89, 115, 121] propose
a generalization of scalar extension that
would allow one argument (of a dyadic
scalar function) of any rank to be
replicated along new axes in order to
conform to another argument of higher
rank. This facility would allow, for
example, a vector to be added to each row
or column of a matrix, or for a matrix to
be added to the planes of a rank 3 array.
Different proposals achieve this effect
in different ways: Breed proposes an
extension to the rules for applying dyadic
scalar functions to arrays of differing
rank (see Brown [18]). Jizba [89]
proposes a new operator called the
distributed product. Mebus [121] suggests

using the expand function to allow the

replication of laminae of an array prior
to function application (see below).
McDonnell [115] proposes extending the
axis operator to act on ardic scalar
functions (e.g., "V+[1] ¥" or "V+[21M "
add a vector to a matrix). This last
proposal has been implemented in Burroughs
APL/700 [193] and on STSC, Inc.'s NARS
system [23] (on the Burroughs system the
axis information may be elided to default
to the last axes of the array). Jenkins
and Michel [83] note that the suggested
default rules for their axis operator
by-slice yield this interpretation for
scalar functions.

to

Another generalization to scalar
extension can be made by allowing a
similar facility to be used in the
application of mixed functions to
arguments whose ranks do not agree for the
purposes of the function application; this
facility is called laminar extension by
Mebus [121]. He notes that this facility
is general enough to encompass the case of
scalar function application and is
currently implicit in the mixed functions
encode and decode and in functions derived
from the inner product operator
(Jayasekera (see Keenan [91]) notes that
encode and decode are anomalous for this
reason). Mebus' proposal calls for the
expand function to be extended to allow
replication of laminae along axes of
length one and along new axes created with
a fractional axis specification. The
generalization of scalar extension to
higher rank arrays and to mixed functions
can also be achieved through the use of
more sophisticated axis operators; see the
section on Axis Operators.

Mebus [121] notes that his proposal
allows the creation of new axes of length
one in an array even when replication is
not specified. This facility is called
rank expansion by Lucas [105], who
decomposes the capabilities inherent in
lamination into rank expansion, axis
specification and function action along
newly created axes. He continues by
proposing several operators which would
combine these capabilities in various
combinations with a function specified for
action along the new axes. Gilmore [51]
proposes the shake function (from "shape"
and "take") to allow explicit rank .
expansion without replication or function
action, and to allow the "coalescence" of
several axes into a single axis.

Indexing. 1Indexing is probably the
most commonly used array function, and is
indeed a necessity in standard programming
languages which do not manipulate whole
arrays. Unfortunately, indexing is also
syntactically anomalous as it is currently
defined, for it is a single function
denoted by two widely separated symbols ([
and]), and it employs the semi-colon as
a non~functional separator. These

286

anomalies might seem balanced by the
familiarity of this notation but they lead
to three major problems with indexing: in
its current form, indexing is
syntactically bound to the rank of the
indexed array, and instances of indexing
thus cannot be easily generalized to
higher ranks; the index argument is not a
simple APL array (some call it a list),
and thus cannot be easily manipulated or
assigned a name; and finally, it would be
difficult to use indexing in its current
form as the argument to an operator. On
the other hand, the current form of
indexing is a powerful facility, which
encompasses at least three different
capabilities (after Lewis [100]): simple
indexing, which selects a single element
of an array by specifying only one
position per axis; combinational indexing,
which selects an array of elements by
specifying vectors of positions for each
axis; and slice indexing, which allows the
selection of all elements along an axis
through the elision of position
specifications for that axis. One form of
indexing which is often desired but which
is not available through the current
facility is one in which a number of
unrelated elements are selected by
specifying the indices of each of the
elements separately (this is called
scatter-point indexing by Cheney [23]).

Several proposals have been made to
add new forms of indexing to APL which
would encompass the capabilities of the
current form but under a more regular
syntax; other proposals would add new
forms of indexing entirely. Lewis [100]
defines several successively more powerful
systems of functions in order to realize
all of the capabilities covered by current
indexing. 1Iverson [73] defines the from
function (denoted by) to treat the rows
of its left argument as indices into an
array right arqument, thus allowing
scattered points to be selected. Pesch
[157) defines an operator (I) which, when
applied to a nested array of position
specifications, produces an ambivalent
derived function that allows both indexing
and indexed replacement. Several other
proposals for indexing which employ nested
arrays are discussed in the section on
Nested Arrays; of these, Jenkins and
Michel [83]note that their choose function
could be implemented for non~nested
indices in a manner similar to Iverson's
from function.

Both Iverson [73] and Ghandour and
Mezei [47] propose that negative indices
be interpreted as counting backwards from
the last position on an axis just as
non-negative indices currently count
forward from the first position. This
facility, called complementary indexing by
Bernecky and Iverson [9], allows
references to be made relative to the last
positions on an axis without actually

computing the length of that axis. This
scheme can also be used for axis indices
with an axis operator (see Ghandour and
Mezei [47]).

Many proposals have also been made to
generalize the index generator (1),
usually to allow it to apply to vectors.
Holmes [68] suggests an extension that
would simplify the generation of
arithmetic progressions. Many nested
array proposals define an index generator
extended to take vector arguments to
produce an array of enclosed indices into
an array of the shape specified by the
vector argument (see the section on Nested
Arrays); in particular, Jenkins and Michel
[83] note that their index generator
(called odometer) could be modified to
produce non-nested arrays, the rows of
which would comprise the generated
indices, in a manner compatible with the
non-nested version of their choose
function. Brown [18] defines his index
generator interval to accept negative
values, but notes that it does not behave
as desired for vector negative arguments.

Other Selection Functions. A variety
of proposals have been made to extend the
selection functions take, expand and
compress. Abrams [2] has described the
take function as "overburdened"™ in bearing
the capabilities for both selection and
expansion, suggesting that the "overtake"
portion of the function be handled by a
new function or by other primitives.
However, several other proposals have been
made which would increase rather than
decrease the capabilities encompassed by
the take function: Nater [143] suggests
that both the take and drop functions be
defined to act along the last axis of an
array if given a scalar left argument,
that they be allowed to take an axis
specification, and that "first axis™"
versions of each be defined analogous to
first dimension reduction, scan and
reversal. Iverson [73] uses the variant
operator to allow fill elements to be
specified for both the take and expand
functions. On STSC Inc.'s NARS system,
the take function is extended to allow the
specification of a fill element by means
of a dyadic function derived through the
composition of take with its selector
arqgument. This approach is used uniformly
to extend the expansion and compression
functions to mesh and mask (see the
section on Mesh and Mask).

There is some controversy over the
status of the expand and compress
functions: although originally defined as
functions, Iverson [73] has suggested that
they be considered operators, both to
rationalize their relationship to the scan
and reduction operators and to allow the
mesh and mask functions of Iverson {[70] to
be defined through them under this
interpretation.

287

Bernecky has defined a proper
extension of compression called
replication which allows non-negative
integer values on the left to specify the
number of times the corresponding element
of the right argument is to be replicated
in the result. The replication function
has been implemented by I. P. Sharp
Associates, Inc., and by STSC Inc. [11, 23]
and has been extended on STSC Inc.'s NARS
system to allow negative values on the
left to specify replications of the right
argument's fill element in the result.
This system also extends expansion to take
signed integer values on the left in a
manner similar to the extended version of
replication.

Several proposals have been made to
allow other selection functions to be used
on the left of assignment as indexing is
currently used; for a discussion of these
proposals see the section on Assignment.

Searching. Searching for elements in
an array can be done in two ways: either
for a specific element or for a pattern of
elements. The former is exemplified by
the index-finder (dyadic 1) of current
APL, which searches within its vector left
argument for the first occurrence of each
of the elements of its array right
argument. Several authors have proposed
extending this definition to find first
occurrences (in row-major order) of
elements in arrays of rank greater than
one (see Brown [18], Ghandour and Mezei
[47] and Jenkins and Michel [83]), using
either nested vectors or rows in the
result to hold the vector indices
returned. The find function defined by
Ghandour and Mezei [47]) finds the indices
of all occurrences (not just the first) of
the elements sought.

In current implementations of APL, if
an element is sought, but no occurrence is
found, the index returned is one greater
than the length of the vector being
searched. This result is thus not a legal
index for the vector, and subsequent
indexing with this value will produce an
error. Brown [18] defines the position
scalar (g) to be returned as the index for
elements not found in the array being
searched, following Iverson's early use of
the null character [70].

The second type of searching mentioned
above locates not individual elements but
rather the pattern formed by a series
(vector) or array of elements. This kind
of pattern searching is embodied in the
where function (w) described by Mercer
[125], which returns a boolean vector with
ones indicating the beginning of an
occurrence of a pattern within the vector
being searched. A similar function is
implemented as "string search” ([]8S) on
STSC Inc.'s APL*PLUS® system. Falkoff
[36] gives models for a search function

which takes arguments of any (but equal)
rank, with an optional axis argument to
allow searching for a low-rank array
within one of higher rank, and another
optional parameter to specify "don't-care"
elements for patterns which are not solid
infixes.

Sorting and Grading. Two kinds of
proposals have been made to extend the
grade functions (4 and V). The first,
suggested by Sykes [181], would extend the
domain of the grade functions to higher
rank numeric arrays by treating vectors
within an array as composite values for
grading purposes, or by independently
grading parallel vectors within an array.

The second proposal, made by Smith [179],
is to define dyadic versions of the grade
functions to grade character arrays. The
left argument of these functions is an
array describing an alphabet used for
ordering, with differences in positions
along different rows, planes, etc., having
correspondingly different significance for
ordering. The right argument is the array
which is to be graded, and in Smith's
proposal it is treated as a matrix by
raveling together all but the first of its
axes.

Set Functions. Although several
proposals have been made to include sets
in APL as a formal data type (see the
section on Sets in Data Types and
Structures), many functions can be defined
which informally treat vectors (or arrays)
as sets. An example is the membership
function (¢) of current APL. 1In order to
treat vectors more like sets, several
authors have defined a function which
ravels its array argument and eliminates
all duplicate instances of its elements.
Iverson {73] calls this function nub (V)
and defines an "ordered" counterpart that
sorts the unique elements in ascending
order, as well as distribution and ordered
distribution functions which facilitate
the reconstruction of an array from its
nub. He also defines subset and
containment propositions (< and>) and the
familiar proper analogues to each (< and
5). A function similar to nub but called
fhique is implemented on STSC Inc.'s NARS
system [23].

Several authors define functions to
obtain the union, intersection and set
difference (u, n and ~) of two "sets". 1In
some of these proposals, the functions are
defined to ravel array arguments or to
take their nub before operating on them.

Scalar Arithmetic Functions.
of changes and additions have been
proposed to the scalar arithmetic
functions of current APL. McDonnell [113]
proposes proper extensions of the logical
functions and and or (A and v) to
represent the least common multiple (LCM)
and greatest common divisor (GCD)

A number

288

functions. His proposal has been
implemented by I. P. Sharp Associates,
Inc. on their SHARP APL system. McDonnell
[114] also proposes a refinement to the
division function, suggesting that the
result of 0:0 should be 0 rather than 1,
for both practical and theoretical
reasons. Others (DeKerf [30) and
Eisenberg [34]) have suggested rather that
the expression should produce a domain
error, or that its result should be
specifiable through a system variable.

The circular function has been
criticized for the rather unprecedented
way in which its numeric left argument
selects a function from the family of
functions associated with the symbol.
Several additions and refinements to this
family of functions have been proposed by
Penfield [155] to aid in the manipulation
of complex numbers (for more information
on complex numbers, see the section on
Complex Numbers in Data Types and
Structures).

Matrix Functions. Many functions of
interest in linear algebra are arithmetic
functions that are not scalar functions
but which rather utilize both the array
structure and numeric contents of their
arguments. Examples from current APL are
the plus-times inner product (+.x) and the
matrix divide function (B). Several
proposals have been made to extend the
domain of the latter to singular and
rank-deficient systems using
generalizations such as the Moore-Penrose
pseudo-inverse [32, 67, 101]. Another
matrix function inspired by linear algebra
is the eigenproblem primitive (g) proposed
by Jenkins [79], which finds eigenvalues
or eigenvectors of its matrix argument.
The common matrix determinant is a special
case (denoted -.x) of the more general
determinant operator defined by Iverson
{72]. The definition of the operator
allows non-square matrices and uses a
monadic derived form of the inner product
syntax.

Miscellaneous Primitives. Following
are descriptions of several miscellaneous
primitive function extensions which have
been proposed {(or implemented) by a
variety of sources. The equivalent
function (also called match or identical)
defined by various sources [9, 23, 47, 56]
compares its whole array arguments for
equality in rank, shape and all elements.

Some proposals for convenience define a
similar function called inequivalent (see
for example Cheney [23]). Although they
are often defined in the context of nested
arrays, these functions are also very
useful in comparing simple arrays.
Another function defined in the context
nested arrays, but which is useful with
simple arrays is the typ

of

e function (T1)
implemented on STSC Inc.'s NARS system:
returns (for simple, heterogeneous

it

arguments) a zero if the argument is
numeric and a blank if it is character
(see Cheney [23]).

The same system also allows a
first-dimension version of catenate (j3)
defined as an analogue to the familiar
first dimension reduction, scan and rotate
functions (/, \ and ¢), and extends the
reshape function to empty arrays by
returning the reshape of the prototype of
the array.

III.B Defined Functions

In order to supplement its wide
variety of primitive functions, APL allows
users to define their own functions, these
being composed from both primitives and
from other defined functions. These
defined functions can then be used in much
the same way as primitive ones: they are
called by placing their name in an
expression, between or in front of their
arguments, and their results are returned
as a value at the point of call.
Unfortunately, there are at least two
cases in which defined functions may not
be used exactly as primitives in current
APL: they may not be ambi-valent and they
may not be used with operators. Proposals
which have been made to remedy these
problems, as well as some that allow new
forms of function definition, are
discussed below. For information on
comments and statement separation within
defined functions, see the Miscellaneous
section.

Syntax. 1In many cases, two primitive
functions are represented by a single
symbol which is interpreted as the monadic
or dyadic form based on the context in
which the function is called. On most
systems this property, called ambi-valence
by Iverson [75], is not extendable to
defined functions. However, on both the
SHARP APL system and STSC Inc.'s NARS
system, functions can be defined with both
a monadic and a dyadic form. Thus, on
these systems, defined functions can be
written which simulate primitives whose
monadic behavior supplies an elided
argument, or whose monadic and dyadic
forms perform completely different
functions.

Another way in which defined functions
differ from primitives is in their
exclusion from the domain of operators.
Several proposals have been made to extend
the domain of operators to include defined
functions (see Ghandour and Mezei [47],
Iverson [73] and Jenkins and Michel(83]),
and at least one implementation (STSC
Inc.'s NARS system; see Cheney {23]) has
actually realized this extension. Part of
the difficulty of this extension lies with
the problem of extending the domain of
operators to mixed functions, since

defined functions are often mixed, and

289

since this fact may be difficult for an
implementation to recognize. The NARS
system implementation overcomes this
difficulty by using its nested array
facilities to define the results of the
application of operators to mixed
functions.

Canonical Representation. 1In order to
define a function in current APL, a
character matrix representation of the
function is constructed and then used to
"fix" the definition of the function (this
is often done with the aid of a function
editor). This character matrix form,
called a canonical representation,
consists of a header line indicating the
function's syntax and name localizations
and several lines representing statements
which are to be executed upon function
invocation. These statements are
executed sequentially (unless the flow of
control is modified by a branching
statement) and when execution is complete
the result is returned as the value of
the function through the
variable designated for this purpose
in the function's header. Several
criticisms have been raised against the
canonical representation form of function
definition: one author [Ell] notes the
fact that it will not preserve simple
indentations which would aid in
readability. Other authors (see Holmes
[68]) criticize its non-function-like
ability to act without arguments, or to
return no results, and thus its ability to
cause "side-effects" (changes to the
environment outside the function). But
certainly the most controversial feature
of the canonically defined function is its
control structure, the branch arrow.

Control Structures. Ever since the
doctrine of structured programming rose to
popularity, APL has been criticized for
its simple (and sole) control structure,
the branch arrow (?*). Critics complain
that the branch is too easily misused and
that its misuse leads to non-modular code;
they seek instead the traditional sorts of
control structures found in other
languages: explicit iteration control,
block formation, conditional statements,
etc., In response to these criticisms,
several proposals have suggested new
control structures for APL which would be
implemented in a variety of ways.

Foster [40] defines a statement
structuring syntax which allows statements
to be grouped and to be performed
conditionally or repeatedly. 1In a later
work [41] he describes a scheme which
combines a restricted form of branching
with a generalized function calling
mechanism to achieve better potential for
program modularity. Kelley et. al. [92,
93] describe processors for two versions
of the APLGOL language which compile
APL-like programs with structuring

keywords into normal APL code (APLGOL-2
[93] allows de-compilation and editing).
Kemp [94] describes similar facilities for
pre-processing structured APL programs.

Reeves and Besemer [160] define new
control "primitives" (represented by t+and
+) which can be used to construct several
standard structural schemes. Ching [25]
has recently described a new construct
called a module (inspired by similar
constructs in the MODULA language) which
can be used to effect better structuring
by improving scope control and
readability. Oates [144] proposes a
combination of local directly defined
functions (see below) and a flow control
mechanism to allow for more modular
program design.

In reaction to this plethora of
control structure proposals, Wiedmann
{187]) considers that the structured
programming fervor has abated somewhat and
that the current view of the community is
that the control structures of traditional
scalar languages may be inappropriate for
APL.

Direct Definition. Although most
current APL systems offer only the
canonical form for defining functions,
many of them supply software which
simulates a form called direct definition,
which was first defined by Iverson [71].
This form of function definition takes a
single APL expression in the variable
parameters o and 4 and interprets the
explicit result of the function to be the
value of that expression given when the
parameters are assigned the values of the
function's arguments. Any variables which
are assigned within the expression are
automatically localized, and thus directly
defined functions are free from side
effects. The direct form of definition
also allows a simple conditional
construct: a propositional (boolean
valued) expression determines which of two
alternative expressions will define the
actual result of the function. These
three expressions are separated by colons
with the proposition in the middle: if the
proposition evaluates to 0, the left-hand
expression defines the result; if it
evaluates to 1, the right-hand expression
is used. Given the ability to reference
a function within its own definition, this
construction allows a simple way of
defining recursive functions.

A number of proposals have been made
(and at least one has been implemented)
supply APL with an extended version of
direct definition through an operator
which takes as its argument a character
string denoting the expression to be used
for the direct definition, and which
returns the corresponding function as its
result. 1Iverson [73] defines such an
operator as a special case of composition

to

290

between character arguments or character
and null arguments. This early definition
is somewhat different from more recent
proposals in that it allows abstraction
with respect to one or two variables as
well as the familiar a¢-w form (Iverson has
since argued against this type of
abstraction; see "Direct Definition"
[Asilomar]. 1Iverson and Wooster [78]
define an operator (V) which may take one
or two character strings as its arguments
to return an ambi-valent derived function
(one argument may be replaced by the null
symbol in order to obtain a monovalent
result). Their definition provides for
statement separation and control of
sequential execution of these statements,
as well as reference to the function
within its own definition. A very similar
operator has been implemented on STSC
Inc.'s NARS system as described in Cheney
[23]. Metzger [128] discusses a facility
which he calls extended direct definition
which allows such constructs as statement
sequences, explicit globalization of
variables, a conditional ("WHILE") loop
structure, a loop initialization feature,
allowance for early termination of loops
and a "CASE"-like construction.

in

III.C Operators

Besides arrays of data and the
functions used to manipulate them, APL has
a third class of objects called operators.
Operators are similar to functions in
that they take arguments and return
results, but different from functions in
that their arguments are functions
themselves (or data) and their results are
functions; these resultant functions are
called derived functions. Examples of
operators are reduction (as in x/y, inner
product (the "." in A.=) and the axis
operator (as in ¢[3]). Operators are only
now being fully explored and were in fact
fairly late in becoming recognized as a
separate class of objects (see Falkoff and
Iverson [Fall).

For information on direct definition
operators, see the section on Direct
Definition in Defined Functions.

Syntax and Valence. Most of the
recent proposals to formalize operators
define them to be monovalent (i.e., either
strictly monadic or strictly dyadic) in
order to remain consistent with the syntax
of current APL and also to cut down on the
number of parentheses needed in
expressions (see [75]). However, Iverson
{73] suggests that the null (or jot °) be
used as an empty argument to achieve
effectively ambivalent operators (as in
o.x as opposed to +,x). Note also that
most proposals allow the derived function
results of operators to be themselves
ambi-valent (e.g., both "¢[3] A" and
"1 ¢[3] A"). There is also much agreement
that operators should have higher

precedence than functions so that, for
example, the operator in R+.xXY acts on
the times function before the function
itself acts on the array.

There is less agreement as to whether
monadic operators should take their
arguments on the left or on the right;
several proposals claim that the argument
should occur on the left (as in +/), thus
following an earlier precedent that the
syntax of monadic operators should mirror
that of monadic functions. Adherents to
this view usually also define operators to
have long left scope (i.e., to take the
entire operator sequence to their left as
their left argument), again mirroring the
syntax of functions (for example, the
expression "+.x.3" is interpreted as
"(+.x).32"), Proposals which do not follow
these rules include some earlier works
(see Ghandour and Mezei [47], Gull and
Jenkins [56] and Jenkins and Michel [83])
and most works treating (or inspired by)
Array Theory (see More [130~138], Jenkins
[86-88]).

In order to facilitate the
construction of operator expressions using
these rules, parentheses are allowed to
surround expressions which result in
(derived) functions.

Domain and Range. In current APL,
operators are largely limited to scalar
primitive functions for their arguments
(the exceptions being for some mixed
functions, e.g., ¢[21). Proposals for
formalizing operators often suggest that
these restrictions be removed so that
mixed functions, derived functions (the
results of operator expressions) and even
defined functions would be allowed as
operator arguments. Of course, the
discussion of the scope and binding of
operators in expressions such as "+.x.%"
implies that derived functions would be
allowed as arguments to further operators.

Operator sequences of this type have been
suggested by several proposals (see
Ghandour and Mezei [47], Iverson [73] and
Jenkins and Michel [83]) but have been
implemented only on STSC Inc.'s
experimental NARS system (see Cheney
{23]). This system also allows some
operators to be applied to functions which
return no results (see Smith [178]).

It is
operators

difficult to understand how some
would be applied to some mixed
functions because the results of these
functions are of in general of rank
greater than zero and not of uniform
shape; thus they could not easily be
assembled into a result array of the
appropriate shape. This problem is solved
in some proposals [20, 21, 23, 47, 83]
through the introduction of nested arrays
and thus through the incorporation of
nested array functions into the
definitions of the operators themselves.

291

Orth [148] considers this a bad solution
to the problem, and gives examples of some
difficulties that arise when using this
method.

The same difficulty which accompanies
the extension of operators to mixed
functions is probably the largest single
difficulty in extending operators to
defined functions, since most systems do
not retain information on the scalar or
mixed properties of defined functions, and
since many defined functions are mixed.
Two other difficulties with allowing
defined functions as operator arguments
are the association of an identity element
with a function for use with the reduction
operator, and the calculation of the
inverse of a defined function for use with
the power or dual operators.

Some proposals have suggested that the
range of operators be extended to include
operators themselves (see Iverson [73,
74]) although there has been little
discussion of the semantics of such
extensions. The APL-inspired language
ALICE (see Jenkins [86]) defines a
hierarchy of objects based on their order.
The order of an object is defined to be
0 for arrays, 1 for functions, and higher
values for ALICE functionals, which are
operators generalized to act upon and
return results of mixed orders. A syntax
for applying operators to operators is
given by Georgeff et. al. [45, 46], based
upon the needs of established parsing
methods. Some have questioned the
application of operators to exclusively
data arguments, especially the
rationalization of compression as an
operator which takes a left boolean
argument and returns the appropriate
selection function as a result (discussed
by Iverson [73]).

Reduction and Scan. 1Iverson [73]
describes extensions of the reduction and
scan operators to allow dyadic functions
to be derived from either of these. 1In
the case of reduction, the derived
function's integer left argument specifies
the length of a "moving window" over which
the reduction is performed; thus the
expression ", -/y" returns the pair-wise
differences between elements of the vector.
For negative left arguments of the
derived function, the sense of the
arguments is reversed. The dyadic
reductions derived from scan are defined
similarly.

One problem associated with extending
the domain of reduction to new types of
functions (mixed, derived or defined) is
the question of how to define identity
elements for cases when the derived
functions are applied to empty arguments.
Hoskin [69] describes a scheme which
provides "pseudo-identity" elements for
some primitives. Brown and Jenkins [21]

describe progress towards defining
identity element expressions for certain
functions and classes of functions, but
also demonstrate that no identity

expressions exist for certain other
functions.

Combinational Operators. The inner
and outer product operators of current APL
have been called combinational because of
the way in which their results depend upon
different combinations of their elements.
Brown (18], Ghandour and Mezei [47] and
Jenkins and Michel [83] all re-define the
outer product with a new syntax, replacing
the two symbols (°.) with one, in seeming
criticism of the notion of a two-symbol
primitive operator. Keenan [91] has
criticized the inner product as being too
specialized in that, e.g., an internal
scan cannot be specified in place of the
internal reduction. He also suggests that
the definition of inner product be refined
So that the last axes of both arguments be
eliminated from the results rather than
the last axis of the left argument and the
first axis of the right as is currently
the case (the former definition is more
compatible with the last axes bias of
uniform application, while the latter is
more consistent with the traditional
definition of matrix multiplication in
linear algebra).

Iverson [72] has defined two new
operators for the monadic derived cases of
the inner and outer product symbols. The
first is a generalized version of the
determinant which takes any two scalar
primitive functions as its arguments, so
that the special case -.x is the familiar
determinant function (he also describes an
extension to non-square matrices). This
operator has recently been implemented on
SHARP APL. The monadic derived case for
the outer product symbol (°.) is called
the function table operator and produces
a function table of the shape given by the
function's argument by performing outer
products between index-generated vectors.

This operator has been implemented on
STSC Inc.'s NARS system [23].

Also implemented on STSC Inc.'s NARS
system is a dyadic operator called
convolution (¥) which produces a dyadic
derjved function that performs a
"moving~window" inner product while
reversing the selected portion of the left
argument. The operator can be used to
find the products of polynomials in
coefficient-vector form (using +Tx) and to
perform string searches [23].

Axis operators. The bracketed axis
specification used with many functions was
not initially considered an operator (see
Falkoff and Iverson [Fal]), but has since
been widely recognized as such.
Undoubtedly this delay in recognition was
in part due to its anomalous syntax

292

relative to other operators: although it
takes its function argument to the left,
it takes its data argument (axis
information) between two separate symbols
([and]). Several proposals have been
made to extend the axis operator or to
define new axis operators to replace or
augment the current one,

One of the most common extensions to
the axis operator is to allow vector axis
specifications for at least some functions
(e.g., x/). Brown [18] defines such
extensions for many functions using the
bracketed axis specification syntax but
expresses them in terms of "indexed
functions" rather than explicitly as
functions derived from an operator. He
uses nested array functions to define a
general method of extending functions to
indexed versions: the arrays are first
split along the specified axis or axes
into subarrays; these subarrays are
enclosed and the function is applied to
all subarrays separately; and finally the
enclosed subarrays are disclosed and
reassembled into one array. Many
subsequent proposals for axis operators
define them in similar terms. Ghandour
and Mezei [47]) define an axis operator (:)
and supply definitions for its results
when applied to a variety of functions,
often with vector axis specifications and
with complementary axis indices (see the
section on Indexing).

Jenkins and Michel ([83] criticize both
of these early proposals for axis
operators as being too function dependent,
noting that in both schemes separate
definitions must be supplied for each
function extended. In order to supply a
more function-independent semantics, they
first define an axis operator called
by-slice in terms of nested array
functions, and then give new definitions
for many primitives which they call
symmetric definitions (see the section on
Rank, Uniformity and Symmetry). They
attempt to supply default rules for the
less general axis operator and
non-symmetric functions of current APL in
terms of their proposal, but find this
impossible because of inconsistencies in
the current interpretations of certain
functions derived with the axis operator.

The by-slice operator takes 2 or 3 data
arguments (all potentially vectors) to
specify the axes along which the argument
(or arguments) are to be sliced, and the
axes along which the results are to be
placed. The syntax used is that of a
bracketed semicolon list, the semicolons
separating the vector slice
specifications.

Iverson [73] defines two axis
operators called nuax and coax(s and &)
which allow functions to be applied along
a certain axis (if of rank 1) or axes (if
of higher rank), or to be applied along

the complementary set of axes to those
specified (coax). He emphasizes that the
result of these operators is different
from that of axis specification since the
latter specifies both argument and result
axes whereas the former specifies argument
axes only and always places the results
along the last axes. Bernecky and Iverson
[9] re-define these two operators (as
forms of the on operator, denoted by &)
terms of nested arrays, allowing two
enclosed vector right arguments to specify
left and right argument axes, but still
forcing all results to be placed along the
last axes. They also define a separate
operator called along (8) that splits an
array into a collection of subarrays along
some axis and applies its function
argument to this collection before
reassembling the subarrays.

in

Keenan [91] criticizes the by-slice
and nuax operators as being "multi-adic"
and suggests in their place a combination
of several facilities. He first defines
uniform functions following Iverson [73]
and suggests that they be applied to the
appropriate last axes of an array. He
then defines the unit rank operators
(left,- , and right -) to limit their
function arguments to apply to the
specified ranks, and the endspose function
(%) to move the specified axes of an array
into the last positions. 1In this way he
spreads the capabilities of the axis
operators over several facilities, none of
which need be multi-adic.

The experimental NARS system of STSC
Inc. does not currently support any new
axis operators, but has extended the
familiar bracketed scalar axis
specification to take and drop, dyadic
scalar functions and derived functions
produced through the each operator. Orth
[148) has criticized the lack of more
sophisticated axis operators on the NARS
system, as he feels that the support of
such operators is an important issue in
language extension.

Compositional Operators. One of the
fundamental capabilities which is
necessary to facilitate the construction
of operator sequences is that of
functional composition. Composition
provides a means of binding functions
together so that they may be applied as a
unit as arguments to other operators or to
data arguments. Several forms of
composition are widely recognized, the
simplest of these being the composition
a dyadic function with a single data
argument to produce a monadic function
similar to the dyadic one, but with one
argument fixed. The supplied data
argument may be composed on either side
the function to produce fixed-left and
fixed-right cases.

of

of

293

Composition between functions is
somewhat complicated by the fact that the
argument functions may be either monadic
or dyadic, as may be the composite
function produced. Thus composition may
be defined to combine its function
arguments and and the data arguments of
its derived result in a number of ways.
To help separate these cases from each
other, both the SHARP APL and STSC Inc.
NARS system implementations of composition
provide several cases through the use of
different composition operators (see
Bernecky and Iverson [9] and Smith [178]).
A special form of composition called the
dual operator is defined by Iverson [73].
This dyadic operator produces a derived
function which is a composite of its right
and left function arguments and the
inverse of its right function argument.
Iverson notes that this operator provides
an extension of the concept of duality as
expressed, for example, in DeMorgan's laws
(» and v are dual with respect to ~}.

Keenan [91] has criticized composition
as being a special case of function
definition and thus as insufficiently
general for consideration as an operator.

Orth [148] also notes that composition
cannot be used to easily define certain
functions, but seems to regard it rather
as an adjunct to functional abstraction as
embodied in the direct definition
operator.

One difference between the composition
operators as they have been implemented on
SHARP APL and on STSC Inc.'s NARS system
has been stressed by both Orth [148] and
Bernecky and Iverson [9]. The difference
lies in the manner in which a composite
function derived from two mixed functions
is applied to its array arguments; in
particular, the composite function defined
on the NARS system behaves exactly as
would the two mixed functions applied
sequentially, whereas on the SHARP APL
system the two composed functions are
applied as a whole to the units
appropriate to the right function
argument, For example, consider a
function derived from the domino and
reversal functions as it applies to a
matrix argument. On the SHARP APL system
the function would split the matrix into
row vectors (as appropriate units for
reversal), apply both reversal and domino
in sequence to each of the vectors so
obtained, and then reassemble the
resultant vectors into a whole matrix
result. On STSC Inc.'s NARS system, the
matrix as a whole would be reversed along
the last axis and then the domino function
would be applied to the whole reversed
matrix to yield the final matrix result,
Orth [148] in particular considers this an
important difference between the two
implementations and favors the SHARP APL
approach.

Power Operators. The power {(or fold)
operator is defined in several proposals
(see Ghandour and Mezei [47], Iverson [73]
and Cheney[23]). This operator is dyadic,
taking a monadic function and an integer
scalar (say N) as its arguments, and is
defined to return a monadic derived
function which applies the given function
to its argument N times sequentially. For
example, if we use % to denote the power
operator then the expression "(F%3) 4" is
equivalent to the expression "F F F A",
If the function argument has a computable
inverse, then the derived function can be
defined for negative integer powers as the
corresponding power of the inverse of F.
The power limit operator defined by
Iverson [73] applies its function argument
repeatedly until the results of two
successive applications are equal. This
operator thus provides a facility similar
to the "WHILE" control structure of other
languages. STSC Inc.'s NARS system [23]
features both of these power operators, as
well as the power series operator which
accumulates the results of a series of
increasingly higher power inner products
between a square matrix and itself until
two successive results are equal. Smith
[177] describes a number of useful
applications of this operator, including
paragraph formation, mini-max problems and
other problems involving the transitive
closure or least-cost traversal of
directed graphs. A dyadic derived form of
the power series operator has also been
added to the NARS system [178] to allow a
vector of coefficients to be specified as
the derived function's left argument.

Mesh and Mask. Iverson describes two
functions called mesh and mask in his
original work on APL [70] that have not
been included in current APL, probably
because they require three arguments.
However, Iverson [75] describes how the
expand and compress functions could be
interpreted as operators, freeing them for
new dyadic derived forms which could be
used to denote mesh and mask. McDonnell
[118) has suggested an extension to this
scheme which allows positive or negative
integer vectors (as opposed to boolean
vectors) to be used as arguments to the
mesh and mask operators. These integers
would be interpreted as specifying
replication factors, with negative factors
selecting from the left argument (of the
derived function) and positive factors
selecting from the right. Zero-valued
factors would select either from neither
argument (mask) or select the fill element
of the right argument (mesh). Versions of
the mesh and mask operators have been
implemented on STSC Inc.'s NARS system,
but with a syntax slightly different from
Iverson's (they are expressed as dyadic
forms derived from the composition of the
selection vector with the expand and
compress functions rather than as dyadic
derived forms of expand and compress

294

operators; see Cheney [23]1).

Another operator called mesh but
having different semantics is defined by
Jenkins and Michel [83]; see the section
on Assignment.

Miscellaneous Operators. A number of
miscellaneous operators are defined by
Iverson [73]: the scalar operators are
defined from the scalar functions as a
type of composition between the given
scalar function and the operator's two
arguments. For example, the scalar
operator + is defined so that the
expression "4 F¥G¢ B" is equivalent to
"(A F B) +4 ¢ B" and similarly for monadic
r and ¢. The derivative and difference
operators are defined from the derivative
operator and the related difference
quotient expression from calculus. The
commutator operator (~) commutes the sense
of a function's arguments (so that
A -~ B «> B - A) and is especially useful
in building certain operator sequences
(this operator has been implemented on
STSC Inc.'s NARS system under the name
commute; see Cheney [23]).

The identity operator yields the
identity function of its function argument
in the sense that x and * are the identity
functions of + and x respectively (see
Iverson [73] for more information). The
variant operator (%) is used to obtain
variant versions of functions which depend
on some implicit argument such as 0I0 or
Ocr; thus 1:K yields a vector whose origin
is K. The domain operator (Ae°) derives
from a function a proposition which
determines whether or not the propositions
arguments are in the domain of the
function. The valence operator (i) may
be used to fix its function argument as
either specifically monadic or
specifically dyadic_through expressions
such as "4+31" or "+A2",

User-defined Operators. Several
proposals have been made which suggest
that users should be able to define their
own operators, just as they can define
functions in current APL. The APL-based
language ALICE allows the definition of
functionals, which may be operators or
even higher or mixed order objects (see
Jenkins [86]). Georgeff et. al. [45, 46]
describe a syntax which ¢ould be used for
operator abstractions, noting that under
their parsing schemes separate operators
would have to be used for monadic and
dyadic operator abstraction.

IV. Evaluation and the System Environment

Although its data structures and the
functions used to manipulate them form the
core of the APL language, in order to be
of practical use in an implementation they
must be embedded in a system which will
allow them to be applied to solving real

problems. The APL system achieves this by
allowing users to evaluate expressions; to
read, write and store data; to assign
meaningful names to data and functions;
manipulate and query the systems
environment; and to control and monitor
the actions of the system itself. APL is
notable among programming languages for
its interactive nature and for its
self-contained system environment which
shields users from outside operating
systems. This feature makes APL
particularly well-suited to those who
desire the use of a computer but who do
not wish to immerse themselves in the
intricacies of a large operating system
which encompasses several processors. On
the other hand, this self-contained nature
also makes it difficult for more
sophisticated users to interface APL with
other processors in a natural way.

to

Other areas where APL's system
environment is found to be lacking
include: difficulties in combining
functions and data into easily interfaced
packages, a lack of control over name
scopes and bindings, problems with system
manipulation from program control and with
the automation of processes, and
inflexibility in handling errors.
Although less research has been done to
formalize this area of concern than has
been done in the areas of data structure
and functional extensions, many proposals
have been made that would help solve these
problems.

IV.A. Names, Naming and Data Access

In order to store data (and functions)
for use in later calculations, APL allows
names to be assigned to these entities
through the use of the assignment arrow
(«). Sets of named entities are gathered
together into collections called
workspaces, which typically hold the
functions and arrays that combine to
handle some particular applications
problem. Named data may also be shared
between different users or shared across
the environmental boundaries of function
execution. The proposals discussed below
suggest extensions to these facilities
which would allow more general forms of
assignment, which would generalize the
concept of collections of named data and
which would allow more flexibility in
specifying name scopes.

Assignment. The assignment arrow is
an exceptional "function" in APL because
of its unique properties; unlike other
primitive functions, assignment does not
return a result (or at least does not
print its returned result) when it occurs
as the root (or principle) function of an
expression, although it does return a
result when used in the middle of an
expression. Assignment is the only
primitive function (aside from system

295

functions) which causes side effects;
i.e., changes in the system environment.
Finally, assignment is the only function
which does not evaluate one of its
arguments, but rather acts upon an
unevaluated name.

Assignment does not always take a
simple name as its left argument: the
indexed form of assignment (e.qg.,
"A[Il«B") allows an expression involving
a selection function and a name to be used
as the target of assignment. This has the
effect of assigning a value not to a named
array itself, but to some location within
a named array. Several proposals [18, 47,
68, 83] have suggested that this facility
be extended to a more general one in which
expressions involving named arrays and any
selection function (not just indexing) be
allowed on the left of assignment. Brown
[18] achieves this through the
manipulation of arrays in the name
domain on the left of assignment using
selection functions. Jenkins and Michel
[83] demonstrate that expressions of this
kind may be achieved through a purely
syntactic transformation of expressions
involving an explicit operator called mesh
(). One advantage to their approach is
that the whole modified array is returned
as a result (i.e., not just the modified
portion), and it may be assigned to any
variable and not just to the named array.
Simple assignment in current APL is
limited to taking a single name as its
left argument, but STSC Inc.'s NARS system
(see Cheney [23]) allows multiple names to
be assigned simultaneously using strand
notation. This form of assignment takes
a list of names on the left and a vector
of equal length (or a scalar) on the
right, and assigns elements of the vector
(or the extended scalar) to the
corresponding names. Strand notation is
still somewhat controversial, however, and
strand notation assignment is particularly
controversial (see Iverson et. al. [77]).
Brown's definition of the name domain
(see [18]) to the left of assignment also
allows the specification of multiple
names. Another proposed generalization of
assignment would allow expressions of the
form "rer+1" to be shortened by allowing
the assignment arrow to act somewhat like
an operator, taking a function left
argument and producing a function which
modifies the value of its named left
argument. For example, the incrementation
expression above would be written "I+<«l",
This form of assignment has been

implemented on Burroughs' APL/700 [193
and also on STSC Inc.'s NARS system (s
Smith [178]).

Iverson [73] defines a new form of
assignment (&) which is used to assign a
name to a function-valued expression
(i.e., an expression whose evaluation
results in a function). Bernecky and
Iverson [9] use the assignment arrow of
current APL to assign names to derived

]
ee

functions (i.e., the function results of
operators). In combination with a direct
definition operator (see the section on
Defined Functions), assignment facilities
of this type allow the assignment of a
name to a defined function without
recourse to the current function fixing
methods.

Collections of Named Data. Current
APL supports a two- (and sometimes three-)
tiered system for storing and manipulating
collections of named objects. The first
tier of this system is the library, which
is a collection of workspaces which is
referenced by a number, and which
typically contains a single user's data.
The second tier of the system is the
workspace, a collection of named functions
and arrays which is itself referenced by
name and which typically holds the
functions and data which combine to solve
some applications problem. Some current
APL systems still support a third tier of
this system called the group, which is a
collection of named functions, arrays and
other groups, and which is itself
referenced by name; most systems, however,
are withdrawing their support for the
group facility. All of these types of
collections are manipulated in current APL
through the use of system commands; system
commands are extra-linguistic inquiries
and directives that may be entered in
APL's immediate execution mode.

This system for accessing collections
of named objects presents one major
problem for the development of
general-purpose applications packages:
because of the extra-linguistic nature of
the system commands, there is no way for
these objects to be manipulated under
program control. Some systems have
attempted to solve this problem by
allowing system commands to be executed
under program control indirectly through
the execute function. Several other
systems have attempted to solve this
problem by replacing their system command

set with a set of system fupctions and
variables that lie %?th?n tRe scope of the

language and are thus able to be used
under program control. For example, many
systems now support the system function
ONL, which allows the name usages in the
current environment to be examined under
program control., For more on the move
from system commands to system functions
and. variables, see the section on the
System Interface.

Another solution to the problem of
manipulating named data under program
control is the package data type
implemented on the SHARP APL system (see
Berry [11, 12] and [191]). A package is
a collection of named functions and arrays
(and possibly other packages) which has no
external structure but which may be used
to store, retrieve and, in general,

296

exchange its contents. Packages are
manipulated with system functions and are
in general not in the domain of other
primitive functions; this is largely due
to the fact that they have no external
structure (and thus are not suitable
arguments to structural functions) and are
not allowed to be items of an array.

Several proposals have discussed
generalizations of the collections of
named entities which exist in current APL.
Ryan [163] briefly describes objects
called name contexts which generalize
properties of workspaces and function
execution environments and which allow
greater control over name bindings.

Murray [140] defines similar objects
called namespaces which provide facilities
for gathering named data and functions
into collections and for specifying the
kinds of interactions that may occur
between them. Finally, Crick [29] has
discussed a very broad scheme to
generalize many APL entities (arrays,
functions, libraries, workspaces, groups,
etc.) into a single type of entity called
generalized objects. His scheme calls for
the use of nested arrays that may be
indexed with character strings and that
provide better facilities for sharing and
access control, and also for a new data
representation for functions. The
generalization provided through this
scheme makes possible a uniform syntax for
the manipulation of libraries, workspaces,
arrays, functions and other objects.

Data Sharing, Access and Security.
APL systems are typically interactive,
multi-user environments. It is often
desirable in such an environment to allow
different users to share the same stored
data and functions, but it is also
desirable that users be able to protect
sensitive data from being accessed by
unauthorized parties. 1In order to allow
data to be shared between different users,
most current APL implementations include
a shared variable facility. With this
facility, two users share access to a
single variable, and may explicitly assign
values to this variable and query its
state through shared variable system
functions. Falkoff [35] discusses some of
the implications of the shared variable
facility, including the rationalization of
system variables and system input and
output facilities (0 and 0) as being
variables shared between the user and the
system. Shared variables are also used in
many implementations to allow APL users to
communicate with outside processes and
system facilities, especially with file
system processors (see the section on
Files in Data Types and Structures).

Shared variables have been criticized
for being insufficiently general in that
they allow sharing between only two users
{(or processors); Shastry [173] describes

a shared variable facility which allows
sharing between multiple users.

A less explicit form of data sharing
is available through APL's library system,
which allows users to access the libraries
of other users as well as the "public
libraries" available on most systems. In
order to provide better security for user
libraries, most systems allow passwords to
be attached to libraries and workspaces by
their creator. Although the password
system provides some measure of security,
it is insufficiently powerful and flexible
for the needs of most users (see Wheeler
[185]). Wheeler [185] describes the use
of access matrices to provide better
control over access to libraries and
workspaces. These matrices have long been
used to provide better security within
file processing subsystems and would under
this proposal allow users to specify
exactly who may read, write, copy, save,
etc. into or out from a given workspace or
library.

Another security device found on many
APL systems is a facility for locking
function definitions, which bars them from
all further scrutiny. This facility is
again quite restrictive, as it does not
allow any differentiation as to who can
access the function, barring even the
function's creator from further inspection
of the definition. 1In his proposal for
generalized objects, Crick [29] requires
that access matrices be extended to all
arrays and their components, and thus to
the generalized objects representing
libraries, workspaces, arrays, functions,
etc, This scheme provides full and
uniform security facilities to all parts
of a system.

Name Scope Control. 1In current APL,
the calling of a defined function
initiates a new local environment for the
duration of function execution (an
environment being a combination of system
information and a set of bindings between
variable names and objects). The function
definition specifies a list of variable
names whose values in the calling
environment are to be blocked from access
from within the local environment; the
values of all other variables from the
global (calling) environment remain
accessible during function execution.

This dynamic scoping mechanism is simple
and easy to use, but its very simplicity
can lead to problems with name scope
control. For example (following Seeds et.
al. [170]), a calling function or
environment is unable to protect itself
from a called function because the
responsibility for specifying scopes rests
with the called function. Another problem
is that the inadvertent omission of names
from the list of local variables can lead
to unforseen (and difficult to trace) name
conflicts. Seeds et. al. [170] have

297

described an extended scope control
facility which allows a variety of scopes
to be declared linking (or barring
linkage) of variable bindings between the
calling, current and called environments.
The proposed facilities allow different
types of scope to be declared for each
variable in the function header list and
also allow a default scope to be specified
for any variables not mentioned. This
proposal and several other ideas for scope
control mechanisms are discussed briefly
by Gilmore [52].

Miscellaneous. Both Abrams [2] and
Brown [18] have expressed a desire for a
"call-by-name" facility in APL which would
allow a name (and its binding in the
global environment) to be passed to a
function unevaluated. This is similar to
the FEXPR facility in LISP and to the
treatment of the left argument to
assignment in current APL. As
demonstrated by Abrams [2], the passage of
a character string representing a name and
the subsequent use of the execute function
is an insufficient solution since the name
may be shadowed in the local environment
by a localization and redefinition of the
variable. Brown [18] shows how his define
function and definition-of operator can be
used to effect a similar facility which
allows the passage of unevaluated
functions and expressions to a called
function. He notes that this method
associates the "call-by-name" property
with the actual parameter to the function
(as opposed to the formal parameter or to
the function itself). He also
demonstrates that this method does not
solve the problem with passing a shadowed
name.

Brown [18] and Holmes [68] both
discuss ways to implement what are
commonly known as overlays, i.e.,
variablgs which refer not to separate
locations in memory but rather to
locations shared by some other variable.
For example, such a facility would allow
the main diagonal of some named array to
be named itself, so that changes in the
value of one would be reflected in the
other. Brown achieves this facility
through the use of specification in the
name domain to the left of assignment or
through the use of his activation
function. Holmes defines the aspect
function to allow the indexing of arrays
through "aspects" of the arrays, which may
be shaped differently from the original;
the ability to name these aspects realizes
the overlay capability. Brown notes in
his proposal that strong conformability
requirements are placed on overlays, and
that re-specification of the overlayed
array may invalidate future specifications
or references to the overlay. Holmes
suggests several ways in which these
problems may be overcome by special
interpretations of non-standard aspects

such as empty or character arrays.

IV.B. The System Interface

Current APL provides several means for
users to query and otherwise interact with
the system environment. These facilities
allow users to perform a variety of tasks:
signing on and off of the system; managing
libraries, workspaces and other
collections of named data; setting various
system parameters; querying the state of
system execution; and canonically defining
functions. Although early APL
implementations largely kept these
functions out of the domain of the
language itself, current trends seem to be
in favor of greater program control over
these facilities (see Falkoff and Iverson
[Fa2]).

System Commands and I-Beams. Early
implementations of APL provided access to
workspace management facilities, execution
state information and other system
interfaces largely through
extra-linguistic entities called system
commands. At that stage in the
development of APL these facilities were
still considered to be separate from the
language itself and so they were provided
in a form which allowed their use only
directly by the user in immediate
execution mode.

This limitation was imposed through
the use of the right parenthesis as an
escape character which preceded all system
command keywords and which therefore
signalled the need for extra-linguistic
action. These keywords were followed by
one or more parameters which, being again
outside the scope of the language, could
only be constants and not variables or
expressions to be evaluated by the system.

. The desire to allow at least some sort
of communication with the system from
within program control led to the
implementation of the I-beam functions
(1). These pseudo-primitive "functions"
allowed a small set of system parameters
and account and timing information to be
set or queried. However, the action of
these functions were controlled by rather
arbitrary numeric encodings, and they were
still quite limited in application; a more
syntactically regular and powerful form of
system interface was needed to truly bring
system management into the domain of the
language itself.

System Functions
the advent of shared
APLSV release of APL came the
rationalization of a system interface as
a set of variables shared between the
system and a user's workspace (see Falkoff
[35] for more on the implications of
shared variables). This led to the
definition of a large number of system

and Variables. With
variables in IBM's

298

functions and system variables which were
given reserved names beginning with the
quad character (). System functions are
able to handle a wide variety of tasks
including function definition, name class
and name usage queries, object erasure,
data formatting and timing, account and
execution state information. System
variables are used to set and query a
number of system parameters including
index origin, comparison tolerance and
printing precision. 1In addition, all of
these facilities are available under
program control, and system variables can
even be localized within a defined
function just as other variables are.

Now that the use of system functions
and variables has become widespread, they
have begun to be used to rationalize
access to a wide variety of
implementation-dependent facilities such
as file systems, event trapping mechanisms
and certain pseudo-primitive functions
which have yet to be fully accepted as
part of the APL language. Nonetheless, a
number of facilities which are available
through system commands still have no
equivalents among the current set of
system functions common to most
implementations.

A notable example is the case of
workspace management facilities; most
systems have yet to define system function
equivalents to system commands such as
0LoAD and [QJcopPy. Crick [26]) has praised
the "clean" implementation of such
functions on the University of
Massachussets APLUM system (see Wiedmann
[188]). Wheeler [185] has recently
proposed a similar but even more complete
set of system functions for workspace
management.

Myrna [141] has expressed concern over
the proliferation of system functions and
variables and over the lack of uniformity
in their names; he suggests some
conventions for both the semantics and
naming of system objects which might help
to alleviate these problems.

IV.C Input and Output

One system facility which is certainly
necessary for real computing tasks is the
ability to read and write information to
and from the user. Current APL offers a
variety of ways to perform these tasks.
Input may be made in immediate execution
mode (where the given input is interpreted
as an expression to be evaluated), in an
evaluated input mode (where the input is
evaluated and the result passed to the
calling function) or in an unevaluated
mode (where the character string actually
read is returned to the calling function.
Qutput may occur either by default (if

the result of an expression is not
assigned to a variable the result is

printed out) or through the use of the
explicit output facilities [and M . All
of the output facilities mentioned above
default to the same output formatting
conventions, but the formatting of numeric
output may be explicitly controlled with
the dyadic primitive format function (¥).

Several proposals have been made to
provide new facilities which would allow
better and more flexible control over the
environment in which input is evaluated,
the occurrence and format of output and
the kinds of input and output facilities
which are available.

Evaluated Input. Wells [184] has
suggested that the expressions which are
read during evaluated input mode should be
evaluated in the global environment of the
workspace rather than in the local
environment of the calling function.
refinement would solve problems that
result from conflicts between global and
local definitions of variables referenced
in the input which is to be evaluated.

This

Sink and Display Potential. STSC
Inc.'s NARS system recognizes a property
of functions called display potential
which controls whether or not the result
of the function will display by default
when executed from within a defined
function. The display potential of a
defined function may be turned off by
placing the name of the function's result
in braces in the function header. The
display potential of certain system
functions such as [EX is defined to be
turned off. This facility is especially
useful when used with functions whose
results are sometimes useful but often not
needed. STSC Inc.'s NARS system also
provides a primitive facility called sink
(monadic use of +) which prevents its
argument from being displayed. Default
display of the results is provided in both
cases (i.e., sink and display potential
off) if the function line being executed
is traced.

Arbitrary Input and OQutput. Several
implementations of APL now provide output
facilities which allow arbitrary
transmission codes to be sent to a
terminal unedited by the system, and input
facilities which allow unedited codes to
be .,read from a terminal. These facilities
are particularly useful for sending

control code commands to intelligent
terminals and graphics devices. Some
implementations use system functions to
provide these facilities (e.g., the [QARBIN
and DARBoyT functions of SHARP APL; see
Berry [11]); others use primitive
facilities similar to[J and M (e.g., theg@
facility of UNIVAC 1100 APL; see [195]).
Myrna and Ryan [142] discuss the extension
of APL's input and output facilities to
better accommodate modern terminals

directly in order to provide more
convenience and flexibility.

299

Formatting. Current APL provides
monadic and dyadic primitive format
functions (v¥) to convert numeric data to
character form and to allow control of
column alignment and digit display. These
facilities are of limited usefulness by
themselves because of their simplicity,
and several proposals have been made to
extend their capabilities or to provide
other, more powerful formatting functions.
The original proposal for the dyadic
format function by Seeds and Arpin [169]
allowed for greater control over the type
of formatting used by adding a third
element to the left control argument of
the function.

Many APL implementations now support
a system function UFMT which provides a
very versatile formatting facility that
allows inserted text and decorations,
qualified display fields and a variety of
special format field types. However, this
function has been criticized for its use
of a "list" argument specified with
semicolons to separate expressions for
several arrays.

Falkoff [37] defines a pictorial
format function which uses a character
vector left argument to specify the form
used to display its array right argument.
The format picture argument uses blanks,
text symbols and digit codes to specify a
wide variety of format types, and is
notable in that its length corresponds
exactly to the width of the formatted
result (scalar extension notwithstanding).

For information on the formatting of
nested arrays, see the section on Nested
Array Input and Output.

IV.D Control of Execution

It is often very useful to allow the
users of a system to monitor and control
the system's execution or to allow
different processes within a system to
monitor or control one another in an
automated way. Early implementations of
APL included little if any facilities to
monitor, control or automate the execution
of the system. However, with the growth
of the language into larger and more
diverse applications within commercial
production environments, such facilities
have become very desirable. The proposals
discussed below concern refinements and
additions to APL in the areas of debugging
facilities (such as tracing and monitoring
facilities), the automation of processes
and explicit user control over the
handling of errors and other events.

Stopping, Tracing and Monitoring.
Often during the development of an
application it is convenient to be able to
monitor the execution of functions, and
thus to determine whether or not they are
performing as intended. Because of its
dynamic, interactive nature, APL has

always been a particularly good
environment in which to perform such

debugging tasks.

In current APL, debugging facilities
are supplied through the stop and trace
vector controls: lines of a defined
function are set for stopping or tracing
by specifying the appropriate control
vector to be equal to a vector of the
desired line numbers. The name of the
control vector is gotten by prefixing the
function's name with one of the prefixes
Sh or TA, Upon execution of the line of
the defined function, the function's name
and the line number will be printed and
either function execution will be suspended
for lines set to stop) or the value of the
result of the expression on that line will
be printed (for lines set to trace). Stop
and trace control values cannot be queried
or otherwise obtained for use in
calculations and are removed by assigning
the empty vector to the appropriate
control vector.

Several systems have regularized these
facilities by implementing them as system
functions called [srop and 0OTRACE, which
in their dyadic forms take a function name
and a vector of the line numbers to be
affected as their arguments, and which in
their monadic forms return the current
line numbers which are set for the
specified function (see for example the
APLUM system; see Wiedmann {1881}).

Another facility which would be
helpful for debugging and especially for
tuning algorithms would be one which would
allow function execution time to be
monitored. On the University of
Massachussets APLUM system (see Wiedmann
[188]) this facility is supported through
the OLTIME system function which is
defined to parallel the 0STOP and 0OTRACE
functions. Burroughs APL/700 implements
a symmetric set of functions to set, reset
and query settings for stopping, tracing
and monitoring of function lines.

Kline [95) suggests a facility which
would allow variable access to be stopped
or traced; i.e., controls similar to the SA
and TA controls for functions would halt
execution or print a value upon every
reference or re-specification of a
variable. Samson and Ouellet [164]
recognize all of these debugging
facilities as being based on the trapping
of certain events (e.g., the events of a
function line being executed or of a
variable being set), and thus subsume
these facilities within the context of a
more general event trapping facility.

Automated Execution. APL has
traditionally been implemented as an
interpreted interactive system which
communicates directly with the user.
Other programming systems have often been

300

implemented in such a way as to allow
their execution to be controlled
automatically (such systems are often
called "batch" systems). Abrams and Myrna
[3] note that although most applications
systems are most easily developed in an
interactive mode, as an application
matures and stabilizes an automated mode
of execution becomes desirable. An
overview of the automated execution
facilities provided by two implementations
(those of I. P. Sharp Associates, Inc. and
STSC Inc.) is presented below. For
further information on the facilities of
these systems see Berry [11l] and Abrams
and Myrna [3}.

Both of these implementations allow
APL processes, or tasks, to be executed
automatically by allowing the user to
specify two files related to the task: one
which represents a sequence of inputs for
the task (a source file) and one which is
specified to receive the output produced
by the execution of the task (a sink
file). Once these files are specified, a
system function is used to specify other
information about the task including
identification, execution time limits,
etc.

In general, two types of automated tasks
can be run: those which run concurrently
with the initiating (user's) task and those
which are specified to be run
automatically by the system at some later
time. These two types of tasks are called
non-terminal and batch tasks,
respectively, by I. P, Sharp Associates,
Inc. and detached and deferred tasks,
respectively, by STSC Inc.

Event Trapping. Certain expressions
in APL can be impossible to evaluate for
a variety of reasons: the expression may
be ill-formed or contain references to
variables which have not been assigned a
value; functions may be applied to
arguments which are outside the function's
defined domain or to arguments whose
structures do not conform in an allowable
way; and in some cases there may not be
sufficient system resources available to
evaluate an expression. In all of these
cases, current APL systems suspend
evaluation of the expression and print an
error message to the user indicating the
type of problem encountered and the point
in the expression where the problem
occurred. Current APL also allows the
user to suspend evaluation manually by
generating an interrupt signal from the
terminal. In both of these cases, control
is returned to the user and evaluation
continues in immediate execution mode
within the environment that was current
when the error or interrupt occurred.

Although this kind of action by the
system is desirable under certain
circumstances (for example, during casual

exploration in immediate execution mode,
or when an application is being developed
and debugged), it is often desirable to
allow other kinds of actions to be taken
by the system, as specified by the user or
programmer (for example, in
security~sensitive situations or in
applications where APL's role is not meant
to be visible). Several implementations
now support facilities for specifying
alternative system action upon the
occurrence of certain events; such
facilities are often called event trapping

mechanisms.

In general, three kinds of
capabilities constitute an event trapping
mechanism: a means for the system to
specify the type of event which has
occurred, a means for the user to specify
the alternative action which is to be
taken and (sometimes) a means for the user
to simulate normal error handling with a
specified error message. In most
implementations the system specifies the
type of event that has occurred by setting
a system variable to contain a character
matrix representing the normal error
message. This information can then be
used by a user-specified error handler to
respond appropriately to different types
of errors.

Several different methods are used in
different implementations to allow
specification of the action to be taken
upon the occurrence of a trappable event:
Hewlett Packard's APL\3000 uses the dyadic
system function [JEMOD to specify an
expression to be executed when an event of
a specified type occurs (see Marcum
[106]). The University of Massachussets
APLUM system (see Wiedmann [188]) uses the
system function OTRAP to force a branch to
a specified line of the executing
function. 1I. P. Sharp Associates, Inc.'s
SHARP APL uses a system variable, also
called OTRAP, to specify which of several
different kinds of action will be taken
upon the occurrence of events of the
correspondingly specified type (see Berry
[11)). Both STSC Inc.'s APL*PLUS system
(see Gilmore and Puckett [72]) and a
proposal by Samson and Ouellet [164] use
system variables to specify latent
expressions which are to be executed upon
the occurrence of different events.

Both the SHARP APL and APL*PLUS
systems and the latter proposal allow
users to simulate error message interrupts
by specifying the message with a SIGNAL
or OERROR system function.

The proposal by Samson and Ouellet
[164] suggests generalizations of several
capabilities over some previous proposals,
including a larger variety of trappable
events and greater control over
manipulation of the execution stack. This
proposal also allows access to the context

301

of evaluation which was current when an
event occurred through system variables
which hold the name of the currently
executing function (OF) and the values of
its left and right arguments (0X and 07Y).
V. Miscellaneous Extensions

Several proposals are discussed below
which are difficult to classify because
they do not seem to fit into any of the
above categories or because they seem to
fit well into more than one of these
categories.

Comments. APL currently allows
canonically defined functions to be
documented through the use of comments
(denoted by the comment symbol A); the
comment symbol is placed at the beginning
of a line and all subsequent characters in
that line are ignored for the purposes of
function execution. Many implementations
now allow comments to be placed at the end
of a line, following an executable
statement, and some allow this usage in
immediate execution mode. Mengarini [124]
has suggested that APL be extended to
include a more functional type of
commentary called formal comments (denoted
by n). These comments are simply
boolean-valued expressions (propositions)
that describe conditions which are desired
or expected at some point during a
function's execution; if these conditions
are found not to hold (i.e., if any zeros
occur in the result of the proposition) a
formal error is reported and function
execution is suspended. Thus this type of
comment provides both documentation of a
programmer's intent and a means for
verifying that a function is executing as
intended.

Statement Separation. Several APL
implementations now allow a number of
statements to be entered on a single line,
separated by a statement separator symbol
(usually the diamond symbol ¢). The
statements entered in this way are
executed sequentially, just as they would
be if entered on separate lines (except
for some differences concerning
branching). Most implementations that
allow the use of the statement separator
allow its use both in immediate execution
mode and within canonical function
definitions, although others define it
only as a less powerful aid to function
definition, interpreting each statement as
a separate function line (see Crick [26]).

Crick [27] describes a more powerful
syntactic construct called recipe idiom,
which he claims allows APL statements to
be written and read in a more natural
fashion. Recipe idiom allows several
expressions to be joined by a statement
separator and provides a way to pass the
results of these expressions on as
arguments to subsequent expressions using

a stack facility.

Arrays of Functions. Several
proposals have discussed the possibility
of allowing arrays to hold functions as
their elements. Iverson [75] mentions this
idea in the context of concatenation and
selection operators that would be used to
manipulate such arrays. Cherlin [24]
expresses a desire for this capability in
new implementations, but does not describe
any plans for its design. Brown [18]
gives a proposal for creating arrays of
functions and also describes rules for
applying such arrays to data array
arguments,

Alternate Token Forms. Since most
terminals in common use do not support the
full APL character set, many APL
implementations allow special code-forms
constructed from available characters to
be interpreted as APL symbols. The
schemes used to construct these code-forms
encompass a wide variety of techniques
ranging from mnemonic single-~symbol
substitutions to escape character
sequences and complete spellings of the
symbol names.

Crick [28] has described a complete
and consistent proposal for for an ASCII
notation for APL. The proposal includes
ASCII symbol and keyword equivalents for
all APL functions as well as a special
construct for binding arguments to
operators. He motivates adoption of the
proposal from several points of view,
including standardization, the broader
acceptance of APL and the economics of
printing terminals,

Graphics Capabilities. A common
computer application which APL does not
support directly is the creation,
manipulation and drawing of graphics
structures. Several proposals have been
made to incorporate more primitive support
for graphics in APL.

Bork {13, 14] has suggested that a
primitive graphics facility be included in
the language in the form of primitive
input and output facilities which plot
points and specify such output controls as
scaling and transformation parameters.
Galbraith [43] describes an implementation
of such facilities. Hardwick [61] uses an
extensible version of APL to define
various graphic structures and the
functions that manipulate them. This last
approach avoids the addition of primitive
facilities designed specifically for
graphic objects and also provides for
extensions to other user-defined data
types.

VI. Conclusions
In this section I hope to draw some
general conclusions about the past,

302

present and future of APL language
extension. The topics covered will
include a discussion of the changing
circumstances surrounding the language
design effort and how they affect that
effort; the identification of some major
themes in current research and their
relation to mainstream language design
theory; and some gquestions about the
ultimate goals of APL language extension.

APL's early design phase was
characterized by a number of circumstances
which influenced its character and which
were beneficial to its development
(following Falkoff and Iverson (Fal,
Fa2]): the design was carried out by a
small group which included all parties
involved in the research and
implementation effort; all decisions were
arrived at by Quaker consensus so that
disagreements were resolved before any new
feature was implemented; and finally, the
design itself was motivated solely by the
aesthetic, theoretical and practical
concerns of the designers, relatively free
from the influence of other languages and
from commercial imperatives, so that major
design changes could be made without
concern for conformance to popular trends
or for their effect on compatibility.

Since this time many changes have
taken place in the circumstances
surrounding APL language design: a large
number of groups and individuals are
independently involved in the research and
implementation of extensions to the
original language on systems supported by
a wide variety of commercial and academic
institutions. Although there is a good
deal of communication between these
parties, it is necessarily less frequent
and less effective than it was among the
members of the single small group that
performed the original design. Often the
research efforts and even the
implementations of two groups diverge
sharply in the absence of consensus
agreement, Finally, the growth of the
popularity and thus the visibility of the
language has placed pressure on
implementors to enhance its commercial
appeal, to conform to the popular
trends of mainstream language design and
to remain highly compatible with previous
versions of the language.

Some of these changes may not
necessarily have a negative effect on the
language; for example, the growth in the
number of different research projects
aimed at language design could easily
benefit the extension effort by providing
it with a broader, more diverse base of
ideas upon which to draw. The commercial
success of the language is certainly
crucial in providing support for language
extension research and implementation.
Finally, the influence of other languages
could also be of great benefit to APL in

its present stage of development; although
in the past APL has often seemed far
removed from the mainstream of language
design research, a comparison of the major
trends which are current in these two
areas reveals some striking similarities.

The two most obviously important
extensions which are currently being
incorporated into APL are the
generalization of arrays to nested arrays
and the formalization and generalization
of operators. Another important set of
extensions which may not be so obvious is
the move toward the subsumption of APL's
naming and execution environments into the
domain of the language itself. This trend
is indicated by the increasing favor of
system functions and variables over system
commands and the incorporation in the
language of ever more powerful facilities
for scope control, environmental
manipulation and controlled execution. A
major unifying influence on trends in this
area may be Michael Crick's proposal for
generalized objects which would bring
together workspaces, data, functions and
even processes under a single construct
(see Crick [29]).

How do these trends relate to trends
in the design of other programming
languages? For example, as Giloi observes
[Gil]l, language designers outside of APL
such as Edsger Dijkstra are finally
beginning to recognize the power of
treating arrays as whole entities. APL
was also clearly a major influence on John
Backus' concept of functional programming
(see Backus [Bal]l). Now that operators
are becoming fully recognized in APL;, it
is possible that research in functional
programming may converge in many respects
with research on operator extensions and
generalizations. Finally, the unification
of APL entities brought about through
Crick's generalized objects is very
similar to the unification of objects in
object-generic languages like Smalltalk.
Experience with these languages may help
determine whether or not such extensions
might be appropriate for APL.

A question raised by Abrams [2] seems
particularly relevant in the light of
these comparisons: at what point do we
stop extending APL and start designing an
entirely new language? As he points out,
attempting to extend the language
indefinitely while preserving weaknesses
or simple stylistic differences inherent
in the original design may result in a
clumsy, constrained or inconsistent
language. Should we stop adding to APL
and start designing new languages which
better embody its basic principles or
which exploit entirely new concepts? Can
we continue to extend the language freely
when faced with the compatibility
requirements of a rapidly growing base of
serious users?

303

Since Abrams first posed these
questions, several languages have been
implemented which are based on APL, but
which occasionally generalize some of its
capabilities and which depart from its
unique style in other respects. Examples
of such languages are the extensible
languages X\APL and ALICE (see Braffort
and Michel [16] and Jenkins and Michel
[86], respectively), the Array Theoretic
language NIAL (see Jenkins [88]) and the
structured language APLGOL (see Kelley et.
al. [92, 93]). Are the changes which
these languages introduce for the better
or the worse, or are they simply
different? And are they truly
incompatible with the basic assumptions of
APL's design?

One controversial issue which
currently threatens the unity of the
language and its community of supporters
is that of the definitional system to be
used for nested array generalizations.

The two major time-sharing services which
offer APL have taken firm stances on their
incompatible routes of extension in this
area. Each of these services offers APL
to a large and growing number of customers
who use the language in serious production
environments. As Anderson [5] notes, if
one of these systems eventually changes in
regard to its choice on this matter, the
decision could have drastic consequences
for the users of that system. Will the
pressure of this possibility manage to
preserve the differences between the
systems and eventually create two dialects
of APL?

One positive indication that at least
some of the differences between different
implementations of APL can be settled is
the progress being made towards an
international standard for the language.
Whether such standards efforts can settle
larger differences remains to be seen, but
they have performed a great service by
managing to resolve many of the
irregularities which have been
incorporated in the language up to this
time.

Another promising sign for APL is the
continuing evidence of support at the
deepest levels for the original design
principles of uniformity, generality and
brevity of expression. Although some
disagreements do exist over particular
extensions, a strong, common sense of
aesthetics based on these principles seems
to exist in the community as a whole.

This common sense of aesthetics is
reflected in the parallelism of motives
and methods that exists among the best of
the extension proposals; these proposals
strive to eliminate anomalies and special
cases, to find new ways of generalizing
seemingly disparate concepts into unified
wholes, and to maintain a good correlation
between simple notation and the powerful

concepts which it can express. Whatever
course the language takes, close attention
to these most fundamental principles will
certainly continue to guide its form and
character toward the highest ideals of
power, simplicity and utility.

Acknowledgements

Phillip Abrams' paper "What's Wrong
with APL?" was a major inspiration for my
interests in APL language extension and
thus for this paper helps; hopefully this
paper to answer the related question "
and how do we correct it?". The paper was
begun during my employment at Michigan
Technological University (though
independently of my work there) and was
first drafted as part of a special topics
course at the University of Michigan under
Prof. Uwe Pleban. The final revision and
copy were written and prepared at Sperry
Univac Corp., Roseville.

I would especially like to thank Prof.
Pleban for his advice and support and for
clarifying conversations on many topics,
and Tom Smith of Sperry Univac for his
support of the project. I would also like
to thank many others whose interest and
comments helped to shape my perception of
the issues involved and to improve the
overall quality of the paper; these
include Nancy Sprague, Brenda Liimatta,
Chip Morningstar, Bob Smith and Al
Michels. Many people at Sperry Univac
provided invaluable aid in producing the
final copy, including Max Feuer, Tony
Bjerstedt, Greg Nault, Chris Prengel,
Sherri Harnden and particularly Dan Nissen
and Jim Young. The conference referees
and program committee (particularly Prof.
Janko) were extremely understanding and
encouraging in their support of the paper.
I am also deeply indebted to many friends
and especially to my parents for their
personal support and encouragement while
I was writing the paper.

Finally, I am of course indebted to
the many researchers whose work provided
the basis for this paper; I can only hope
that I have done them justice in my
treatment of their contributions to APL.

References

Backus, J. Can Programming Be
Liberated from the Von Neumann
Style? Communications of the
ACM, v2148, ACM, pp. 613-641.

Bal

Bork, A. Limitations of APL as
a Language for Student-Computer
Dialogues. APL Quote Quad,
v5#4, ACM, Winter 1974.

Bol

304

E1ll -- Decision
The Power and
APL Users
I. P.

1980,

Elliot, Maurice.
Support Systems:
Problems of APL.
Meetings Proceedings,
Sharp Associates, Inc.
pp. 363-368.

Fal -- Falkoff, A. D.; K. E, Iverson.
The Design of APL. The IBM
Journal of Research and
Development, v17#4, pp.
334.

324-

-—; . The Evolution of
APL. SIGPLAN Notices #13,
ACM, August 1978,

Fa2

Giloi, W. K. How Modern Is
APL? APL80 International
Conference on APL, North
Holland Pub. Co., 1980,
291-~297.

ppP.

Mcl McDonnell, E. E. Registry of
Extensions. APL Workshop at
Asilomar, APL Quote Quad
v10#1, ACM, Sept. 1979.

Mc2 -- McDonnell, E. E. The Four
Cube Problem: A Study in
BASIC, APL and Functional
Programming. APL Press,
1981,

Wil -- Wiedmann, Clark.
an ANSI Standard
APL81 Conference

ACM, pp. 335-340.

Progress on
for APL.
Proceedings,

A Bibliography of Extensions to APL
and Related Topics

The bibliography which follows is an
attempt to gather together references to
the published research on extensions to
APL with related material such as research
in Array Theory. The entries are arranged
alphabetically by the authors' last names,
and chronologically within the entries for
a given author. Works with multiple
authors are listed under the name of the
first author given by the publication and
are not cross-referenced. Some of the
entries refer to published reports of
informal presentations and discussions
held at APL workshops, etc.; these entries
are generally restricted to cases where
the material in question has not appeared
elsewhere in published form.

Following many of the entries are
notations of (roughly) three kinds: those
which clarify the content of a work where
its title is sufficiently vague or
general; those which indicate changes and
developments in an author's views over the
course of several works; and those which
note relationships among the works of one
or more authors. These notations are
included primarily to provide assistance

to those wishing to pursue certain topics
in greater depth and are not meant to be
conclusive summaries or careful historical
analyses of any author's works.

For many of the same reasons which are
stated in the introduction to the paper,
this bibliography is undoubtedly
inaccurate and incomplete in some areas
(note especially that is limited to
English language works). Again, it is
hoped that further work in this area may
eventually correct these deficiencies and
perhaps result in an expanded version of
the sort envisioned in [Mcl].

Two types of abbreviation are used in
the bibliography: the first is the
abbreviation of publication and report
series titles; the second is a set of
topic keys which are used (in lieu of the
more extensive notations described above)
to clarify the scope of a work, and which
follow the entry, enclosed within
parentheses.

Publication Abbreviations

APL 1V -~ Proceedings of the Fourth
International APL User's
Conference (Atlanta), June
1972.

APL V -~ Proceedings of the Fifth
International APL User's
Conference (Toronto), May
1973.

APL73 -—- APL Congress 73
(Copenhagen), North Holland
Pub. Co., 1973.

APL6 —-- Proceedings of the Sixth
International APL User's
Conference (Anaheim), ACM,

1974,

APL75 -- Proceedings of APL75 (Pisa),
ACM, 1975,

APL76 -- Proceedings of APL76

(Ottawa), ACM, 1976.

APL79 -- APL79 Conference Proceedings
(Rochester), ACM, 1979 (also
APLQQ vI94#4).

APLS8O -- APL80 International
Conference on APL
(Leeuwenhorst), North
Holland Pub. Co., 1980.

APL81 -- APL81 Conference Proceedings
(San Francisco), ACM, 1981
(also APLQQ v12#1).

Asilomar -- "APL Workshop at Asilomar",
conference report in APLQQ
v10#1, Sept. 1979.

Minnow2 -- "Another Workshop Held at

Minnowbrook", conference
report in APLQQ v11l#1,
Sept., 1980.

IBMJRD -- The IBM Journal of Research

and Development, IBM Corp.

APLQQ -- APL Quote Quad, ACM

(journal).

IBM/Cm -~ Research Report, IBM

Scientific Center,
Cambridge, Mass.

IBM/Ph -- Research Report, IBM

QUTR

Scientific Center,
Philadelphia, Penn.

-- Queen's University Technical
Report, Department of
Computing and Information
Science, Kingston, Ontario.

Topic Key Abbreviations

AEX
ArF
AT

Cpx
Cs

CT

DDf
Emp
EvT
Fmt
Idx
I0

Lam
MP

NA

Nam
Ops
Pkg
PrF
Prt

Set
SCF
SLA
Srt
Typ
unf

-- Automated Execution

-~- Arrays of Functions

-- Array Theory

-~ Complex Numbers and Functions

-- Control Structures

-~ Comparison Tolerance ("Fuzz")

-- Direct Definition of Functions

-—- Empty Arrays

-- Event Trapping (Error Handling)

-~ Formatting Primitive

~-— Indexing

-- Input and Output

-- Laminar Extension

-- Multiprocessing (Co-routining)

-—- Nested Arrays

-~ Names and Naming

-- Operators

-- Packages

-- Primitive Function Definitions

-- Partitioning Functions and
Operators

-- Sets and Set Functions

-- System Commands and Functions

-- Selection to the Left of Assignment

-- Sorting (Grading) Primitives

-- Types for Data

-~ Uniformity, Rank and Symmetry of
Functions

Bibliography

1.

305

Abrams, Phillip S. An Interpreter
for Iverson Notation. Tech. Rep.
CS47, Comp. Sci. Dept., Stanford
University, Stanford, Calif. 1966.
NA)

(First appearance of nested array
ideas.

---. What's Wrong with APL?. APL75.
(Nam, SCF)

Broad survey of APL's weak points
with some suggestions for changes.

10.

11.

12,

13.

14.

15.

Automatic
An overview.
EvT)

---, John W. Myrna.
Control of Execution:
APL79, 141-147. (AEX,

Alfonseca, M.; M. L. Tavera.
Extension of APL to Tree-Structured

Information. APL76, 1-23. (SCF)
Anderson, William L. APL 81: A View
from the Sidelines. APLQQ v12%2,
4-5, Dec. 1981.

Benkard, Phillip J. Adding and Using
Structure in General Arrays. APLS81,
35-41. (NA, Prt, PrF)

Gives two dyadic partition
functions and compares these to
operator proposals.

Berke, P. Data Design with Array
Theory. IBM/Cm G320-2123, 1978.
(AT)

-——. Tables, Files and Relations in
Array Theory. IBM/Cm G320-2122,
1978. (AT)

Bernecky, Bob; Kenneth E. Iverson.

Operators and Enclosed Arrays. APL
Users Meetings Proceedings, I. P.
Sharp Associates, Inc., 1980. (Ops,
DDf, Prt, NA)

Continues work of Iverson {73,
with some important changes.

75]

—-—-. Representations for Enclosed
Arrays. (NA)
Compares three storage techniques.

Berry, Paul. SHARP APL Reference
Manual. I. P. Sharp Associates,
Inc., March 1979. (AEx, EvVT, Pkg,
SCF)

---. How the Package Data-Type Has
Affected Programming. APL Users
Meetings Proceedings, I. P. Sharp
Associates, Inc., 1980. (Pkg, Nam)

Gives motivations, uses,
implications of packages.
to nested arrays.

Compares

Bork, Alfred M.
APL 1V, 33-36.

Graphics in APL.

---. Correspondence. APLQQ vo6#3,
Fall 1975.
Suggests that graphics capability

be primitive in the language.

Bouricius, W. G.; N. R. Sorensen. An
Informal Introduction to a Language
and a Data Base. Structures and
Operations in Engineering and
Management Science, Tapir Publishers,
Norway, 1981,

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

306

Braffort, Paul; J. Michel.
An Experimental Extensible
Programming System. Tech. Report,
Mathematique Universite, Paris XI,
Orsay, France.

X\APL:

Definitions for
APLQQ v8#3,

Breed, Lawrence M.
Fuzzy Floor and Ceiling.
17-23, March 1978. (CT)

Brown, James A. A Generalization of
APL. Doctoral Thesis, Dept. of .
Systems and Information Sciences,
Syracuse University, New York 1971.
(NA, Ops, PrF, Man, Idx, SLA, Lam,
ArF, MP)

An early inspirational work
suggesting numerous extensions in
many areas.

-~-. Evaluating APL Extensions.,.
Proceedings SEAS78 Conference, 1978.
-~—~. Evaluating Extensions to APL.
APL79, 148-155. (Cpx, NA, Ops)
Suggests a classification system

and guidelines for extension
proposals.

-~-; M. A, Jenkins. The APL Identity
Crisis. APL81, 62-66. (Emp, Ops)

Discusses definition of reduction
on empty (esp. nested) arguments.

Some Notes on
APLQQ v9#3,

Burrill, J. H. Jr.
Handling Errors in APL,
44-47, March 1979. (EvT)

APL*PLUS Nested
STSC Inc.,
Idx, IO,

Cheney, Carl M.
Arrays Reference Manual.
1981. (NA, Ops, PrF, DDf,
Prt, Set)

Describes numerous extensions
available on STSC Inc.'s experimental
NARS system.

Cherlin, Mokurai.
Potent New Structure. APL Market
News #8, p. 6. (ArF, Ops)

Praises STSC Inc.'s NARS system
with some reservations; mentions
further extensions.

Nested Arrays:

Introducing Modules
12-17, June

Ching, Wai-Mee.
into APL. APLQQ v11l#4,
1981. (Cs)

Describes new facility for modular
packaging of functions and
expressions.

Michael F. C. Variations on
APL In Practice,
1980. (PrF,

Crick,
APL Flat Major.
John Wiley and Sons,
SCF, Set, Ops)
Surveys some extensions currently
implemented on various systems.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

~--. Right to Left OR Left to Right!
APLQQ v10#3, 21-26, March 1980.

Introduces "recipe idiom" to break
down APL expressions using separator
punctuation and a stack.

--~-. An ASCII Notation for APL.
APLQQ v11#1, 18-25, Sep. 1980.

Motivates and describes ASCII
keyword equivalents for APL symbols
and constructions.

---. Should APL Be a Declining
Language? APL81, 83-88. (NA,
SCF, Idx, Nam)

Describes broad scheme to
generalize APL objects (arrays,
functions, workspaces, etc.) and thus
to eliminate declensions from the
language.

Pkg,

DeKerf, Joseph L. F. The Story of 03
0. APL80, 133-135. (PrF)

Suggests that a DOMAIN ERROR
should result from 0:0.

Deturck, D. M.; D, L. Orth. A
Derivative Algorithm for APL. APL
Users Meeting Proceedings, I. P.
Sharp Associates, Inc., 1980.

Dubrulle, A. A. An Extension of the
Domain of the APL Domino Function to
Rank Deficient Linear Least Squares

Systems. APL75. (PrF)
Edwards, E. M. Generalized Arrays
(Lists) in APL. APL73, 99-105. (NA)

Early nested arrays proposal,
differs from both floating and
grounded systems,

Eisenberg, Murray.
Zero: Zero or One
APLQQ v11#1! 9-10,

Suggests that a
should result from

Zero Divided by
-~ or Neither.
Sep. 1980. (PrF)
DOMAIN ERROR
0#0.

Falkoff, Adin D. Some Implications
of Shared Variables. APL76, 11-148.
(SCF)

---. A Note
Where Do You
Empty Array?

on Pattern Matching:
Find the Match to an
APL79, 119-122.

---. A Pictorial Format Function for
Patterning Decorated Numeric
Displays. APL81, 101-106. (Fmt)
--—-. More on Strand Notation.
v1242, 7-8, Dec. 1981.

APLQQ

Forkes, Doug. Complex Floor
Revisited. APL81, 107-111.
CT)

Presents alternate definition to
McDonnell [112] and motivations.

(Cpx,

307

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Foster, Garth H.
the Branch Arrow?

What Lies Beyond
APL75. (CS)

—---. On the Locus of Flow Within and
Among Secondary Functions. APL79,
333-339. (CSs, MP)

Proposes restricted form of
branching and a more general function
calling mechanism.

Fritz, Eddie; et. al.
Aids. Asilomar. (Evt)

Discussion of stopping and tracing
facilities.

Debugging

Primitive Functions
APLQQ v7#1,

Galbraith, D. S.
for Graphics in APL.
27-36, Summer 1976.

Proposes 3 primitives for graphics
I1/0, graphic environment modification
and storage.

~-—-. A Conditional Read Function for
APL. APLQQ v8#3, 24, March 1978.
(10)

Describes experimental read
facility which gets input only if
available.

Georgeff, M. P.; Fris, I.; Kautsky,
J. The Effect of Operators on
Parsing and Evaluation in APL.
Computer Languages, Vol. 6, 67-78,
1981. (Ops)
-—-; =-=-—; —--—~. Parsing and
Evaluation of APL with Operators.
APL81, 117-124. (Ops)

Gives modified grammars to parse
new operator expressions.

Ghandour, Ziad Jamil; Jorge Mezei.
Generalized Arrays, Operators and
Functions. IBMJRD V17#4, 335-352.
(NA, Ops, PrF)

Proposes a rich set of extensions
for a floating nested array system.

---. A Simple Approach to the Empty
Generalized APL Arrays. APL76,
178-188. (NA, Emp)

Proposes an alternative scheme for
handling empty arrays than is given
in [47].

Gilmore, John C. Tree Theory in APL.
APLQQ v8#3, 37-38, March 1978. (NA)

An enjoyable spoof of nested array
proposals.

-—-; Thomas H. Puckett. A
Latent~Expression Exception-Handling
System. APL79, 244-248. (EvT)

Describes STSC Inc.'s event
trapping facility which uses
character matrix error
identification.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

---. Axis Generation and
Coalescence., Asilomar. (PrF,
Describes shake primitive
(shape—-take) to extend arrays with

singular axes.

Lam)

---; et. al.
(Nam)
Discusses different proposals for

name scope control.

Name Scopes. Asilomar.

Grossman, Richard.
Recovery for APLSV. APLQQ v7#3,
7-11, Fall 1976. (Evt) Describes
error—-trapping system using latent
expression-like construct and
character matrix error
representation.

Programmed Error

Gull, W. E.; Michael A. Jenkins. A
Contribution to the Development of
Recursive Data Structures in APL.
QUTR 75-38, 1975. (NA, Ops, PrF)
Early proposal for grounded nested
arrays system.
-—=-; ===, Recursive Data Structures
and Related Control Mechanisms in
APL. APL76, 201-210. (NA, Ops,
Continues work from [54] with
applications.

PrF)

---. Recursive Data Structures

in APL. Communications of the ACM,

v2242, 79-96. (NA, Ops, PrF, Emp)
Compares various nested array

—_———
I

proposals and continues work of [54,
55] with some changes.
--—; —-=—. Decisions for 'Type' in

APL: 6th Annual Principles of
Programming Languages Cdnference
proceedings, 190-~196. (Typ, NA)

The Extension of APL
APLQOQ
PrF,

Haegi, Hans R.
to Treelike Data Structures.
v7#2, 8-18, Summer 1976. (NA,
Ops, Idx)

Proposes what is actually a nested
arrays system (using a canonical tree
representation), stressing indexing.
Also discusses composition as a
generalization of reduction.

Hagerty, Patrick E. More on Fuzzy
Floor and Ceiling. APLQQ v8#4,
20-24, June 1978. (CT)

Replies to [17]) suggesting some
changes.

-~--, Floor. Asilomar. (CT, Cpx)

Presents revised opinions from
[59] with regard to the complex
domain.

Hardwick, Martin.
Structures in APL.
(PrF, NA)

Describes nested extensible
graphics structures and functions for
manipulating them.

Graphical Data
APL81, 129-136.

308

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Harris, L. R. A Logical Control

Structure for APL. APL73, 203-210.
(Cs)
Harris, Thomas, J. Event

Variables--ON Conditions for APL.
APL75,177-180. (Evt)

Hartigan, Bruce J. APl9 - A Shared
Variable Terminal I/0 Interface for
APL Systems. APL81, 137-141. (I0)

Haspel, Chuck. More APL Symbols.

APLQQ v6#4, p. 2, Winter 1976.
Gives further overstruck symbol

possibilities (see [150]).

Hassitt, A.; L. E. Lyon. Array
Theory in an APL Environment.
110-115. (NA)

Describes APL-like system for
testing models of Array Theory.

APL79,

Von Hohenbalken, B.; W. C. Riddel.
A Compact Algorithm for the
Moore-Penrose Generalized Inverse.
APLQQ v10#2, 30~32, Dec. 1979.

Holmes, W. N. Of Noughts and IF's

and Matrices -- Some Comments on
APLQOQ[9;2;]. APLQOQ v10#3, 7-11,
March 1980. (PrF, Idx, Lam)

Makes suggestions for axis
specification for scalar functions,
extended index generation for
arithmetic sequences, and others.
Hoskin, Zeke. Redefining Reduction
Along an Empty Axis. APLQQ v1143,
17-18, March 1981. (Emp, Ops, PrF)

Describes scheme which provides
pseudo-identity elements for some
primitives.

Iverson, Kenneth E. A Programming
Language. John Wiley & Sons, Inc.,
New York, 1962.

The original work describing APL
as a mathematcal notation; uses a
notation very different from
current APL and includes some
functions not yet incorporated into
the language.
---. Elementary Analysis. APL
Press, 1976.

—-==-, Two Combinatoric Operators.
APL76, 233-237. (Ops)

Describes operators for a
generalized determinant and for
function table generation.

---. Operators and Functions. IBM
Research Report #7091, IBM Corp.,
April 1978, (Ops, PrF, NA, DDf,
Unf, Set)

Presents a rich and diverse set of
ideas for extensions; later works
expand on only some portions of this
one.,

Idx,

74.

75.

76.

77.

78.

79.

80.

81l.

82.

83.

~--. The Derivative Operator.
APL79, 347-354. (Ops)

Discusses a derivative operator
and its use in exposition. Gives
functions for use in experimentation.

-~-—. The Role of Operators in APL.
APL79, 128-133. (Ops, ArF)

Discusses syntax of operators and
other general issues. Gives a number
of examples of operators.

~=-=. Operators. Transactions on
Programming Languages and Systems
v1#2, 161-176, ACM, October 1979.
(Ops, DDf)

Discusses operator concept and
gives some proposals. Some
differences from [73, 75]}.

~---; R. Smith; J. A. Brown. On
Strand Notation. APLQQ v11#3,
March 1981. (NA, PrF)

A lively discussion of Strand
notation; Iverson against it and
Smith and Brown in favor of it.

3-8,

A Function
APL81, 142-145,

~-——; Peter K. Wooster.
Definition Operator.
(DDf, Ops, CS)

Proposal includes facility for
control of multiple statement
execution,

Jenkins, Michael A. The Design of an
APL Primitive for the Eigenproblenm.
APL7S5. (PrF)

-=-~. The APL Workshop Session on
Extensibility. APLQQ v8#2, 14, Dec.
1977.

Describes the development of ideas
on extensibility and an
implementation at Universite Laval.

~-==; Trenchard More. The APL
Workshop Session on General Arrays.
APLQQ v8#2, 12-13, Dec. 1977. (NA)

Discusses the differences between
the various systems.

--=; Jean Michel. On Types in
Recursive Data Structures: A Study
from the APL Literature. Proceedings
of the 5th Jerusalem Conference on
Info. Tech., 523-538, August 1978.
Also QUTR 77-59, Dec. 1977. (Typ,
NA)

; .
Containing Nested Arrays.
vo#2, 8-20, Dec. 1978.
78-60. (NA, Ops, 1dx,
SLA)

Presents powerful depth and axis
operators for use with nested arrays,
as well as other functions and
operators. Discusses symmetry in
primitives and other issues. Uses a
new formal notation for discussion of
arrays.

Operators in an APL
APLQQ
Also QUTR

Unf, Lam, PrF,

309

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

--—-; et. al. General (Nested)
Arrays. Asilomar. (NA)

Jenkins reports his "conversion"
to the floating nested array scheme.
~-~. On Combining the Data Structure
Concepts of LISP and APL. QUTR
80-109, Sept. 1980. (AT, NA)

Derives a fundamental equation of
Array Theory which strongly suggests
use of the floating system.

---; Jean Michel. ALICE: An
Extensible Language Based on APL
Concepts. QUTR 80-104, Nov. 1980.
(NA, Ops, Typ)

Generalizes many APL concepts and
adds a typing facility to achieve a
powerful extensible language.

-~~. A Development System for
Testing Array Theory Concepts.
APL81, 152-159. (AT, NA)

Describes the implementation and
use of the NIAL interpreter.

. The Q'Nial Reference Manual.
Queen's University, Kingston, Nov.
1981.

Distributed Product.
37, Spring 1975. (Lam,

Jizba, z. V.
APLQQ vé6#l,
Ops)

Proposes the distributed product
operator to allow vector/matrix
operations.

Kajiya, James T. Generic Functions
by Non-standard Name Scoping in APL.
APL81, 172-179. (Typ, Nam, MP)

Achieves generic functions without
specific data typing through
hierarchical namespaces and a
coroutine mechanism.

Operators and
355-361.

Keenan, Douglas J.
Uniform Forms. APL79,
(Unf, Ops, Lam, PrF)

Describes extension of uniform
functions (forms) to higher rank
arrays. Defines unit rank operators
to limit function ranks.

Kelley, R. A. APLGOL, An
Experimental Structured Programming
Language. IBMJRD, v17#1, 69-73,
January 1973, (CS)

Describes an extended APL with
ALGOL-like control structures.,

~~--; John R. Walters. APLGOL-2: A
Structured Programming Language

System for APL. APL6, 275-280. (CS)
Kemp, Franklin. Design of a
Structured APL. APLQQ v9#l1l, 11-13,

Sep. 1978. (CS)
Describes an APL preprocessor to
handle DO and IF constructions.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Kline, Edward M.
APLQQ v4#4. (EvT)

Suggests a stop/trace type of
control to print information on
variables each time they are
accessed.

Variable Control.

Lathwell, Richard H. APL Comparison
Tolerance. APL76, 255-258. (CT)
Discusses motivations for
comparison tolerance and derives
definitions for tolerant functions.

---. Some Implications of APL
Order-of-Execution Rules. APL79,
329-332.

Examines conventions for
determining order of execution and
finds them inadequate.

---. SHARP APL Multiprocessing and
Shared Variables. APL Users Meetings
Proceedings, I. P. Sharp Associates,
Inc., 1980. (MP, AEX)

Describes the combination of
shared variables and a detached
execution facility to achieve a
multiprocessing environment.

--—. The SHARP APL S-Task Interface.
SATN-39, I. P. Sharp Associates,
Inc., June 1981. (AEx, MP)

Describes the SHARP APL detached
task facility.

Lewis, G. R. A New Array Indexing
System for APL. APL75. (Idx)

Suggests the breakdown of indexing
into more fundamental capabilities.
Also suggests a hierarchical set of
APL-like languages.

Hubert. The
APLQQ v7#2,

Lezotte, D. C.; J. J.
Generalized Inverse.
Summer 1976.

Discusses the Moore-Penrose
inverse of non-square, possibly
singular matrices and demonstrates
its usefulness.

Lim, A. L.; G. R. Lewis. Towards
Structured Programs in APL. The

Computer Journal, v18#2 140-143.

(Cs)

Link, Donald A.; Martin W. Gardner.
Deferred Execution: An ACE of an
Application. APL79, 1-7. (AEX)

Describes the design and
implementation of STSC Inc.'s
facility for specifying the deferred
execution of tasks.

Lowney, Geoffrey; Alan Perlis. Does
APL Need Arbitrary Nesting? Minnow2.
(NA)

Suggests that two levels of
nesting in nested arrays suffice for
most applications.

310

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

Lucas, Jim. Beyond Laminate:
Generalizing Creation of New
Dimensions and Function Action Along
Them. APL81, 195-198. (Lam, Ops)
Defines an operator to allow rank
expansion with possible function
action along the created dimensions.

Marcum, Alan M. Secure Application
Environments in APL\3000. APL79,
257~263. (AEx, EVT)

Describes a combination of
exception handling and state
indicator interrupt/return mechanism
to achieve greater security.

--—-. Multiple Execution Environments
in APL. APL80, 105-111. (MP, CS)

Describes the implementation of
multiprocessing facilities on Hewlett
Packard's APL\3000.

Martin, G. A. The Solutions of
Linear Systems in APL: Towards an

Extension of Matrix Divide. APL8O,
113-121. (PrF, Cpx)
Mayforth, Rick. APLUM - APL at the

University of Massachusetts. APLQQ
v64l, Spring 1975. (SCF, EvT)

Describes several enhancements
made to APL at the U. of Mass.
including: execute primitive,
tracing and locking facilities, and
system function equivalents of system
commands.

McAllister, B. I.
Manipulation of Finite Sets.
v10#4, 8-12, June 1980. (Set)
Presents 3 possible
representations for sets (vector,

Representation and
APLQQ

boolean, integer-encoded boolean) and
their uses.

McDonnell, Eugene E. Integer
Functions of Complex Numbers with
Applications. 1IBM/Ph #320-3008, Feb.
1973. (Cpx)

--——-. Complex Floor. APL73, 299-305.

(Cpx, CT)

---. A Notation for the GCD and LCM
Functions. APL75, 240-243. (PrF)

Proposes extension of v and A to
the GCD and LCM functions.

---. Zero Divided by Zero.
295-296. (PrF)

Presents reasons for changing the
result of 030 from 1 to 0.

APL76,

~—-. Sauce for the Gander (or Adding
a Vector to a Matrix). APLQQ v9#3,
64~66, March 1979. (Lam, Ops, PrF)
Discusses various proposals for
laminar extension and suggests
extending the domain of the axis
operator to scalar functions.

116.

117.

118.

119.

120.

121.

122.

123.

124,

125.

---. Fuzzy Residue. 42-46,
(CT, Cpx, PrF)

Discusses tolerant versions of
residue and their effects on complex
arguments and the representation

function.

APL79,

Shallit.
APLSO,

-——; Jeffrey O.
APL to Infinity.
(PrF)

Discusses the motivations for,
representation of, and use of
infinite values and arrays with
infinite axes.

Extending
123-132.

--—. Mask and Mesh. Minnow2.
Ops)

Proposes the implementation of
mesh and mask functions with the
selector vectors extended from

boolean to signed integer.

(PrF,

---. An Implementation of Complex
APL. APLQQ v11#3, 19-22, March 1981.
(Cpx, PrF)

Describes the SHARP APL
enhancements for handling complex
numbers (follows Penfield [155]).

~~—-, Complex Numbers.
P. Sharp Associates,
(Cpx, PrF)

SATN-40, I.
Inc., June 1981.

Mebus, George. Laminar Extension:
An Overlooked Capability and the
Search for its Proper Home. APL79,
36-41. (Ops, PrF)

Suggests that laminar extension be
available through the expansion
function/operator. Discusses
compatibility with the by-slice
operator of [83].

Mein, Wm. J. Data Structure
Extensions to APL: A Survey. M.
thesis, Dept. of Comp. and Info.
Science, Queen's University,
Kingston, 1975. (NA, Ops, PrF)

Sc.

--—. Toward A Data Structure
Extension to APL. APL76, 308-313.
(NA, Ops, PrF, Idx)

Reviews proposals for nested
arrays, identifying critical issues
and minimal capabilities.

Formal
APLQQ v7#1,

Mengarini, william.
Commenting in APL.
Summer 1976. (EvT)

Describes formal comment
expressions (signalled by "n") which
return a FORMAL ERROR if any element
of the result is false.

11,

Mercer, R. L. WHERE - w. APLQQ
v4#3, 18, April 1973, (PrF)

Describes a primitive which
searches for occurrences of the right
argument pattern in the left
argument.

311

126.

127.

128,

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

-——. Extensions of APL to Include
Arrays of Arrays. Tech. Report COINS
701, Univ. of Mass., Amherst, 1976.
(NA)

--~. A Based System for General
Arrays. APLQQ v12#2, 18-21, Dec.
1981.

Describes an alternative to the
floating and grounded array systems
that purports to solve some problems
of both.

Metzger, Robert C. Extended Direct
Definition of APL Functions. APLS8O,
143-148. (DDf, CS)

Motivates and describes the
addition of control structure and
multi-statement capabilities to
direct definition proposals.

Mezei, Jorge E. Uses of General

Arrays and Operators. APL6, 334-348.
(NA, Ops)
More, Trenchard. Axioms and Theorems

for a Theory of Arrays. IBMJRD
v17#2, 135-175, March 1973. (AT, NA)

Presents the formal axiomatics of
Array Theory.

---. Notes on the Axioms for a
Theory of Arrays. IBM/Ph $#320-3017,
May 1973. (AT, NA)

---. Notes on the Development of a
Theory of Arrays. IBM/Ph #320-3016,
May 1973. (AT, NA)

~-~. A Theory of Arrays with
Applications to Data Bases. IBM/Ca
#G320-2016, Sep. 1975. (AT, NA)

---. Types and Prototypes in a
Theory of Arrays. IBM/Ca #G320-2112,

May 1976. (AT, NA)

---. On the Composition of
Array-Theoretic Operations. IBM/Ca
$320-2113, May 1976. (AT, NA)

---. The Nested Rectangular Array as
a Model of Data. APL79, 55-73. (AT,
NA)

Overview of Array Theory, its
development and the choices it makes
on key issues.

---. Nested Rectangular Arrays for

Measures, Addresses and Paths.

APL79, 156-163, (AT, NA, Idx)
Demonstrates the generalization of

measures, addresses and paths for

arbitrary arrays (i.e., not just

simple integer vectors).

---. Notes on the Diagrams, Logic
and Operations of Array Theory.
Structures and Operations in
Engineering and management Science,
Tapir Publishers, Norway, 198l. (AT,
NA)

139.

140.

141.

142.

143.

144.

145.

l46.

147.

148.

149.

On Tree Structure
APL Language.

Murray, Ronald C.
Extensions to the
APL73, 333-338.

--~. Namespaces: Semipermeable
Membranes for APL Applications. APL
Applications. APL81, 220-226. (Nam,
SCF)

Describes the addition of
namespace and interface structures,
and functions to manipulate them, to
achieve packages with highly
controllable name sharing.

Myrna, John. Names for System
Functions. Minnow2. (SCF)

Notes proliferation of system
functions and suggests naming
conventions.

—-—-; Jim Ryan. New Directions in
Terminals. Minnow2. (I0)

Notes the need for APL to more
fully recognize the abilities of
powerful new display terminals.

Nater, Feico. APL\360 Enhancements.
APLQQ v6#l, Spring 1975. (PrF, SCF)
Suggests scalar extension, axis

specification, and first axis
versions for + and ¥. Also suggests
SAVE system function.

Oates, Richard H. Iota Flow with
Direct Local Functions. APLQQ v11#3,
9-17, March 1981. (CS, DDf)

Describes the use of a forking
function and directly defined local
functions to improve program
structure.

O0'Dell, Michael D. APL/XAD: An
Extension of APL for Abstract Data
Manipulation. APL6, 405-413.

Orgass, Richard J. The 1E6?1E6 APL
Workshop: Another Overview. APLQQ
v842, 8-11, Dec. 1977. (NA, Nam)

Describes nested arrays as both
too general and too restricted a
solution to APL's data structure
problem. Also gives a description of
namespaces.,

Orth, Donald A,
General Arrays.
#RC 8782,
(Ops, NA)
Examines the utility of adding
nested arrays to APL (using either
the grounded or floating systems) and
concludes that they may be
undesirable in the language.

A User's View of
IBM Research Report
IBM Corp., Apr., 1981.

---. A Comparison of the IPSA and
STSC Implementations of Operators and

Nested Arrays. APLQQ v1242, 11-18,
Dec. 1981.
Penfield, Paul Jr. Proposed Notation

and Implementation for Derivatives in
APL. APL V, 12-1 - 12-5. (Ops)

312

150.

151.

152.

153.

154,

155.

156.

157.

158.

159.

--~. APL Symbols., APLQQ v6#l,
Spring 1975.

Discusses aesthetic choices in
picking overstruck symbols; suggests

several symbols and names for them.

---. Notation for Complex "Part"
Functions. APLQQ v8#l, Sep. 1977.
(Cpx, PrF)

Presents 5 proposals for notation
of real, imaginary (parts), magnitude
and phase functions. Prefers the
circular fucntion proposal.

-—-. Extension of APL Primitives to
the Complex Domain. APLQQ v8#2, Dec.
1977. (Cpx, PrF)

Second in a series of articles on
extension of APL to the complex
domain.

---. Design Choices for Complex APL.
APLQQ v8#3,

8-15, March 1978. (Cpx,
PrF)
Third paper in a series; covers

miscellaneous issues (notation, polar
form, default interpreter, etc.).

---. Complex APL - Comments from the
Community. APLQQ v9#l, 6-10, Sept.
1978. (Cpx, PrF)

Reviews comments received in reply
to the author's series of papers on
complex number extensions to APL
[151-153].

---. Proposal for a Complex APL.
APL79, 47-53. (Cpx, PrF)

Culmination of the author's
explorations into a complex number
extension,

-~-. Principle Values and Branch
Cuts in Complex APL. APL81, 248-256.
(Cpx, PrF)

Presents choices for values of
complex functions where such values
are ill-defined or non-unique.

Pesch, Roland H. 1Indexing and
Indexed Replacement. APL81, 258-261.
(Idx, NA)

Proposes an indexing operator for
use with nested array indices;
monadic and dyadic derived functions
provide for both selection and
replacement.

Puckett, Thomas H. Improved Security
in APL Applications Packages. APL6,
438-441.

--—. New Mexico State University
Enhancements to APL\360. APLQQ v4#2,
Jan. 1973, (EvT, SCF)

Describes an implementation of an
event trapping facility and an
execute function extended to act on
system commands.

160.

161.

162,

163,

164.

165.

166.

167.

168.

169.

170.

Reeves, A, P.; J. Besemer.
Control Structures for APL.
v94#2, 23-31, Dec. 1978. (CS)

Derives several control structure
patterns using new function-like
control facilities.

Special
APLQQ

Robichaud, Louis P. A. *\APL, An
Extensible APL System. Centre de
Traitement de L'Information,
Universite Laval, Quebec, August
1977.

Generalized Lists and
APLQQ v3#l, June

Ryan, James,
Other Extensions.
1971.

-~-, Name Contexts. Minnow2. (Nam)

Mentions the name context idea for
generalizing access to named objects
and its facilities for scope control
and data sharing.

Samson, Denis; Yves Ouellet.
Convivial Error Recovery. APLS1,
271-279. (EVT)

Surveys various facilities for
event control, noting common
qualities and generalizing these.
Describes an implementation based on
these findings.

Sarachik, P. E.; U. Ozgliner. An APL
Algorithm for Finding the Generalized
Inverse of a Matrix. APLQQ v94#3,
39-43, March 1979.

Schmidt, Fleming; Michael A. Jenkins.
Array Diagrams and the NIAL Approach.
QUTR #81-131 Nov., 1981. (AT, NA,
Fmt)

Describes and discusses a scheme
for displaying nested arrays in both
sketched and fully formatted forms.

Seeds, Glen M. APL Character
Mnemonics. APLQQ v5#2, Fall 1974.
Suggests ANSI FORTRAN symbol
equivalents for all APL characters.
-——, Fuzzy Floor and Ceiling.
vS5#4, Winter 1974, (CT, PrF)

Suggests changes to definitions of
tolerant definitions of floor and
ceiling.

APLQQ

---; A, Arpin. A Numeric-Controlled
Formatter. APL76, 388-391. (Fmt)

Describes a formatting function
with numeric controls for width,
precision and format type.

---; --—; M. LeBarre. Name Scope
Control in APL Defined Functions.
APLQQ v8#4, June 1978. (Nam)

Proposes a scheme for specifying
5 types of name scope and proves the
exhaustiveness of this set in a
general situation.

171.

172.

173.

174.

175.

176.

177.

178.

179.

--—-. Tolerant Representation.
v11#2, 15, Dec. 1980. (CT, PrF)

Motivates and describes a tolerant
version of the representation
(encode) primitive.

APLQQ

Shallit, Jeffery O. 1Infinite Arrays
and Diagonalization. APL81, 281-285.
Discusses applications of infinite
arrays in programming and exposition.
Defines 2 diagonalization functions
and discusses their implementation.

A Generalized APL
APL75.

Shastry, S. K.
Shared variable System.

Singleton, Sheila M. An
Investigation of More's Array Theory.
QUTR #80-99, April 1980.

Describes More's Array Theory and
demonstrates that there is no
translation of the floating system
into grounded terms which can
preserve the elegance and simplicity
of the former.

Smith, Bob. A Programming Technique
for Non-Rectangular Data. APL79,
362-369. (Prt, Ops)

Gives motivations, definition and
applications for a partitioning
operator for non-nested arrays. APL
functions for simulating the operator
are also presented.

---. Nested Arrays: The Tool for
the Future. APL In Practice, Wiley,
1980. (NA, Ops, PrF)

Brief, non-technical discussion of
motivations and advantages of nested
arrays.

-~~, Nested Arrays, Operators and
Functions. APL81, 286-290. (NA,
Ops, PrF)

Describes some features and
applications of STSC Inc.'s
experimental NARS system.

—-——. NARSNEWS Supplements to NARS
Reference Manual. Available through
STSC Inc.'s NARS system.

Describes extensions and
modifications made to STSC Inc.'s
NARS system since the publication of
the reference manual, including new
composition operators, modify
assignment, new types of indexing,
etc.

Smith, Howard J. Jr.
New/0l1ld Problem. APL79,
(Srt, PrF)

Discusses history of alphabetic
sorting and presents APL functions
which generalize the grade functions
to allow higher rank arrays and
specification of complex collating
sequences,

Sorting - A
123-127.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

Soop, Karl.
APLQQ v11#1,
PrF)

Describes a representation for
sets in APL and functions defined on
such sets.

Thoughts on Sets in APL.
10, Sep. 1980. (Set,

Sykes, Roy. Multi-Rank Grade.
Asilomar. (Srt)

Discusses extension of grade
functions to higher rank arrays by
grading subarrays as composite
values.

Thompson, Norman D. Some Geometrical
Consequences of Complex APL. APLS8O,
137-142.

Vasseur, J. P. Extension of APL
Operators to Tree-like Structures.
APL73, 457-464.

Wells, J. M. Quad Functions in
APL\360. APLQQ v6#l, 38, Spring
1975. (I0)

Asks if quad input should not be
evaluated in a global naming
environment, as opposed to the
current local environment.

Wheeler, James G. Improved Sharing
of APL Workspaces and Libraries.
APL81, 327-334. (Nam, SCF)

Discusses a re-design of APL
workspaces and libraries to allow
sharing and access control, and an
expanded set of system functions with
which to manipulate them.

APL Problems with
APLQQ v8#3,

Wiedmann, Clark.
Order of Execution.
25-29, March 1978.

Raises some questions about APL
order of execution and suggests the
adoption of a consistent set of
rules.

---. Whither (Wither?) Control
Structures? APLQQ v9#2, 21-22, Dec.
1978. (Cs)

Suggests that control structures
may be unnecessary and undesirable in
APL.

---. APLUM Reference Manual.
Control Data Corp., Sep. 1979.

Formal Differentiation
APLV, 11-1 - 11-9,

Wilhelmi, G.
Using APL.

N-Tasks and B-Tasks. SATN-4,
I. P. Sharp Associates,
1978. (AEx)

Describes SHARP APL facilities for
running detached and deferred tasks
under program control.

Rev.
Inc., April

2,

314

191.

192,

193.

194.

195.

Package - A New Variable Type.
SATN-14, Rev. 2, I. P. Sharp
Associates, Inc., August 1978.
Nam)

Describes SHARP APL package data
type used to aggregate named
functions and data.

(Pkg,

General Array Systems -- A Panel
Discussion. APLQQ v12#2, 5-6, Dec.
1981. (NA, Ops)

Presents a summary of the panel
discussion on nested arrays that was
held at APL 81.

Burroughs APL/700 Users Reference
manual. Burroughs Corp., March 1977.

APLSF Programmer's Reference Manual.
Digital Equipment Corporation,
Maynard Mass., May 1977.

APL 1100 Level 7R2 Programmer
Reference. Sperry Corp., 1981.

