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A small part of 
Lattice Theory 

 

Ralph Selfridge    
Abstract 
 
Lattice algebras replace + and – with max and 

min, but then can create many of the operations 

of normal algebra. In particular lattice algebras 

can be used in the study of neural networks and 

extraction of images in the presence of noise. 

This paper is not a full introduction but a start 

with some of the simple algorithms that can be 

used. 

 

Preliminaries 
 

Artificial neural networks are structures 
designed to recall a specified pattern even in the 
presence of noise. Clearly this is useful in artificial 
intelligence and also in recovering pictures from 
noisy scenes. Here we are looking at the ‘memories’ 
that recover the signal, written as M  comb y, 
where M is the ‘memory’ and comb some chosen 
function. While there are several possible choices we 
consider those from lattice algebra, and define M and 

comb accordingly.   

There are two primary purposes behind this 
article. First is an introduction to a small subset of 
work within lattice theory, but second is an attempt 
to show that APL and J can provide proofs which in 
many cases are substantially shorter than 
conventional mathematical notation. With that in 
mind we provide expressions and proofs in both 
APL and J script, typically APL first. There are clear 
advantages and disadvantages for each language and 
we are interested in comparisons. We use caps for J 
nouns for ease of comparison with APL. Readers 
should also note that in J verb definition mode left 
arguments are x, and right arguments y. Many of the 
proofs are relegated to the appendix. All APL scripts 

assume ÷IO½0. 

 

A lattice is a set such that any two elements 
have a lower bound and an upper bound. The Reals 
work very nicely using max and min in place of + 
and -. The literature on lattice theory is quite 
extensive, try for example a Google search on lattice 
theory applications or lattice theory neural networks 
which return quite large lists. Wikipedia, on lattice 
theory, appears to return heavily mathematical 
papers. This article has a main focus on extraction of 
patterns from prototypes and Ritter and Gader (ref 1) 
shows many such patterns. 

It is fairly clear that max and min are 
commutative, and distributive across + and -. In 
particular, however, if X is a matrix we have 

      APL:           (©/¾ðX)ó¾/©/X 

           J:             (>./  <./ X)  <: <./ >./ "1 X 

(In words, the maximum of the column minima is 
less than or equal to the minimum of the row 
maxima). This is called the minimax principle. We 
also remind readers that the maximum of the sum of 
two vectors is less than or equal to the sum of the 
two maxima. 

We are interested in a very specific 
transformation of our lattice, and the question of 
which vectors are fixed (i.e. don’t change) under that 
transformation. We first define a linear minimax 
combination of vectors in the array L by any array R 
(there must be as many rows in R as there are in L) 

      APL:      Z½L  GX  R 

                      Z½©ð(íR)¾.+L 

           J:        GX=:>./@((<./  .+)~|:)  NB.  L GX R  

 We set G(X) as the set of all possible linear 
minimax combinations of X.  For example if  

    5 5 2 0 6         1 9 2 3 
X is  3 4 3 5 4  and H  is   0 7 3 7   
    5 6 0 2 1         9 1 5 9 

   then   8 8 5 3 9≡X  GX  H   

 

If Y can be written as X GX H for some H, 
Y is said to be lattice dependent on X. 

We wish to define two memories, clearly 
dependent on the vectors given by the rows of X. 
With these memories we have a transformation, 
where the memory is always the left argument, 
applied to some other vector. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F1286361.1286364&domain=pdf&date_stamp=2007-09-01


September 2007, Volume 35, Number 3 
 

25 

We now define two ‘memories’ (the first 
line in the following code) and their associated 
functions or ‘transformations’ (the next two lines in 
APL, the second line in J): 

APL :   M½(íR)©.-R           W½(íR)¾.-R          

            Z½M  MT  R                   Z½W  WT  R                  

            Z½R¾.+íM                 Z½R©.+íW 

   J :     M=: ((>:/  . −)~ |:)y      W=: ((<./  . −)~ |:)y 

            MT =: ( <./ .+ |:)~      WT =: ( >./  .+ |:)~ 

  NB.  Typically M&MT or W&WT   

and ask when Y≡M MT Y (Y-: M MT Y))   or 

Y≡W WT Y (Y-:W WT Y),  i.e. is Y a fixed point 

for the transformation  M MT (M&MT)  or W WT  

(W&WT)? The set of fixed points of either 
transformation is F(X) (fixed under M MT if and 
only if fixed under W WT, see Theorem 1). 

It is trivial to show that the diagonals of M 

and  W are all zero, and that M is the negation of the 

transpose of W. This allows the easy proof of: 

Lemma 1: 

    APL:   (M MT Y)óY+ 0 0íM     ≡Y       

(and YóW  WT  Y)  

       J:     (M MT Y)< : Y + (<0 1)|:M  ↔ Y,  

and similarly Y<: W WT Y    

Lemma 2: 

    APL:    M≡M¾.+M 

          J:     M–: (<./ .+)~M  

See proof in the appendix. 

Theorem 1: 

Y≡W  WT  Y    if and only if  Y≡M MT  Y (i.e. 

Y is fixed under W  WT   if and only if Y is fixed 

under  M MT).   

See proof in the appendix. 

Theorem 2: 

The vectors of X are all in F(X). 

See proof in the appendix. 

Theorem 3: 

Y ∈ F(X) ↔  Y is lattice dependent on X. 

See proof in the appendix. 

 

Corollary:   
If Y is lattice dependent on X then H½Y-[1]X  

(H=.Y − "1 X) is suitable for  YÏX  GX  H  (Y −: 

X GX H). H is not unique. (This corollary is an 
emphasis of the first line of the proof). 

We want to know more about the shape of 
F(X), and ultimately its dimension and extreme 
points (which are, in fact, lines). We start by 
showing that F(X) is a convex set. 

The fact that the diagonal of M is all zero 
allows us to say, for any p in [0,1], that if 

R,S∈F(X) then   

M MT(põR)+(1-p)õS 
Ï ((põM)MT  põR) 

+((1-p)õM)MT(1-p)õS 

Ï  (põM  MT  R)+(1-p)õM  MT  S 
Ï  (põR)+(1-p)õS 

Thus F(X) is a convex set. 
If we consider X, adding a constant to any 

vector will not change M. Similarly if R∈F(X) then 

R+c∈F(X), for any c. Thus X generates a convex 

volume F(X) in Rn , and if  R∈F(X) the line R+c 
is in F(X) (effectively R represents the bundle of 
lines going through point R and parallel to x=y=z...) 

A vector V is said to be lattice independent 
of X if V is not a lattice combination of the vectors in 
X, or, equivalently, V is not in F(X). A set X is said 
to be lattice independent if no vector in X is lattice 

dependent on the remaining vectors (V∈X ↔ V is 
not in F(X\V).  

In order to proceed further we need the idea 
of strong lattice independence motivated by the 
following: 

Theorem 4: 

If R and S are lattice independent then there 
exist indices p and q such that for all i     

(R[p]-R[i])óS[p]-S[i]    and 

(S[q]-S[i])óR[q]-R[i]. 

The contra-positive for the first choice is 
that for any index j[k] there is a next index  

j[k+1] such that  (strict inequality): 

(R[j[k]]-S[j[k]]) < 

R[j[k+1]]-S[j[k+1]] 

Now the sequence of indices is infinite but 
there is only a finite possible set and we have proof 
by contradiction (the proof for J is clear). 

This is the background for: 
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Definition: 

A set X of lattice independent vectors is strongly 
lattice independent if and only if: for every R∈X 
there is an index k such that for any pair of 
indices  i, j: 

APL:  (R[k]-R[i])òX[j;k]-X[j;i]      

     J:    ((k{R)-i{R) >: ((<j,k){X)-(<j,i){X 
 

We call this inequality, by itself, condition S 
which can be used without lattice independence 
(which, of course, prevents strong lattice 
independence). 

We now wish to find the strongly lattice 
independent vectors in F(X) and then the minimal 
set which generates F(X). Remember that X may 
not even be lattice independent (but if there are only 
2 different vectors in X they will be strongly lattice 
independent). 

Theorem 5: 

The negated rows of M all satisfy condition S, 
and are lattice dependent on X (specifically we 
do not claim these rows are lattice independent 
against each other). 

Condition S is easily satisfied by the negated 
rows since 

       (X[i;k]-X[i;j])óM[k;j] 

≡    (X[i;k]-X[i;j])óX[k;k]-X[k;j] 

In J we have:  

        (-/ (i,j;i,n){X)<:(<j,n){M 

½¸  (-/ (i,j;i,n){X))<:-/(j,j;j,n){X 

 which is condition S with k=.j. 

The proof of lattice dependence on X is in 
the appendix. 

It is now clear that if a vector y satisfies 
condition S it must be one of the negated rows of M, 
with a possible added constant, and we have 
F(X)ÏF(M). Now we are interested in the 

minimal set of strongly lattice independent vectors, 

Q, with F(Q) ÏF(X); we call this the minimal 

spanning set. Such a spanning set is made up of 
lattice independent vectors from -M and algorithm A 
provides for finding such a set. 

 

 

Algorithm A: 

Given a defining set X, set H½-(íX)©.-X  

 (H=.-((>./  .-)~|:)X) (i.e. the negated rows 

of the memory generated by X). We build the 

spanning set Q by removing any vector in  H 

that does not change M. The remaining vectors, 

after all have been examined, form the set Q.  

Clearly we have F(X)≡F(Q), and the 
remaining vectors must be lattice independent, 
so Q is  a minimal spanning set (but not 
necessarily unique). We provide FIND in APL 
and J. 

APL:  H½FIND  R;I;M;V 
I½0ØH½-M½(íR)©.-R 
¸(I=ÆæH)/0 

¯(MÏ(íV)©.-V½(IôìÆæH)ðH)/ 
'H½VØ¸2' 

I½I+1Ø¸2 

 J: FIND=:  3  :  0     
NB.  y is the right argument in definition mode 

 H=.-M=.((>./ .-)~|:)) y 

 i=.0 

 while. i<#W  do. 

 if.M-:((>./ .-)~|:)V=.(i~:i.#H)#H   

do.H=.V 

 else. i=.>:i  end. end. 

H 
) 

For example if we use the array X from 
above we have 

 X  M  FIND X     
5 5 2 0 6   0 0 5 5 4  ý1 0ý6ý5ý5 
3 4 3 5 4   1 0 6 5 5  ý2ý1ý2 0ý1 
5 6 0 2 1   0ý1 0 2ý1  ý1ý1ý4ý6 0 
            2 1 2 0 1 
            1 1 4 6 0 

Strong lattice independence provides some 
level of access to linear independence and efficient 
ways of handling lattice algebras. 

We can, in fact, show the spanning set is 
unique, but the proof is awkward, wandering around 
in Rn. 

It is possible to show that if we take the set 
M, and remove one row, while subtracting it from all 
the others, then the remaining vectors are linearly 
independent (a moderately difficult proof). We also 

have: 
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Conjecture:  

M is a set of linearly independent vectors so long 
as no row or column is all zero. This conjecture 
comes from being unable, so far, to find a 
linearly dependent set except by getting a row or 
column all zero. Obtaining a row or column all 
zero has, to date, meant a row and column of X 
being all zero and all entries being non-negative 
or non-positive (but proving the conjecture has 
not yet been accomplished). 

The structure we have built, starting from a 
set of vectors X, and constructing associative 
memories and minimal spanning sets has value in 
several areas of study, including neural nets and 
recovery of pictures from noisy pictures. We provide 
an example after the references where the start is a 
set of letters, and then recovery from distortions of 
some of those letters. 

We add that, except for the J and APL 
scripts, only portions of this article are original to the 
author, much of it can be found in the few references 
provided. 
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Example of extracting pictures 
 
If we start with a training set of pictures (in this 
example below we use A, B, C, E) each can 
generate a bit vector (i.e. pixels on or off). This 
set of vectors then generates M. We now use M 
MT Yd   where Yd is a dilated member Y of the 
training set, i.e. one of the letters with added 
‘on’ pixels. The true Y is recovered, sometimes 
with a surprising amount of dilation. In a similar 
fashion we can use W WT  and recover the 
correct Y after a surprising amount of erosion, 
that is, we turn a number of pixels from ‘on’ to 
‘off’. Unfortunately a combination of dilation 
and erosion gets very poor results. Below we 
have A and  B as defined, followed by dilation, 
erosion and a combination. Dilation or erosion 
changed approximately 15% of the available 
pixels in the example. 

 

The letters A and B are presented in next 
image, first the original, then dilated, then 
eroded, then a mixture of both dilation and 
erosion.  

 

 

 

 

Next image has the results of M MT on each picture, erosion and 'both' are useless. 
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Next image has the results of W WT on each picture, dilation and 'both' are useless. 

 

 

    

Appendix: Proofs of some statements 
 

Lemma 2   

 

APL:     For indices I and J we have 

M[I;J]≡M[J;J]+M[I;J]  ò   M[;I]¾.+M[;J] 

≡   ¾/(©ðX[;I]-[0]X)+©ðX-[0]X[;J] ò ¾/©ðX[;I]-X+X-X[;J] 

Ï   M[I;J]   and all inequalities must be equalities. 

 

 J: For indices i and j we have  (<i,j){M -:  ((<i,j){M) + (<j,j){M  >:  <./ (i{M)+j{"1 M 

 ½¸   <./ (>./(i{"1 X) -X)+> ./X- j{"1 X >:  <./ >./ ((i{"1 X) -X)+X-j{"1 X) 

 ½¸   (<i,j){M   and all inequalities must be equalities. 

 

Theorem 1 

 

APL: For any indices I and J  and  YÏW  WT  Y 
Y[I]ÏY©.+W[I;] 

Ï Y[I]òY[J]+W[I;J]    for any J 
Ï W[I;J]óY[I]-Y[J] 

Now if  ~YÏM  MT  Y  then for some S we have for all K 
Y[S]>Y¾.+M[S;] 
Ï Y[S]>Y[K]+M[S;K] 
Ï (Y[K]-Y[S])<-M[S;K] 

Ï  (Y[K]-Y[S])<W[K;S]óY[K]-Y[S] a contradiction. 

  

J: If Y-:W  WT  Y   then for any indices i and j 

 (i{Y)-:Y>./ .+i{W 

       ½¸  (i{Y)>:(j{Y)+(<i,j){W    for any j 

 ½¸  ((<i,j){W)< (i{Y)-j{Y 

 Now if  -.Y-:M  MT  Y then for some s and all k we have 
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 (s{Y)>Y<./ .+s{M 

 ½¸  (s{Y)>(k{Y)+(<s,k){M 

 ½¸  ((k{Y)-s{Y)<-(<k,s){M 

 ½¸  ((k{Y)-s{Y)<(<k,s){W 

 but we have ((<k,s){W) <:(k{Y)-s{Y  and again a contradiction. 

 
The reverse from M MT  to W WT is similar. 
 

Theorem 2 

 

 APL: If V is one of the vectors of X we have  
W WT  VÏV¾.+íW  ÏV©.-M 

From lemma 1 we have VóW  WT  V, so let  J be an index for which we have 

a strict inequality, or V[J]<V©.-M[;J]. Thus for some K 
V[J]<V[K]-M[K;J] 

ÏM[K;J]<V[K]-V[J] which contradicts the definition of M. 

 
  J: If V is one of the vectors of X we have 

 W WT  V  ½¸  V<./ .+|:W  ½¸ V>./ .-M 

 From lemma 1 we have V<:W  WT  V, so consider the index j for which this is 

a strict inequality, or  (j{V)>./ .-j{"1 M 

 
If V is one of the vectors of X we have 

 W WT V   ÏÏÏÏ  V<./ .+|:W   ÏÏÏÏ  V>./ .-M 

 From lemma 1 we have V<: W WT V   
Consider the index j for which this is a strict inequality, or (j{V)<V>./ .- j{ "1  M    

Thus for some k we have 

(j{V)<(k{V)-(<k,j){M   ÏÏÏÏ  ((<k,j){M)<k{V)-j{V  

which contradicts the definition of M. 

 

Theorem 3 

 

APL:  Set  H½Y-[1]X  then  X  GX  HÏ©/(íH)¾.+X 
 Ï  ©/(Y-íX)¾.+X 

Ï ©/Y-(íX)¾.+X 
Ï ©/Y-M 
Ï Y©.+íW 
Ï W  WT  YÏY 

 

 J: Set H=.Y-"1 X   then  GX  H  ½¸ >./(|:H)<./ .+X 

 ½¸ >.(Y-(|:X)<./ .+X 

 ½¸ >./Y-M  ½¸ Y>./ .+|:W  ½¸  W WT Y ½¸Y 
 




