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Abstract 

This paper proposes a notation to be 
used for the greatest common divisor (gcd) 
and least common multiple (icm) functions 
in APL. The notation proposed is that in 
use for the logical or and and functions: 
v for gcd and ^ for icm. For this reason, 
special attention is paid to the cases of 
gcd and icm for the arguments 0 and I. 
Also, because we wish to define the 
functions for negative and complex 
rational values as well as for positive 
integers, we discuss the functions more 
generally than is the case in standard 
number theory texts, which usually 
restrict their discussions to positive 
integers. For this reason we give proofs 
of some of the basic theorems concerning 
gcd and icm, written to insure that they 
are valid for the entire domain of values 
for which it is proposed the APL functions 
be defined. The discussion in this paper 
is couched in terms of integral arguments. 
The theoretical extension to rational 
arguments is an easy one, and it is 
assumed that the gcd and icm functions, 
which depend on the residue function for 
their definitions, will be implemented for 
non-integral arguments, just as is the 
residue function, with all the practical 
difficulties which this entails. 

In this paper, the terms "greatest" and 
"least" are taken to refer to magnitudes, 
and the terms "divisor" and "multiple" 
mean integer divisor and integer multiple. 

Divisor and Multiple 

If M=D×H, where H is an integer, then M 
is a multiple of D, and D is a divisor of 
M. If D=0, H is not uniquely defined, but 
nonetheless 0 is a divisor of 0. 

A unit is a divisor of i. There are 
two real units, -I and i, and four complex 
units: the two real units and the square 
root of negative one and its negative. 
Multiplication or division of a number by 
a unit does not produce a change in its 
magnitude, but will produce a change in 
its direction, if the unit is not i. 

Numbers which differ by unit multiples are 
associates. Every number but zero has 
associates. Every number is a divisor and 
multiple of itself (from the identity 
N=Nxl) and associates are divisors and 
multiples of each other (if A is 
associated with B, then A=B×U for some 
unit U). Associates are equal in 
magnitude. 

Zero as Divisor and Multiple 

From the identity 0=Ax0 we conclude 
that I) the only multiple of zero is zero; 
2) zero is a divisor only of zero, and no 
number but zero has zero as a divisor; 3) 
zero is the only number which is a 
multiple of every number; and 4) there is 
no unique quotient for 0÷0. 

Common Divisors and Division 

Every number which is a divisor of each 
of two numbers is a common divisor of 
them. If D is a common divisor of H and K 
then the associates of D are also common 
divisors of H and K. 

If C=AIB, then the common divisors of A 
and B are also common to C. For the 
definition of the residue function gives 
us C=B-A×LB÷A. If E is any common divisor 
of A and B, then B÷E and (A×LB÷A)÷E are 
integers, as is their difference, to be 
called V. Thus we can write C=ExV, 
showing that E is also a divisor of C. 
The proof shows that the expressions C=A+B 
and C=A-B may be substituted for C=AIB in 
the statement of the theorem, and the 
theorem will remain true: that the common 
divisors of A and B are also common 
divisors of C. 

The common divisors of 0 and H are the 
divisors of H. This is easily seen using 
the algebra of sets. If I is the set of 
all numbers, these are the divisors of 0. 
If D is the set of divisors of H, then 
D=InD. 

A proof for the division theorem valid 
for complex numbers ingeneral is given in 

240 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F800117.803810&domain=pdf&date_stamp=1975-06-11


[6]. The theorem states that if Z and W 
are arbitrary numbers, with W~0, then 
there exists an integer Q, and an R such 
that Z=R+Q×W, and (IR)<IW. The proof 
depends on the definition of the complex 
floor function, which provides that 
I>IX-[X for all X. Q is determined by 
[Z÷W, and R by WlZ, and Q and R are thus 
well-defined. 

If there is a non-empty set of integers 
closed under addition and subtraction, 
then the set is either zero alone or 
consists of all multiples of some least 
non-zero element. In the first case, 
where the set consists only of zero, then 
0+0 and 0-0 are in the set. In the second 
case, choose an element A~0. Then 0 is in 
the set, since O=A-A. Now choose among 
the non-zero elements least in magnitude 
the element B. Then all multiples of B 
are in the set since it is closed under 
addition and subtraction. Conversely, all 
elements in the set are multiples of B, 
since if A is in the set, BIA is also in 
the set, since it is the difference of two 
elements in the set; but BIA is less than 
B in magnitude by the division theorem, 
and so must be zero; therefore A is a 
multiple of B. Clearly, the other least 
elements are associates of B. 

Greatest Common Divisor 

D is a ~reatest common divisor of H and 
K if it is a common divisor of H and K and 
is also a multiple of every other common 
divisor. 

It can be shown that every two integers 
H and K have agcd D such that 
D=(PxH)+QxK, where P and Q are integers, 
and D=0 if and only if H=0 and K=0. 

In the first case, where H and K are 
not both zero, we see that for any two 
nunlbers of the form (PIxH)+QIxK and 
(P2xH)+Q2xK, their sum 
((PI+P2)×H)+(QI+Q2)×K and difference 
((PI-P2)xH)+(QI-Q2)×K are also of that 
form. Therefore the set of all such 
linear combinations is closed under 
addition and subtraction, and thus 
contains 0 and a non-zero element D least 
in magnitude. D is a divisor of each 
element of the set. However H and K are 
both elements of the set (since 
H=(I×H)+O×K and K=(OxH)+IxK) and thus both 
have D as a divisor. For some integers P 
and Q, D=(P×H)+QxK, and thus the common 
divisors of H and K are common divisors of 
D. Hence D is a greatest common divisor, 
for it is the greatest of the divisors of 
itself. 

If H and K are both 0, we know that 
every number is a common divisor of 0 and 
0. We know also that the only multiple of 
every number is 0. Clearly, O=(PxO)+Q×O 
for every P and Q, and thus the gcd of 0 
and 0 is 0. 

The Euclidean Algorithm 

For the purpose of defining a function, 
it is necessary to be able to specify one 
of the associated greatest common divisors 
as the greatest common divisor. This is 
accomplished by the Euclidean algorithm, 
as interpreted using the definition of the 
residue function current in APL. The 
residue function, in turn, is assumed to 
be using the definition of the complex 
floor function given in reference [6]. 

A version of the algorithm similar to 
one given in [4] is as followst to compute 
the greatest common divisor of H and K, 
assign the values H and K to V, forming a 
two-element vector. If the first element 
of V is zero, the algorithm terminates 
with the second element the result. If 
the first element of V is not zero, form a 
new first element by the process 
V÷(I/2÷V),V. This new element is thus the 
residue of the former second element, 
using the former first element as the 
modulus. The process will terminate if H 
and K are integers (real or complex), 
since the successive prefixed residues 
form a sequence of integers decreasing in 
magnitude, and thus the sequence is finite 
and ends in zero. The process will also 
terminate if H and K are rational (real or 
complex), but the argument is not as 
straightforward. 

When the algorithm described above 
terminates, the second element of V is the 
greatest common divisor of H and K. This 
is so because each overlapping pair of 
elements shares the same set of common 
divisors. Since V[l]=0, the common 
divisors of V[I] and V[2] are the divisors 
of V[23. So the divisors of V[2] are the 
common divisors of the elements of V, and 
in particular of the original elements of 
V, namely H and K. The greatest divisor 
of V[2] is of course V[2], so the greatest 
common divisor of H and K (and of all the 
elements of V) is V[23. 

One is not ordinarily interested in the 
intermediate values developed in the 
course of executing the algorithm. 
Iterative versions of the algorithm which 
do not maintain the intermediate residues 
are given in [3] and [4]. A recursively 
defined function is given below: 

D÷H GCD K 
D÷K 
+(0:H)/0 
D÷(HIK) GCD H 

In a computer implementation of this 
function for rationals on a system like 
the IBM System 370, where non-terminating 
decimals are approximated by finite 
hexadecimals, the comparison 0=H should be 
replaced by a comparison of the magnitude 
of H with some relatively small positive 
number EPSILON, in the form EPSILON>IH. 
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A Notation for the GCD Function 

The behavior of the gcd function with 
zero arguments has been discussed. It is 
evident that 0 is a left-right identity 
element for the function. If we tabulate 
the result of using all pairs of logical 
arguments with the function, we note that 
the gcd function is identical with the 
logical or function, denoted by v: 

A B A GCD B 
0 0 0 
0 1 1 
I 0 1 
i 1 1 

We adopt the v notation forthwith to 
denote the gcd function. As is customary 
in APL, the gcd of a vector of numbers V 
may be found using reduction: v/V. 

Least Common Multiple 

Every number which is a multiple of 
each of two numbers is a common multiple 
of them. If M is a common multiple of H 
and K, then the associates of M are also 
common multiples of H and K. Among the 
common multiples of two numbers, other 
than zero, one set of associates is less 
than any other set of associates. This 
set is called the least common multiples 
of H and K, and any member of this set is 
a least common multiple of H and K. 

Before investigating the icm function, 
we must demonstrate several things. First 
we show that multiplication distributes 
over gcd, that is, ((MxH)vMxK)=M×HvK. If 
we multiply the vector V of the Euclidean 
algorithm (which contains a series of 
residues to the left of the original pair 
of arguments) by M, it is immediate that 
((M×H)vM×K)=M×HvK. 

If I=HvK, then H and K are said to be 
relatively prime. Now we have to show 
that, if we let D÷HvK, and set HI÷H÷D, and 
KI÷K÷D, then HI and K1 are relatively 
prime. The following listing gives four 
equal expressions: 

D 
HvK" 
(D×HI)vD×KI 
DxHIVKI 

and in particular the first and last 
expressions are equal, so that HIVKI must 
equal one, and therefore HI and K1 are 
relatively prime. 

Now we are in a position to show that a 
least common multiple of two numbers H and 

K is given by (HxK)÷HvK, and is 0 if and 
only if 0=HxK. 

In the first case, where H and K are 
not both zero, we make the following 

assignments: 

D÷HvK 
HI÷H÷D 
KI÷K÷D 

Any multiple of H has the form PxH and 
thus equals pxHlxD. For PxH to be 
divisible by K, the factor P×HI must be 
divisible by K1. Because I=HIvKI, this is 
possible only when P is divisible by K1, 
so that P=QxK1. Any common multiple M of 
H and K is thus given by any of the 
equivalent forms: 

M 
P×H 
Q×KI×H 
QxKI×HI×D 
QxHlxKlxD 
QxHIxK 
Qx(H÷D)×K 
Qx(HxK)÷D 
Qx(HxK)÷HvK 

It is clear that a least common multiple 
is obtained when Q is equal to one. 
Therefore a least common multiple of H and 
K is given by (HxK)÷HvK. The value so 
determined will be called the least common 
multiple. 

In the second case, when either H or K 
(but not both) is equal to zero, the 
result must be zero, since the only 
multiple of 0 is 0. The formula (HxK)÷HvK 
evaluates to 0 for both these cases. When 
H and K are both 0, the formula becomes 
(0x0)÷0v0, or 0÷0, an indeterminate form. 
Since the only multiple of 0 is 0, this 
suggests that the value of 0÷0 in APL 
should be 0 (not 1 as is currently the 
case). 

For integral values N the function ivN 
gives the result I. Thus 1 is a left 
identity for the icm function, that is, 
K=(I×K)÷IvK for all integer K. It is not 
a right identity, since an~ unit as a left 
argument of LCM is a left identity 
element. Thus (-l×l)÷-IVl evaluates to 
I÷ I or 1. 

A Notation for the LCM Function 

We have discUssed the behavior of the 
icm function with 0 arguments, and have 
seen that i is a left identity element. 
If we tabulate the results of all pairs of 
logical arguments, we note that the icm 
function is identical to the logical and 
function, denoted by ^: 

A B A LCM B 
0 0 0 
0 1 0 
1 0 0 
1 i 1 

We adopt the ^ notation forthwith to 
denote the icm function. As is customary 
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in APL, the lcm of a vector of numbers V 
may be found using reduction: A/V. 

Some Properties of the GCD and LCM 
Functions 

For positive integer arguments, v and ^ 
are commutative and associative functions. 
For integers in general, or arbitrary 
rational arguments, neither of these is 
the case, as we saw with icm and the 
arguments -i and I. This arises from the 
fact that the residue function, which is 
central to both the gcd and the icm 
function, is defined to be affected by the 
signum, or more generally, by the 
direction of the left argument. Thus 
(-H)vK and (-H)AK are different in general 
from HvK and HAK; the difference lies in 
that the results of the two different 
forms will be associates. If we identify 
associates, then we can say that gcd and 
icm are commutative and associative 
functions, for complex rational arguments 
in general. The gcd and icm functions are 
replete with identities. A handful are 
given below. 

HVK 
HAK 
HvKvL 
HAKAL 
MxHAK 
MxHvK 
(H^K)÷D 
(HVK)÷D 
(HAK)VL 
(HvK)AL 
H 
H 
H 
H 

KvH 
KAH 
(HvK)vL 
(HAK)AL 
(MxH)^MxK 
(MxH)vMxK 
(H÷D~^K÷D 
(H÷DpvK÷D 
(HvLIAKvL 
(HAL~VKAL 
HAHvK 
HvH^K 
HvH 
HAH 

v/(HAK),(HAL),KvL ^/(HvK),(HvL),KvL 

The two columns of formulas are to be 
understood to be connected with the 
relation "is associated with," in general, 
and with the relation "is equal to" if the 
arguments are restricted to positive 
rationals and zero. 

Conclusion 

The basic idea for the notation was 
arrived at from a study of the properties 
of the functions. Subsequently, it was 
found that Greub, in [2] used essentially 
the same notation for the gcd and icm of 
polynomials. Birkhoff and MacLane, in 
[I], use the same symbols, but 
interchanged. The duality between the 
functions, as evidenced by the identities 
given above, permits this when the field 
of discourse is restricted to the two 
functions. Iverson, in [5], suggested the 
similarly shaped symbols 5 and ~ to denote 
gcd and icm, respectively. The most 
common usage in number theory texts are 
parentheses (H,K) for gcd and brackets 
[H.K] for Icm. These can not be employed 

in a consistent system of notation because 
of other conflicting uses of parentheses 
and brackets and, more strongly, because 
in APL we wish to denote a scalar dyadic 
function by a single symbol infixed 
between its arguments. Extending the 
domain of the v and ^ symbols accomplishes 
this with no additions to the notation. 
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