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Abstract

Lattice algebras replace + and — with max and
min, but then can create many of the operations
of normal algebra. In particular lattice algebras
can be used in the study of neural networks and
extraction of images in the presence of noise.
This paper is not a full introduction but a start
with some of the simple algorithms that can be
used.

Preliminaries

Artificial neural networks are structures
designed to recall a specified pattern even in the
presence of noise. Clearly this is useful in artificial
intelligence and also in recovering pictures from
noisy scenes. Here we are looking at the ‘memories’
that recover the signal, written as M comb vy,
where M is the ‘memory’ and comb some chosen
function. While there are several possible choices we
consider those from lattice algebra, and define ¥ and
comb accordingly.

There are two primary purposes behind this
article. First is an introduction to a small subset of
work within lattice theory, but second is an attempt
to show that APL and J can provide proofs which in
many cases are substantially shorter than
conventional mathematical notation. With that in
mind we provide expressions and proofs in both
APL and J script, typically APL first. There are clear
advantages and disadvantages for each language and
we are interested in comparisons. We use caps for J
nouns for ease of comparison with APL. Readers
should also note that in J verb definition mode left
arguments are x, and right arguments y. Many of the
proofs are relegated to the appendix. All APL scripts
assume ]I 0<0.
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A lattice is a set such that any two elements
have a lower bound and an upper bound. The Reals
work very nicely using max and min in place of +
and -. The literature on lattice theory is quite
extensive, try for example a Google search on lattice
theory applications or lattice theory neural networks
which return quite large lists. Wikipedia, on lattice
theory, appears to return heavily mathematical
papers. This article has a main focus on extraction of
patterns from prototypes and Ritter and Gader (ref 1)
shows many such patterns.

It is fairly clear that max and min are
commutative, and distributive across + and -. In
particular, however, if X is a matrix we have

APL: (r/7LAx)<L/T/X
I o/ <JdX)<:<.>."1X

(In words, the maximum of the column minima is
less than or equal to the minimum of the row
maxima). This is called the minimax principle. We
also remind readers that the maximum of the sum of
two vectors is less than or equal to the sum of the
two maxima.

We are interested in a very specific
transformation of our lattice, and the question of
which vectors are fixed (i.e. don’t change) under that
transformation. We first define a linear minimax
combination of vectors in the array L by any array R
(there must be as many rows in R as there are in L)

APL: Z<L GX R
Z<[/(8R)L.+L
J GX=:>./@(<./ .")~:) NB. LGXR

We set G(X) as the set of all possible linear
minimax combinations of X. For example if

55 2 0 6 19 2 3
X is3 4 354 andHis 0 7 3 7
56 0 2 1 9 15 9

then 8 8 5 3 9=X GX H

If Y can be written as X GX H for some H,
Y is said to be lattice dependent on X.

We wish to define two memories, clearly
dependent on the vectors given by the rows of X.
With these memories we have a transformation,
where the memory is always the left argument,
applied to some other vector.
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We now define two ‘memories’ (the first
line in the following code) and their associated
functions or ‘transformations’ (the next two lines in
APL, the second line in J):

APL: M<(®R)[.-R W<(®R)L .-R
Z<M MT R Z<W WT R
Z<R| . +8M Z<R[ .+QW

J: M=(:/.-)~])y W=: (<. .2)]2)y
MT=:(<./.+]:)~ WT=(>./ +]|:)~
NB. Typically M&MT or WEWT

and ask when Y=M MT ¥ (Y-: M MT Y)) or
Y=WWTY (Y-:WWTY), ie.is Y a fixed point
for the transformation M MT (M&MT) or W WT
(W&WT)? The set of fixed points of either
transformation is F(X) (fixed under ¥ MT if and
only if fixed under W WT, see Theorem 1).

It is trivial to show that the diagonals of M
and W are all zero, and that M is the negation of the
transpose of W. This allows the easy proof of:

Lemma 1:
APL: (MMTY )<Y+ 00&M =Y
(and Y<W WT Y)
J. MMTY)< : Y+(<0)|:M oY,
and similarly Y<: WWTY
Lemma 2:
APL: M=M| .+M
. M—: (<./ .H)~M
See proof in the appendix.
Theorem 1:

Y=W WT Y ifandonlyif Y=M MT Y (i.e.
Y is fixedunder W WTI ifandonlyifY is fixed
under M MT).

See proof in the appendix.

Theorem 2:

The vectors of X are all in F(X).

See proof in the appendix.

Theorem 3:

Y O F(X) <> Y is lattice dependent on X.

See proof in the appendix.
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Corollary:
If v is lattice dependent on X then H«Y-[11X
(H=Y — "1 X) is suitable for Y=X GX H (Y —:
X GX H). H is not unique. (This corollary is an
emphasis of the first line of the proof).

We want to know more about the shape of
F(X), and ultimately its dimension and extreme
points (which are, in fact, lines). We start by
showing that F (X ) is a convex set.

The fact that the diagonal of ¥ is all zero
allows us to say, for any p in [0,1], that if
R,SOF (X) then

MMT(pxR)+(1-p)x8
((pxM)MT pxR)
+((1-p)xM)MT(1-p)xS
(pxM MT R)+(1-p)xM MT S
(pxR)+(1-p)x8
Thus F (X ) is a convex set.

If we consider X, adding a constant to any
vector will not change M. Similarly if RUF (X) then
R+cUF (X), for any c. Thus X generates a convex
volume F(X) in R" , and if ROF(X) the line R+c
is in F(X) (effectively R represents the bundle of
lines going through point R and parallel to x=y==z...)

A vector V is said to be lattice independent
of X if V is not a lattice combination of the vectors in
X, or, equivalently, V isnotin F(X). A set X is said
to be lattice independent if no vector in X is lattice
dependent on the remaining vectors (VX < V is
notin F(X\V).

In order to proceed further we need the idea
of strong lattice independence motivated by the
following:

Theorem 4:

If R and S are lattice independent then there
exist indices p and g such that for all i
(R[pl-R[i])<S[pl-S8[i] and
(8[gl1-8[il)<R[gl-R[il.

The contra-positive for the first choice is
that for any index j[ k1] there is a next index
JF[k+17 such that (strict inequality):

(RLjLk11-8[j[k1]1) <
RLjLk+111-8[jlk+111]

Now the sequence of indices is infinite but
there is only a finite possible set and we have proof
by contradiction (the proof for J is clear).

This is the background for:

25



Definition:

A set X of lattice independent vectors is strongly
lattice independent if and only if: for every ROX
there is an index k such that for any pair of
indices i, j:
APL: (R[k]-R[i])2X[Jjsk]1-X[7;1]

Jo (k{R)-1{R) > ((J.k){X) - (<. {X

We call this inequality, by itself, condition .S
which can be used without lattice independence
(which, of course, prevents strong lattice
independence).

We now wish to find the strongly lattice
independent vectors in F(X) and then the minimal
set which generates F (X). Remember that X may
not even be lattice independent (but if there are only
2 different vectors in X they will be strongly lattice
independent).

Theorem 5:

The negated rows of M all satisfy condition S,
and are lattice dependent on X (specifically we
do not claim these rows are lattice independent
against each other).

Condition S is easily satisfied by the negated
rows since

(X[isk1-X[is;51)<M[k;:7]
= (X[1i:;k1-X[i;71)<X[k:;k]1-X[k:7]
In J we have:
(=/ (i 310 (X< (<Gm) (M
<> (-/ (i s .0 {X)<: -/G,j s .0 {X
which is condition S with k=.j.

The proof of lattice dependence on X is in
the appendix.

It is now clear that if a vector y satisfies
condition S it must be one of the negated rows of ¥,
with a possible added constant, and we have
F(X)EF( M). Now we are interested in the
minimal set of strongly lattice independent vectors,
Q, with F(Q) =F(X); we call this the minimal
spanning set. Such a spanning set is made up of
lattice independent vectors from -¥ and algorithm 4
provides for finding such a set.
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Algorithm A:
Given a defining set X, set H<- (X )[ . -X

(H=.-(>+/ «-)~:)X) (i.e. the negated rows
of the memory generated by X). We build the
spanning set Q by removing any vector in H
that does not change M. The remaining vectors,
after all have been examined, form the set Q.

Clearly we have F(X)=F(Q), and the
remaining vectors must be lattice independent,
so @ is a minimal spanning set (but not
necessarily unique). We provide FIND in APL
and J.

APL: H<FIND R;I;M;V
I<00H«-M<(RR)[ .-R
>~(I=4pH)/0
o(M=(QV)I .-V<(Iz1+pH)/H)/

"H<V ¢>2"

I«I+10>2
I FIND=: 3 : 0

NB. vy is the right argument in definition mode

H=.-M=.((./ . -):))y

i=.0

while . i<#W do.

if.M=:((>e/ « =)~ 2)V=0 (i~ i . #HHH

do.H=.V
else. i=.>:1 end. end.
H
)

For example if we use the array X from
above we have

X M FIND X
55 2 06 00554 T1 0767575
34 3 5 4 106 55 727172 071
56 0 21 071 0 271 T1717476 O
21 2 01
11 4 6 O

Strong lattice independence provides some
level of access to linear independence and efficient
ways of handling lattice algebras.

We can, in fact, show the spanning set is
unique, but the proof is awkward, wandering around
inR".

It is possible to show that if we take the set
M, and remove one row, while subtracting it from all
the others, then the remaining vectors are linearly
independent (a moderately difficult proof). We also
have:

APL Quote Quad



Conjecture:

M is a set of linearly independent vectors so long
as no row or column is all zero. This conjecture
comes from being unable, so far, to find a
linearly dependent set except by getting a row or
column all zero. Obtaining a row or column all
zero has, to date, meant a row and column of X
being all zero and all entries being non-negative
or non-positive (but proving the conjecture has
not yet been accomplished).

The structure we have built, starting from a
set of vectors X, and constructing associative
memories and minimal spanning sets has value in
several areas of study, including neural nets and
recovery of pictures from noisy pictures. We provide
an example after the references where the start is a
set of letters, and then recovery from distortions of
some of those letters.

We add that, except for the J and APL
scripts, only portions of this article are original to the
author, much of it can be found in the few references
provided.
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Example of extracting pictures

If we start with a training set of pictures (in this
example below we use 4, B, C, E) each can
generate a bit vector (i.e. pixels on or off). This
set of vectors then generates ¥. We now use ¥
MT Yd where Yd is a dilated member ¥ of the
training set, i.e. one of the letters with added
‘on’ pixels. The true Y is recovered, sometimes
with a surprising amount of dilation. In a similar
fashion we can use W WT and recover the
correct Y after a surprising amount of erosion,
that is, we turn a number of pixels from ‘on’ to
‘off’. Unfortunately a combination of dilation
and erosion gets very poor results. Below we
have 4 and B as defined, followed by dilation,
erosion and a combination. Dilation or erosion
changed approximately 15% of the available
pixels in the example.

The letters A and B are presented in next
image, first the original, then dilated, then
eroded, then a mixture of both dilation and
erosion.

BB-B

Next image has the results of ¥ MT on each picture, erosion and 'both' are useless.
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AA BB ..

Next image has the results of W WT on each picture, dilation and 'both' are useless.

AlANBEENR

Appendix: Proofs of some statements

Lemma 2

APL:

For indices I and ¢ we have
MLI;J1=MLJ;JI+MLI:J] 2 ML;IT]L.+M[;J]
L/(T#AXLsIT1-[01X)+TAX-[01X[sJ12L/TAX[:I]1-X+X-X[;:J]
M[LI;J ] and all inequalities must be equalities.

For indices i and j we have (<i,j){M -: ((<i,)){M)+ (j,)){M >: <./({{M)H{"1 M
<> <"1 X) -X)> X3 {"TL X > < />0 (0" X) - X)X -j{"1 X)
<> (<i,)){M and all inequalities must be equalities.

Theorem 1

APL:
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For any indices T and J and Y=W WT Y

YLIT1=YT .+WLI;]

YII12Y[JI1+WLI;J]1 foranyd
WLI;J1<Y[I]-Y[J]

Now if ~Y=M MT Y then for some S we have for all K
Y[S1>YL.+MLS; ]

Y[S]1>Y[K]+M[S:K]

(YCKI-Y[S1)<-M[S;:K]
(Y[LK]-Y[S])<WL[K;S1<Y[K]-Y[S8] acontradiction.

IfY-:W WT Y then for any indices i and j

({Y)-: Y>./ .+i{W

<> ({Y)>: ({Y)H<i,){W foranyj

> ((<if){W)< ({Y)-j{Y

Now if -.Y-:M MT Y then for some s and all k we have
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s{Y)Y<./ .+s{M

<> (s{Y)>(k{Y)H(<s.k){M

<> ((k{Y)-s{Y)<-(<k,s){M

<> ((k{Y)-s{Y)<(<k,9){W

but we have ((<k,s){W) <:(k{Y)-s{Y and again a contradiction.

The reverse from M MT to W WT is similar.

Theorem 2

APL: IfV is one of the vectors of X we have
W WT V=VL.+&W =VI[ .-M
From lemma 1 we have V<W WT V,solet J be an index for which we have
a strict inequality, or VL J J<V [ . -M[ ; J 1. Thus for some K
VIJI<VLK]-M[K;J]
=EM[K;J J<V[LK]-VL[J] which contradicts the definition of M.

J: If V is one of the vectors of X we have
WWT V <> V<,/ .+t W «>V>,/ . -M
From lemma 1 we have V<: W WT V, so consider the index j for which this is
a strict inequality, or (j{V)>./ . -j{"1 M

If V is one of the vectors of X we have
WWTV = V</A4:W = V>/.-M
From lemma 1 we have V<: W WT V
Consider the index j for which this is a strict inequality, or (j{V)<V>./ .-j{ "1 M
Thus for some k we have
GEV)<IV)-(<K)HIM = (<k,j){M)<k{V)-j{V
which contradicts the definition of M.

Theorem 3

APL: Set H«<Y-[11X then X GX H=[/(RH)L .+X
[/(Y-8X)L.+X

[/7y-(®X)L.+X

r/’y-m

YI.+&W

W WT Y=Y

J: SetH=.Y-"1X then GX H <»>>,/(|:H)<./ .+X
«~>>, (Y-(: X)<./ .+X
“>>/Y-M <>Y>./ 4H:W <> WWTY «<>Y
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