
A Survey of "APL Thinking"

Murray Eisenberg
Mathemat ics and Statist ics Depar tment

Lederle Graduate Research Tower
University of Massachusetts
Amherst, MA 01003 USA

e-mail: tour ray~math, umass, edu
413-545-2859 (office), 413-549-1020 (home)

Howard A. Peelle
School of Education
Furcolo Building

University of Massachusetts
Amherst, MA 01003 USA

413-545-1114 (office), 413-259-1593 (home)

Introduction
During the APL86 conference in Manchester,

England, we conducted a questionnaire survey of
some aspects of "APL Thinking." We feel that the
findings are as useful now as then, so to provide
feedback to the APL community, we summarize the
results here.

The purpose of the survey was to understand
how people think while programming in APL. Our
ultimate aim is to improve the learning, teaching,
and dissemination of APL.

Respondents were specifically asked to concen-
trate on the thinking processes involved in APL
programming, rather than on applications, language
design and enhancements, or environment and
implementation issues. (See the sample form on
page 8 for a facsimile of the questionnaire.)

The Sample
The 70 respondents were involved with APL

about 24 hours per week on the average (standard
deviation = 13). Nearly half (32) described them-
selves as "expert" APL programmers and nearly
half (32) as "experienced"; only 2 described them-
selves as "beginner." Furthermore, 8 were APL
application users, 11 were APL administrators, and
22 had "other" involvement with APL---actuary,
analyst, consultant, implementer, soRware designer,
application developer, system developer, ex-user,
user supporter, R&D manager, author, trainer, etc.

Among the 70 respondents, 48 learned APL on
the job, 38 by themselves, 9 in school or college, 8
in a business course, and 4 in other ways, e.g., by
"playing." (Note that these responses were not
mutually exclusive.) While they mentioned some 15

different books and manuals used to learn APL,
over half the respondents used Gilman and Rose,
APL: A n Interactive Approach--and over a thi rd
used it alone.

Aspects of APL Thinking
Respondents were asked to rate the importance

of several aspects of APL thinking on a scale of 1
to 5, from low to high importance, with ~ 0 mean-
ing "not relevant." (We coded 0 as well as t 0 as
0, loosely interpreting these ratings as respondents'
intent to extend the scale.) The ratings are shown
in Table 1, below, where n is the number who gave
some rating, including ~ 0.

Table 1: Summary of Ratings
of Aspects of APL Thinking

n Mean St.Dev.

Modular Structure 68 4.2 1.0
Generalizing 66 4.0 1.0
Conceptual Wholes 68 3_9 1-3
Notation / Symbols 67 3.8 1.2
Parallel Array Processing 67 3.6 1.6
Mental Visualizations 67 3.6 1.5
Idioms 67 3.2 1.3
Imagery / Metaphors 64 2.9 1.5
Glass Box Approach 47 2.5 1.6
Identities / Proofs 65 2.0 1_4
Programming Tricks 65, 1.6 1.3
One-Liners 65 1.4 1.1

It seems respondents believe that APL thinking
is especially facilitated by constructing APL pro-
grams modularly and by the natural generality of
many APL expressions, as well as by the ease of
subordinating details and by the syntax and symbols
of the language. By way of contrast, "One-Liners"
and "Programming Tricks" are perceived as rela-
tively unimportant.

Seven respondents added miscellaneous other
aspects they considered important, including math-
to-program compatibility, not having to worry about
the operating environment, the ability to use func-
tion results as arguments to other functions, the
workspace concept, and interactive use of the com-
puter.

Styles in Writing APL Functions
When initially defining an APL function, 58

respondents said they wri te APL code directly; 25
wri te words first; 20, pseudo-code; 2, non-APL sym-
b~s; and 28, diagrams. (Again, these categories
overlap.)

The question "... how [do] you select and order
things you write down.__?" elicited a var iety of

APL Quote Quad 5

responses such as: first try phrases and build up
expressions; inside-out, back-and-forth on a line;
high-level comments, then low-level comments and
simple function definitions; mix words, pseudo-code,
and APL code; structure diagram with snippets of
APL code; (1) header syntax, (2) comments, (3) pseu-
docode outlining an algorithm; first a variable
name, then bits of notation (often le~-to-right); and
(1) scratches on paper to describe problem, (2) pseu-
doprogram with empty blocks, (3) APL code.

Many respondents interpreted the selection/
ordering question more broadly than we intended,
as if it referred to the entire programming process.
Hence some mentioned working top-down and/or
bottom-up; others described the familiar design-code-
test-revise cycle.

How and when do they use the computer when
defining an APL funct ion? Some use it from the
s tar t , t e s t ing phrases or lines of code and t ry ing
examples as they go. Others use the computer once
they have wr i t t en some notes, split the task into
funct ions, wr i t t en descr ipt ions of global data struc-
tures , or ske tched the "in- compute-out" s t ruc ture .
Still o thers do not use i t unt i l they have solved the
problem menta l ly , or unt i l t hey have wri t ten,
debugged, and commented functions on paper.

Preferred Kinds of Function Definitions
When there is a choice, 62 respondents pre-

ferred array-oriented function definitions; 8, itera-
tire; and 7, recursive. (Note that some chose more
than one kind.)

Several preferred using axray methods because
it seemed "natural" to them, that is, in accord with
the way they think. Some found that array sol-
utions are easier to conceive, understand, visualize,
or write, and result in more concise code with
fewer errors--especially those due to flow of con-
trol. Others mentioned maintainability, efficiency,
or elegance.

Additional reasons for preferring array methods
included: "it's easier to explain this way o f th inking
to others"; i t allows me to r e t a in the core of the
problem th rough several s tages and focus on
changes needed; "it helps me think about what 's
really being done"; and "recursion gives me a head-
ache."

Counter- reasons and caveats included: array-
or iented code must often be rewr i t t en i terat ively;
there ' s no need to seek an a r ray solut ion as long as
i te ra t ion is obvious and adequate; i te ra t ion is
simple and mainta inable; special cases often negate
compact a r ray coding; and "loops [do] aid my under-
s tanding o f the problem."

How APL Helps Problem-Solving
Besides general rhe tor ic about how A P t helps

problem-solving--such as "[it] usually helps by
g iv ing [an] environment into which to p u t ideas" and
by extending thought - -~he benefi ts typical ly men-
t ioned were: t h ink ing in modules or "chunks";
work ing in teract ively , thereby seeing resul t s at
once and being able to display and manipula te data
or to t ry a l te rna te a lgor i thms and make modifica-
t ions readily; managing complex problems wi th jus t
a l i t t le code; th ink ing visually; and having symbols
do most of wha t one wants to do (one respondent
referred to "v is ions"- -suddenly seeing solut ions in
t e rms of A P t symbols)_

Addit ional ways tha t A P t helps included:
seeing pa t te rns via generalizing solutions; avoiding
na tu ra l language; using nested ar rays to subordi-
nate details, ga ther ing though t s in A P t phrases and
subfunct ions; and prototyping in APL, t h e n coding
in assembler.

One example cited terse descriptions (in direct
defini t ion mode) of correlat ion, etc., as aiding
unders tand ing of key not ions in s ta t is t ics . Other-
wise, the few specific examples of how A P t helps
had l i t t le or no explicit indicat ion how it helps
t h ink ing and problem-solving. For example:

(-t-/~)÷ t - l ÷ p ~
("Try that in any other notation!")

+/px(I+R)*T-TI
(for compound interest)

Vx(Z+.xt~mxtt 2pV÷I -1)~Z÷~-~-20~
(the in tersec t ion of two lines)

How APL Hinders Problem-Solving
Ways ment ioned t h a t APL hinders problem-solv-

ing were: "array processing capability can some-
t imes lead to over-generalizing"; "[it'sJ too easy to get
s idetracked by interesting aspects o f the problem";
"[I] occasionally run into a syntax brick wall"; "lack
of IF-THEN sometimes a hindrance"; "in the rush to
coding I miss out on the analysis I wou ld normal ly
per form in mathematics or the ordering o f processes
that I wou ld follow without a computer."

There were also some irresist ible reservat ions:
"~I] don' t]~now that [APL] has an effect, but like to
th ink it does!"; "[I'm] not convinced that it partic-
ularly helps._.it j u s t doesn' t get in the way"; "I can
no longer problem-solve.., wi thout A P t " ; '7APL]
hur ts thinking. No need to think. J u s t do it unti l
it's right_"

6 December 1990 - Volume 21, Number 2

Comparisons with Other Programming
Languages

Most of the comparisons of APL with other pro-
gramming languages suggested that people do think
in a different way with APL. Several respondents
said that APL allows them to see the big picture
more easily by subordinating details. For example:
"I look at the whole problem more in A P L or break
it into major chunks. In B A S I C I mostly think seri-
ally, with occasional need for subroutines."; "In
F O R T R A N or B A S I C I used to make up flow dia-
grams with lots of branches and then translate it to
code. In A P L I make independent blocks of code ...
and combine [them] into a simple main structure
which describes what is happening."; '7 think in
chunks. Whether these require loops or not is inci-
dental_"; and "I tend to forget all but the highest
level loops now To put [it] in another way,
COBOL counts hydrogen and oxygen atoms in the
vicinity; A P L tells you i f it's raining."

Several appreciated APL's freeing the program-
mer from concern with the machine environment.
For example: "I think about the problern...not about
internal system housekeeping functions."; "[no need
for] reference to what the machine is actually doing";
debugging in FORTRAN, for example, in contrast to
APL, is difficult because of concern with memory
locations, 3 to 10 times as much code, and nested
loops; "[In APL] I focus on the whole problem right
away. In PL/I, COBOL, and F O R T R A N the com-
puter environment, declaration statements, etc., take
up much more time."

66.. .COBOL counts hydrogen

and oxygen atoms in the vicinity;

A P L tells you i f it's raining. 99

Additional differences included: "one function
= one concept"; "[I can] think about the problem
because of the wealth of primitives"; "the notation
allows you to jump from a small part of the solution
to the whole"; "[APL] avoids English words"; "APL
supports [my visual thinking] better than any other
language."

One person said, "I try not [to think differently].
Good design is still essential." Another insisted he
doesn't th ink differently: "I jus t think less."

Many respondents indicated they first solve
problems in APL, then t ranslate to other languages.
(And they don't like others because of the need for
looping and the absence of interactive capability
there.) Some said they constructed programs in
other languages in terms of APL, for example, " /
now write Pascal in a very APL-isA way." One even
claimed tha t someone else could tell from his

assembler code that he used to program in APL!
And, of course, a number declined comparisons
because they don't use other languages.

Additional Comments
Here are a few of the more interesting addi-

tional comments: '7 throw away more code than I
use. It's part of the thought process_"

"Computer people keep telling me that large
arrays are bad, but I like "ern. They're wholesome.
I think computers are limiting. What we need are
brain coprocessors."

"The key to much creative thinking is to make
trials.., quickly---even systematically. Thomas Edison
understood this well; so did Einstein with his
thought experiments. A P L supports this."

"~The] most [significant] threat to A P L [is] not
other languages but the laziness of man. [People]
refuse to think and let themselves [be] led by soft-
ware packages [that] pu t them in 'Sail" [with] limited
possibilities."

Conclusion
Several respondents were skeptical about the

value of the questionnaire. We realize that an
instrument such as this is limited in eliciting reli-
able, useful information. Our questions were often
fuzzy---deliberately so for an exploratory investi-
gation of this kind. For that reason, we believe it
inappropriate to analyze these results much further.
Yet some information of this kind is desirable. Of
course, one can read the few papers that purport to
describe how APL programmers think--and the
larger number that say how one ought to think.
Still, there is little hard evidence, aside from the
code they produce, about how APL programmers
actually do think_ It is therefore our hope that this
survey and other explorations can lead to more sys-
tematic studies of APL thinking. •

APL Quote Quad 7

Sample Form: "Survey of APL Thinking" Questionnaire, As Used in Manchester

Purpose: to understand how people think while programming in APL--in order to improve the learning,
teaching and dissemination of APL.

Please concentrate on the thinking processes involved in A P L programming--not application uses,
system/environment/implementation issues, or language design and enhancements. Thank you.

1. Describe yourself:

O - A P L Programmer (O-Beginner 0-Experienced 0-Exper t)
O - A P L Application User [] - A P L Administrator
0 - Other (specify)

Average hours/week involved with APL: _ _ hours/week

2. How did you learn APL?

O - o n the job
O-business course

Book(s) used:

[] - by self
O-other (specify)

O-in school/college

3. Rate each of the following aspects of " A P L Thinking" on a scale of 1 to 5
(1 = low importance; 5 = high importance; t 0 = not relevant)

[] - Notation/Symbols
[]- Parallel Array Processing
[] - Genera l izing
[] - Modular Structure
fl - One-Liners

[] - Idioms
[] - Other (specify)

[] - Identities/Proofs
[] -Glass Box Approach
0 - Mental Visuali7ations
[] - Imagery/Metaphors
[]- Working with Conceptual Wholes

(subordinating details)
[] - Programming Tricks

4. When you initially define an APL function, what do you usually write down? (Check all that apply.)

[] - A P L code 0 -words 0-pseudo-code
0 - n o n - A P L symbols 0-diagrams

Describe further how you select and order things you write down, as well as how and when you use a
computer:

5. When there is a choice, which kind of function do you prefer to define?

[] - iterative D - recursive 0 - array-oriented

Why7

6. How does A P L help or hinder your thinking/problem-solving?

Please give an example:

7. When you define a function in APL, do you think in a special way or a different way--compared with
another programming language?

8. Additional Comments:

8 D e c e m b e r 1990 - V o l u m e 21, N u m b e r 2

