A Survey of “APL Thinking”

Murray Eisenberg
Mathematics and Statistics Department
Lederle Graduate Research Tower
University of Massachusetts
Amherst, MA 01003 USA

e-mail: murray@math.umass.edu
413-545-2859 (office), 413-549-1020 (home)

Howard A. Peelle
School of Education
Furcolo Building
University of Massachusetts
Ambherst, MA 01003 USA
413-545-1114 (office), 413-259-1593 (home)

Introduction

During the APL86 conference in Manchester,
England, we conducted a questionnaire survey of
some aspects of “APL Thinking.” We feel that the
findings are as useful now as then, so to provide
feedback to the APL community, we summarize the
results here.

The purpose of the survey was to understand
how people think while programming in APL. Our
ultimate aim is to improve the learning, teaching,
and dissemination of APL.

Respondents were specifically asked to concen-
trate on the thinking processes involved in APL
programming, rather than on applications, language
design and enhancements, or environment and
implementation issues. (See the sample form on
page 8 for a facsimile of the questionnaire.)

The Sample

The 70 respondents were involved with APL
about 24 hours per week on the average (standard
deviation = 13). Nearly half (32) described them-
selves as “expert” APL programmers and nearly
half (32) as “experienced”; only 2 described them-
selves as “beginner.” Furthermore, 8 were APL
application users, 11 were APL administrators, and
22 had “other” involvement with APL—actuary,
analyst, consultant, implementer, software designer,
application developer, system developer, ex-user,
user supporter, R&D manager, author, trainer, etc.

Among the 70 respondents, 48 learned APL on
the job, 38 by themselves, 9 in school or college, 8
in a business course, and 4 in other ways, e.g., by
“playing.” (Note that these responses were not
mutually exclusive.) While they mentioned some 15

APL Quote Quad

different books and manuals used to learn APL,
over half the respondents used Gilman and Rose,
APL: An Interactive Approach—and over a third
used it alone.

Aspects of APL Thinking

Respondents were asked to rate the importance
of several aspects of APL thinking on a scale of 1
to 5, from low to high importance, with 10 mean-
ing “not relevant.” (We coded 0 as well as 10 as
0, loosely interpreting these ratings as respondents’
intent to extend the scale.) The ratings are shown
in Table 1, below, where n is the number who gave
some rating, including 10.

Table 1: Summary of Ratings

of Aspects of APL Thinking
n Mean St.Dev.
Modular Structure 68 42 1.0
Generalizing 66 4.0 1.0
Conceptual Wholes 68 39 13
Notation / Symbols 67 38 12
Parallel Array Processing 67 36 1.6
Mental Visualizations 67 3.6 15
Idioms 67 3.2 13
Imagery / Metaphors 64 29 1.5
Glass Box Approach 47 2.5 1.6
Identities / Proofs 65 20 14
Programming Tricks 65 16 13
One-Liners 65 14 11

It seems respondents believe that APL thinking
1s especially facilitated by constructing APL pro-
grams modularly and by the natural generality of
many APL expressions, as well as by the ease of
subordinating details and by the syntax and symbols
of the language. By way of contrast, “One-Liners”
and “Programming Tricks” are perceived as rela-
tively unimportant.

Seven respondents added miscellaneous other
aspects they considered important, including math-
to-program compatibility, not having to worry about
the operating environment, the ability to use func-
tion results as arguments to other functions, the
workspace concept, and interactive use of the com-
puter.

Styles in Writing APL Functions

When initially defining an APL function, 58
respondents said they write APL code directly; 25
write words first; 20, pseudo-code; 2, non-APL sym-
bo‘!s; and 28, diagrams. (Again, these categories
overlap.)

The question “.. how [do] you select and order
things you write down..?” elicited a variety of

responses such as: first try phrases and build up
expressions; inside-out, back-and-forth on a line;
high-level comments, then low-level comments and
simple function definitions; mix words, pseudo-code,
and APL code; structure diagram with snippets of
APL code; (1) header syntax, (2) comments, (3) pseu-
docode outlining an algorithm; first a variable
name, then bits of notation (often left-to-right); and
(1) scratches on paper to describe problem, (2) pseu-
doprogram with empty blocks, (3) APL code.

Many respondents interpreted the selection/
ordering question more broadly than we intended,
as if it referred to the entire programming process.
Hence some mentioned working top-down and/or
bottom-up; others described the familiar design-code-
test-revise cycle.

How and when do they use the computer when
defining an APL function? Some use it from the
start, testing phrases or lines of code and trying
examples as they go. Others use the computer once
they have written some notes, split the task into
functions, written descriptions of global data struc-
tures, or sketched the “in- compute-out” structure.
Still others do not use it until they have solved the
problem mentally, or wuntil they have written,
debugged, and commented functions on paper.

Preferred Kinds of Function Definitions

When there is a choice, 62 respondents pre-
ferred array-oriented function definitions; 8, itera-
tive; and 7, recursive. (Note that some chose more
than one kind.)

Several preferred using array methods because
it seemed “natural” to them, that is, in accord with
the way they think. Some found that array sol-
utions are easier to conceive, understand, visualize,
or write, and result in more concise code with
fewer errors—especially those due to flow of con-
trol. Others mentioned maintainability, efficiency,
or elegance.

Additional reasons for preferring array methods
included: “it’s easier to explain this way of thinking
to others”; it allows me to retain the core of the
problem through several stages and focus on
changes needed; “it helps me think about what's
really being done”; and “recursion gives me a head-
ache.”

Counter-reasons and caveats included: array-
oriented code must often be rewritten iteratively;
there’s no need to seek an array solution as long as
iteration is obvious and adequate; iteration is
simple and maintainable; special cases often negate
compact array coding; and “loops [do] aid my under-
standing of the problem.”

How APL Helps Problem-Solving

Besides general rhetoric about how APL helps
problem-solving—such as ‘(it] usually helps by
giving [an] environment into which to put ideas” and
by extending thought—the benefits typically men-
tioned were: thinking in modules or “chunks”;
working interactively, thereby seeing results at
once and being able to display and manipulate data
or to try alternate algorithms and make modifica-
tions readily; managing complex problems with just
a little code; thinking visually; and having symbols
do most of what one wants to do (one respondent
referred to “visions”—suddenly seeing solutions in
terms of APL symbols).

Additional ways that APL helps included:
seeing patterns via generalizing solutions; avoiding
natural language; using nested arrays to subordi-
nate details, gathering thoughts in APL phrases and
subfunctions; and prototyping in APL, then coding
in assembler.

One example cited terse descriptions (in direct
definition mode) of correlation, etc., as aiding
understanding of key notions in statistics. Other-
wise, the few specific examples of how APL helps
had little or no explicit indication how it helps
thinking and problem-solving. For example:

(+/w)+1 1tpw
(“Try that in any other notation!”)

+/Px(1+R)*T-TT
(for compound interest)

Vx(Z+.xQuxl4 2pV<«1 “1)BZ<«d-w-2060
(the intersection of two lines)

How APL Hinders Problem-Solving

Ways mentioned that APL hinders problem-solv-
ing were: “array processing capability can some-
times lead to over-generalizing”; “[it’s] too easy to get
sidetracked by interesting aspects of the problem”;
“f1I] occasionally run into a syntax brick wall”; “lack
of 1F-THEN sometimes a hindrance”; “in the rush to
coding I miss out on the analysis I would normally
perform in mathematics or the ordering of processes
that I would follow without a computer.”

There were also some irresistible reservations:
“[I] don’t know that [APL] has an effect, but like to
think it does!”; “[I'm] not convinced that it partic-
ularly helps._.it just doesn’t get in the way”; “I can
no longer problem-solve... without APL”; ‘“[APL]
hurts thinking. No need to think. Just do it until
it’s right.”

December 1990 — Volume 21, Number 2

Comparisons with Other Programming
Languages

Most of the comparisons of APL with other pro-
gramming languages suggested that people do think
in a different way with APL. Several respondents
sald that APL allows them to see the big picture
more easily by subordinating details. For example:
“I look at the whole problem more in APL or break
it info major chunks. In BASIC I mostly think seri-
ally, with occasional need for subroutines.”; “In
FORTRAN or BASIC I used to make up flow dia-
grams with lots of branches and then translate it to
code. In APL I make independent blocks of code ...
and combine [them] into a simple main structure
which describes what is happening.”; “I think in
chunks. Whether these require loops or not is inci-
dental ”; and “I tend to forget all but the highest
level loops now... To put [it] in another way,
COBOL counts hydrogen and oxygen atoms in the
vicinity; APL tells you if it's raining.”

Several appreciated APL’s freeing the program-
mer from concern with the machine environment.
For example: “I think about the problem...not about
internal system housekeeping functions.”; “[no need
for] reference to what the machine is actually doing”;
debugging in FORTRAN, for example, in contrast to
APL, is difficult because of concern with memory
locations, 3 to 10 times as much code, and nested
loops; “/lIn APL] I focus on the whole problem right
away. In PL/I, COBOL, and FORTRAN the com-
puter environment, declaration staternents, elc., take
up much more time.”

é6...COBOL counts hydrogen
and oxygen atoms in the vicinity;
APL tells you if it’s raining.99

Additional differences included: “one function
= one concept”’; “[I can] think about the problem
because of the wealth of primitives”; “the notation
allows you to jumnp from a small part of the solution
to the whole”; "[APL] avoids English words”; “APL
supports [my visual thinking] better than any other
language.”

One person said, “I try not [to think differently].
Good design is still essential.” Another insisted he
doesn’t think differently: “I just think less.”

Many respondents indicated they first solve
problems in APL, then translate to other languages.
(And they don’t like others because of the need for
looping and the absence of interactive capability
there.) Some said they constructed programs in
other languages in terms of APL, for example, “I
now write Pascal in a very APL-ish way.” One even
claimed that someone else could tell from his

APL Quote Quad

assembler code that he used te program in APL!
And, of course, a number declined comparisons
because they don’t use other languages.

Additional Comments

Here are a few of the more interesting addi-
tional comments: “I throw away more code than I
use. It’s part of the thought process.”

“Computer people keep telling me that large
arrays are bad, but I like 'em. They're wholesome.
I think computers are limiting. What we need are
brain coprocessors.”

“The key to much creafive thinking is to make
trials... quickly—even systematically. Thomas Edison
understood this well; so did Einstein with his
thought experiments. APL supports this.”

“[The] most [significant] threat to APL [is] not
other languages but the laziness of man. [People]
refuse fo think and let themselves [be] led by soft-
ware packages [that] put them in “jail” [with] limited
possibilities.”

Conclusion

Several respondents were skeptical about the
value of the questionnaire. We realize that an
instrument such as this is limited in eliciting reli-
able, useful information. Our questions were often
fuzzy—deliberately so for an exploratory investi-
gation of this kind. For that reason, we believe it
inappropriate to analyze these results much further.
Yet some information of this kind is desirable. Of
course, one can read the few papers that purport to
describe how APL programmers think—and the
larger number that say how one ought to think.
Still, there is little hard evidence, aside from the
code they produce, about how APL programmers
actually do think. It is therefore our hope that this
survey and other explorations can lead to more sys-
temnatic studies of APL thinking. n

Sample Form: “Survey of APL Thinking” Questionnaire, As Used in Manchester

Purpose: to understand how people think while programming in APL—in order to improve the learning,
teaching and dissemination of APL.

Please concentrate on the thinking processes involved in APL programming—not application uses,
system/environment/implementation issues, or language design and enhancements. Thank you.

1. Describe yourself:

0-APL Programmer (0-Beginner [-Expcrienced [-Expert)

O0-APL Application User 0-APL Administrator
0 -Other (specify)
Average hours/week involved with APL: hours/week
2. How did you leam APL?
O-on the job O-by self O-in school/college
0 -business course 0O-other (specify)

Book(s) used:

3. Rate each of the following aspects of “APL Thinking” on a scale of 1 to 5
(1 = low importance; 5 = high importance; 10 = not relevant)

0 - Notation/Symbols 0 - Identities/Proofs

O-Parallel Array Processing 0-Glass Box Approach

0-Generalizing O-Mental Visualizations

0-Modular Structure 0- Imagery/Metaphors

0-One-Liners 0-Working with Conceptual Wholes
(subordinating details)

0 -Idioms 0 -Programming Tricks

0-Other (specify)
4. When you initially define an APL function, what do you usually write down? (Check all that apply.)

O-APL code 0-words 0-pseudo-code
O-non-APL symbols 0-diagrams

Describe further how you select and order things you write down, as well as how and when you use a
computer:

5. When there is a choice, which kind of function do you prefer to define?
0 -iterative 0 -recursive 0 -array-onented
Why?
6. How does APL help or hinder your thinking/problem-solving?

Please give an example:

7. When you define a function in APL, do you think in a special way or a different way—compared with
another programming language?

8. Additional Comments:

8 December 1990 — Volume 21, Number 2

