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Abstract

This paper proposes a notation to be
used for the greatest common divisor (gcd)
and least common multiple (lcm) functions
in APL. The notation proposed is that in
use for the logical or and and functions:
v for gcd and A for lcm. For this reason,
special attention is paid to the cases of
gcd and lcm for the arguments 0 and 1.
Also, because we wish to define the
functions for negative and complex
rational values as well as for positive
integers, we discuss the functions more
generally than is the case in standard
number theory texts, which usually
restrict their discussions to positive
integers. For this reason we give proofs
of some of the basic theorems concerning
gcd and lecm, written to insure that they
are valid for the entire domain of values
for which it is proposed the APL functions
be defined. The discussion in this paper
is couched in terms of integral arguments.
The theoretical extension to rational
arguments is an easy one, and it is
assumed that the gcd and lcm functions,
which depend on the residue function for
their definitions, will be implemented for
non-integral arguments, just as is the
residue function, with all the practical
difficulties which this entails.

In this paper, the terms "greatest" and
"least" are taken to refer to magnitudes,
and the terms "divisor" and "multiple"
mean integer divisor and integer multiple.

Divisor and Multiple

If M=DxH, where H is an integer, then ¥
is a multiple of D, and D is a divisor of
M. If D=0, H is not uniquely defined, but
nonetheless 0 is a divisor of 0.

A unit is a divisor of 1. There are
two real units, "1 and 1, and four complex
units: the two real units and the square
root of negative one and its negative.
Multiplication or division of a number by
a unit does not produce a change in its
magnitude, but will produce a change in
its direction, if the unit is not 1.
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associates.

Numbers which differ by unit multiples are
associates. Every number but zero has
Every number is a divisor and
multiple of itself (from the identity
N=Nx1) and associates are divisors and
multiples of each other (if 4 is
associated with B, then A=BxU for some
unit U). Associates are equal in
magnitude.

Zero as Divisor and Multiple

From the identity 0=4x0 we conclude
that 1) the only multiple of zero is zero;
2) zero is a divisor only of zero, and no
number but zero has zero as a divisor; 3)
zero is the only number which is a
multiple of every number; and 4) there is
no unique guotient for 0:0.

Common Divisors and Division

Every number which is a divisor of each
of two numbers is a common divisor-of
them. If D is a common divisor of # and X
then the associates of D are also common
divisors of H and K.

If C=A|B, then the common divisors of 4
and B are also common to ¢. For the
definition of the residue function gives
us (C=B-AxLB34. If E is any common divisor
of 4 and B, then B:F and (4x|LB:A):E are
integers, as is their difference, to be
called v. Thus we can write (C=gxV,
showing that £ is also a divisor of (.

The proof shows that the expressions (C=4+B
and (¢=4-B may be substituted for (=4}B in
the statement of the theorem, and the
theorem will remain true: that the common
divisors of 4 and B are also common
divisors of ¢.

The common divisors of o and ¥ are the
divisors of y. This is easily seen using
the algebra of sets. If 7 is the set of
all numbers, these are the divisors of o.
If p is the set of divisors of K, then
D=InD.

A proof for the division theorem valid
for complex numbers in general is given in


http://crossmark.crossref.org/dialog/?doi=10.1145%2F800117.803810&domain=pdf&date_stamp=1975-06-11

[6]. The theorem states that if 2z and w
are arbitrary numbers, with Wy=0, then
there exists an integer ¢, and an R such
that Z=r+@QxW, and (|R)<|W. The proof
depends on the definition of the complex
floor function, which provides that
1>]|X-LX for all x. ¢ is determined by
Lz+w, and R by W|Z, and @ and R are thus
well-defined.

If there is a non-empty set of integers
closed under addition and subtraction,
then the set is either zero alone or
consists of all multiples of some least
non-zero element. In the first case,
where the set consists only of zero, then
0+0 and 0-0 are in the set. In the second
case, choose an element A4#0. Then 0 is in
the set, since 0=4-4. Now choose among
the non-zero elements least in magnitude
the element B. Then all multiples of B
are in the set since it is closed under
addition and subtraction. Conversely, all
elements in the set are multiples of B,
since if 4 is in the set, B|4 is also in
the set, since it is the difference of two
elements in the set; but Bl|4 is less than
B in magnitude by the division theorem,
and so must be zero; therefore 4 is a
multiple of B. Clearly, the other least
elements are associates of B.

Greatest Common Divisor

D is a greatest common divisor of H and
K if it is a common divisor of # and X and
is also a multiple of every other common
divisor.

It can be shown that every two integers
H and X have a gcd D such that
D=(PxH)+@*xX, where P and @ are integers,
and D=0 if and only if H=0 and X=0.

In the first case, where ¥ and X are
not both zero, we see that for any two
numbers of the form (P1xZ)+Q1xX and
(P2xH)Y+Q2xK, their sum
((P1+P2)xH)+(Q1+Q2)xX and difference
((P1-P2)xH)+(Q1-Q2)xX are also of that
form. Therefore the set of all such
linear combinations is closed under
addition and subtraction, and thus
contains 0 and a non-zero element D least
in magnitude. D is a divisor of each
element of the set. However H and X are
both elements of the set (since
H=(1xH)+0xX and X=(0xH)+1xX) and thus both
have D as a divisor. For some integers P
and @, D=(PxH)+gxK, and thus the common
divisors of # and X are common divisors of
D. Hence D is a greatest common divisor,
for it is the greatest of the divisors of
itself.

If # and X are both 0, we know that
every number is a common divisor of 0 and
0. We know also that the only multiple of
every number is 0. Clearly, 0=(Px0)+@x0
for every P and @, and thus the gcd of o
and 0 is o.
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The Euclidean Algorithm

For the purpose of defining a function,
it is necessary to be able to specify one
of the associated greatest common divisors
as the greatest common divisor. This is
accomplished by the Euclidean algorithm,
as interpreted using the definition of the
residue function current in APL. The
residue function, in turn, is assumed to
be using the definition of the complex
floor function given in reference [6].

A version of the algorithm similar to
one given in [4] is as follows: to compute
the greatest common divisor of # and K,
assign the values ¥ and X to V, forming a
two-element vector. If the first element
of v is zero, the algorithm terminates
with the second element the result. If
the first element of V is not zero, form a
new first element by the process
V<(|/24V),V. This new element is thus the
residue of the former second element,
using the former first element as the
modulus. The process will terminate if #
and X are integers (real or complex),
since the successive prefixed residues
form a sequence of integers decreasing in
magnitude, and thus the sequence is finite
and ends in zero. The process will also
terminate if # and X are rational (real or
complex), but the argument is not as
straightforward.

When the algorithm described above
terminates, the second element of v is the
greatest common divisor of # and X. This
is so because each overlapping pair of
elements shares the same set of common
divisors. Since V[1]=0, the common
divisors of V[1i] and V[2] are the divisors
of V[{2]. So the divisors of V[2] are the
common divisors of the elements of V, and
in particular of the original elements of
V, namely A and X. The greatest divisor
of V[2] is of course V[2], so the greatest
common divisor of ¥ and XK (and of all the
elements of V) is V[2].

One is not ordinarily interested in the
intermediate values developed in the
course of executing the algorithm.
Iterative versions of the algorithm which
do not maintain the intermediate residues
are given in [3) and [4]. A recursively
defined function is given below:

D<«H GCD K

D<K

+(0=H)/0
D«(H|X) GCD H

In a computer implementation of this
function for rationals on a system like
the IBM System 370, where non-terminating
decimals are approximated by finite
hexadecimals, the comparison 0=# should be
replaced by a comparison of the magnitude
of H with some relatively small positive
number EPSILON, in the form EPSILON>|H.



A Notation for the GCD Function

The behavior of the gcd function with
zero arguments has been discussed. It is
evident that 0 is a left-right identity
element for the function. If we tabulate
the result of using all pairs of logical
arguments with the function, we note that
the gcd function is identical with the
logical or function, denoted by v:

A GCD B
0

PR OO

B
0
1 1
0 1
1 1

We adopt the v notation forthwith to
denote the gcd function. As is customary
in APL, the gcd of a vector of numbers V
may be found using reduction: v/V.

Least Common Multiple

Every number which is a multiple of
each of two numbers is a common multiple
of them. If ¥ is a common multiple of #
and X, then the associates of ¥ are also
common multiples of # and X. Among the
common multiples of two numbers, other
than zero, one set of associates is less
than any other set of associates. This
set is called the least common multiples
of # and X, and any member of this set is
a least common multiple of X and X.

Before investigating the lcm function,
we must demonstrate several things. First
we show that multiplication distributes
over gcd, that is, ((MxH)VMxK)=MxHVK. 1If
we multiply the vector V of the Euclidean
algorithm (which contains a series of
residues to the left of the original pair
of arguments) by ¥, it is immediate that
((MxH)VMxK)=MxHVK,

If 1=HvK, then H and X are said to be
relatively prime. Now we have to show
that, if we let D<«HVX, and set H1<«H:D,
K1«K+D, then H1 and XK1 are relatively
prime. The following listing gives four
equal expressions: .

and

D

HvK'
(DxH1)VDxK1
DxH1VK1

and in particular the first and last
expressions are equal, so that Ai1vXl must
equal one, and therefore H1 and XKi are
relatively prime.

Now we are in a position to show that a
least common multiple of two numbers H and
K is given by (HxX):HvK, and is 0 if and
only if 0=HxK.

In the first case, where F and X are
not both zero, we make the following
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assignments:

D+HVK
H1<«H3D
K1<«K+D

Any multiple of F has the form Pxg and
thus equals PxH1xD. For PxH to be
divisible by K, the factor pPxF1 must be
divisible by X1. Because 1=H1vK1l, this is
possible only when P is divisible by X1,
so that P=@xX1. Any common multiple M of
H and X is thus given by any of the
equivalent forms:

M

PxH

@xK1xH
QxK1xH1xD
AxH1IxK1xD
AXH1xK
@x(H+D)xK
@x(HxK)+D
Qx(HxK)+HVK

It is clear that a least common multiple
is obtained when @ is equal to one.
Therefore a least common multiple of # and
K is given by (HxK)+HvK. The value so
determined will be called the least common
multiple.

In the second case, when either # or X
(but not both) is equal to zero, the
result must be zero, since the only
multiple of 0 is 0. The formula (HxK):HVK
evaluates to 0 for both these cases. When
H and K are both 0, the formula becomes
(0x0):0v0, or 030, an indeterminate form.
Since the only multiple of 0 is 0, this
suggests that the value of 0:0 in APL
should be 0 (not 1 as is currently the
case). .

For integral values § the function 1v¥
gives the result 1. Thus 1 is a left
identity for the lcm function, that is,
K=(1xK)+1vK for all integer k. It is not
a right identity, since any unit as a left
argument of L¢M is a left identity
element. Thus (" 1x1): 1vi evaluates to
“1:71 or 1.

A Notation for the LCM Function

We have discussed the behavior of the
lem function with 0 arguments, and have
seen that 1 is a left identity element.

If we tabulate the results of all pairs of
logical arguments, we note that the lcm
function is identical to the logical and
function, denoted by a:

A B A LCM B
0 0 0
0 1 0
1 0 0
1 1 1

We adopt the A notation forthwith to

denote the lcm function. As is customary



in APL, the lcm of a vector of numbers V
may be found using reduction: a/V.

Some Properties of the GCD and LCM
Functions

For positive integer arguments, v and A
are commutative and associative functions.
For integers in general, or arbitrary
rational arguments, neither of these is
the case, as we saw with lcm and the
arguments ~1 and 1. This arises from the
fact that the residue function, which is
central to both the gcd and the lcm
function, is defined to be affected by the
signum, or more generally, by the
direction of the left argument. Thus
(-H)vK and (-H)AK are different in general
from AvK and HaK; the difference lies in
that the results of the two different
forms will be associates. If we identify
associates, then we can say that gcd and
lcm are commutative and associative
functions, for complex rational arguments
in general. The gcd and lcm functions are
replete with identities. A handful are
given below.

HVK KvH

HAK KnH

HVKVL (HVK)VL
HAKAL (HAK)AL
MxHAK (MxH)AMxK
MxHVK (MxH)VMxK
(HAK)+D (H+D)AK+D
(HVK)+D (H+D)VK=+D
(HAK)VL (HVL)AKVL
(HVK)AL (HAL)YVKAL
H HAHVK

H HVHAK

H HvH

H HAH

V/(HAK) ,(HAL) ,KVL A/(HVK),(HVL),KVL
The two columns of formulas are to be
understood to be connected with the
relation "is associated with," in general,
and with the relation "is equal to" if the
arguments are restricted to positive
rationals and zero.

Conclusion

The basic idea for the notation was
arrived at from a study of the properties
of the functions. Subsequently, it was
found that Greub, in [2] used essentially
the same notation for the gcd and lcm of
polynomials. Birkhoff and MacLane, in
[1], use the same symbols, but
interchanged. The duality between the
functions, as evidenced by the identities
given above, permits this when the field
of discourse is restricted to the two
functions. 1Iverson, in {[5], suggested the
similarly shaped symbols L and ! to denote
gcd and lcm, respectivelg. The most
common usage in number theory texts are
parentheses (H,X) for gcd and brackets
[H,X] for lcm. These can not be employed
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in a consistent system of notation because
of other conflicting uses of parentheses
and brackets and, more strongly, because
in APL we wish to denote a scalar dyadic
function by a single symbol infixed
between its arguments. Extending the
domain of the v and A symbols accomplishes
this with no additions to the notation.
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