
Introducing o new column for APL Quote Quad:

With J
101 Ways to Build a Sierpinski Triangle

--by Cliff Reiter
Department of Mathematics

Lafayette College; Easton, Pennsylvania

A T APL971 RAN A WORKSHOP on creating images withJ. The
first exercise involved creating a Sierpinski Triangle. Ken

~ Iverson commented that I seem to start everything I do
with the Sierpinski Triangle as an example. I don't think that is
true, but it does seem like a good idea.
Thus, my first Quote Quad column
on usingJ focuses on ways to create
Sierpinski Triangles. Of course, this
is really an excuse to discuss a
bunch of J in a way that results in
some interesting images. Many of
these ideas may be familiar, but
readers are encouraged to look for
new points of view. You might note
the usefulness of inverse functions,
gerunds and extended integers and
may even discover new uses of base- Cliff Reiter's APL97 workshop
three representations. Did you know
you don't have to "build" Sierpinski's Triangle? You can decide
the value of each pixel from the pixel coordinates.

Cliff Reiter and Nathan Carter at the APL97 "Chaos with Symmetry" exhibit

Future columns planned include dot-by-dot creation of one
of the fi'actal types from the APL97 exhibit "Chaos with Symme-
try" [1] and another takes a look at creating "music" with J.
While I often create fractals in my work with J, my goal for the
"With]" column is the illustration of J usage with fun examples
from a variety of topics.

8

I will define what I mean by the Sierpinski Triangle by exam-
ples that approximate it. Purists will want to take some sort of
limit of the approximation process we will explore. Of course,
they won't see their result. We will be able to see our finite
approximations. Sometimes these are discrete matrices. Other
times, lists of lit pixels or line segments. We won't worry about
whether the Sierpinski Triangle will "open" toward the upper
right or some other direction; nor will we worry about whether
it is equilateral or not. This list of 101 ways is not meant to be
complete. There are at least two rather different ways appearing
in [8]. Remarkable connections with the tower of Hanoi are
described in [13] but won't be considered here. Sierpinski's
original paper [12] described a curve that, roughly speaking,
intersects itself at every point. Our last "Way" constructs
approximations to that curve. We look at matrix- and pixel-based
constructions first.

Way I: Juxtaposition
We can readily create a matrix and juxtapose it above or

beside itself. We say m, m gives m adjoined to itself and m, . m
gives ra stitched to itself.

]m=:3+i.22
34
56

m,m
34
56
34
56

m, .m
3434
5656

Reflex, denoted by - , allows us to apply any dyadic verb
(function) with identical arguments. That is, if f is a dyadic verb
then f - y is the same as y f y . Thus we can stitch a matrix
to itself using , . - m. One advantage of using that notation is
that we only need to refer to the matrix once. Also observe below
that padding with zeros occurs when a matrix is adjoined to
another with different row lengths.

3434
5656

m, 2581
34000
56000
iiiii
iiiii

Two verbs listed in isolation comprise a hook; it results in a
composition of the functions. Here a b = : , , . - is a verb that
adjoins a thing to the stitch of the thing with itself. The name
" a b " stands for above and beside.

APL Quote Quad

aDz: • , ,~

ab m
3400
5600
3434
5656

We can iteratively apply this verb. For example, a b ^ : 3 denotes
iterating a b three times. This builds binary matrices that form a
fractal triangular shape with zeros appearing in the upper right.
Below, 1 denotes the vector with a single element 1. Adding the
vector structure to that number is enough to get the matrix
building started. Notice that triangular regions of zeros appear.
The Sierpinski Triangle can be thought of as the fimiting image
that appears as we take more iterations.

ab , 1
10
11

ab^:2,1
i000
Ii00
I010
Iiii

ab^:3,1
i0000000
ii000000
i0100000
iiii0000
i0001000
II001100
i0101010
iiiiiiii

ab^:4,1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

We can save a larger version of this array usingJ bitmap crea-
tion utilities. Below we create a palette and a matrix representing
the array of indices into the palette giving the image and use the
ut~ty wri tebmp8 from raster3, j s used in [8] to save the
bitmap. One can also use the uni ty w r i t e b m p from b m p . j s
distributed withJ in the \ p a c k a g e s \ g r a p h i c s directory.
Readers duplicating these images should run one of those

JUNE 1997 -- VOLUME 27, NUMBER 4

scripts. If r a s t e r 3 . j s has been run, you should be able to
use the commands given here. I f b m p . j s has been runt use the
following as a guide to the small changes in syntax required: if
p a l is a palette and b is an array of indices giving the color of
each pixel, the image file created with (p a l ; b) w r i t e b m p 8

t e m p l , b m p ' ought to be equivalent to the file created by
(b { 2 5 6 256 2 5 6 # . p a l) w r i t e b m p ' t e m p 2 . b m p '

The first uses w r i t e b m p 8 from r a s t e r 3 . j s and the
second uses w r i t e b m p from b m p . j s .

We use a white and black palette when creating the bitmap.
The first row of p a l being 255 255 255 means that the
Red Green and Blue components of the corresponding pixels are
full on, yielding white. The 0 0 0 in the second row gives full
off, yielding black. Hence, zeros in the array will correspond to
white in the image and the ones will correspond to black.

] p a 1 = : 2 5 5 255 2 5 5 , : 0 0 0
255 255 255

0 0 0
b=:ab^ :9 ,I
(pal;b) writebmp8 'sier_tri.bmp'

Figure 1 shows the resulting image:

Figure I: Sierpinski'sTriangle

A classic modification of this scheme is to put a block of zeros
in the center of a three-by-three juxtaposition of matrix blocks;
iteration of this scheme gives the Sierpinski Carpet. This is
shown in Figure 2. I like to ask my students to create tacit
fimctions doing the block building required for this process. A
spoiler is given below--but another question lurks beyond. The
verb s 3 adjoins together three copies of its matrix argument. Do
you see why? The verb s 3 0 does the same thing, but the middle
block is made up of zeros. The verb 0" 0 is the zero function of

9

Figure 2: Sierpinski's Carpet
rank 0. That is, every element of its input is replaced by zero.
The verb s3 0 is created as a train of four verbs. This is a hook
of a fork that can be read (left to right) as adjoin the matrix to zero
matrix version of the matrix adjoined to the matrix. Note the]
denotes the identity function. Lastly, the verb s ¢ is a train of five
verbs that can be read as stitch s 3 to s 3 0 to s 3. Readers new
to J would do well to experiment with naming and seeing the
result of various pieces of these verbs.

0 0
0 0

34
56
00
00
34
56

s3::;, -

zero=:O"O
zero m

s30=: , zero ,]
s30 m

sc =:s3 ,. s30 ,.
sc^:2 ,i

1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1

s3

b=:sc^:6 ,i
(pal;b) writebmp8 'sier_car.bmp'

10

Once students have created a working tacit function, like so , I
often ask them to see how short a version they can give. I have
seen some remarkable solutions. Can you give a shorter defini-
tion for zero that will work for this construction?

Way 2: Binomial Coef~cient Function Tables
The dyad ! can be used for computing binomial coefficients.
When these are placed in an array using table building (also
known as "outer product") via I / , Pascal's triangle appears. We
may want to commute the arguments of ! as in ! - / to transpose
the function table so that each row is the sum of the previous row
with a shifted version of the previous row; this is closer to the
traditional visual display of Pascal's triangle.

i0
3 ! 5

0 1 2 3 4
i i i i i 1
0 1 2 3 4 5
0013610
0001410
0 0 0 0 1 5
0 0 0 0 0 1

5 ! / 0 1 2 3 4 5

!-/-i.8
i0 0 0 0 000
ii 0 0 0 000
12 1 0 0 000
13 3 1 0 000
14 6 4 1 000
151010 5 i00
16152015 610
172135352171

Modulo two versions of Pascal's triangle give our Sierpinski
Triangle matrix.

2] !-/-i. 8
i 0 0 0 0 0 0 0
i i 0 0 0 0 0 0
I 0 1 0 0 0 0 0
i i i i 0 0 0 0
i 0 0 0 1 0 0 0
i i 0 0 1 1 0 0
i 0 1 0 1 0 1 0
i i i i i i i i

Sadly, if one tries to create a 64-by-64 version of the Sierpinski
Triangle this way, incorrect results appear because the coeffi-
cients become too large for floating precision. Happily, we can
compute the binomial coeffecients to arbitrary precision by using
extended integers in J. These extended integers can be input
using an "x" suffix on the integer. Other integers are "pro-
moted" to extended integers, as need be, in order to preserve the
exact integers. Thus, 2 I ! - / - i . 6 4 x would give a 64-by-64
correct version the Sierpinski Triangle. Newer versions of J may
not show the extended integer suffix x on output.

APL Quote Quad

30 I 63
8.60778e17

30 ! 63x
860778005594247069x

2]30 ! 63
0

2130 I 63x
ix

How might these images be generalized? A natural choice is
to use other bases. A small example modulo 3 is given below and
Figure 3 gives an image from the 81-by-81 case. Creating that
figure took advantage of these exact integers and used gray scale
for color coding. Can you duplicate the image?

3[!-/-i.9
i 0 0 0 0 0 0 0 0
i i 0 0 0 0 0 0 0
1 2 1 0 0 0 0 0 0
i 0 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0
1 2 1 1 2 1 0 0 0
1 0 0 2 0 0 1 0 0
1 1 0 2 2 0 1 1 0
1 2 1 2 1 2 1 2 1

The fractal dimension of Pascal's triangle modulo p is investi-
gated in Reiter's paper [4] (no relation to me). Other generaliza-
tions and examples can be found in [14]. In particular, creating
these images for combinatorial numbers, such as Stirring
Numbers [2], is a worthwhile and interesting exercise.

Figure 3: Binomial Coefficients Modulo 3

Way I0: Binary Matrix Arithmetic
We can generate all the three-"digit" binary numbers using # :
which denotes antibase. Each row in the result corresponds to a
number. Transpose is denoted with [:. The logical functions
"or" and "and" are denoted + . and * . respectively. Thus + . /

• . denotes a logical matrix product that for each row and
column determines whether there is a common lit position.

]X=:#:i. 8
000
001
010
011
i00
i01
ii0
iii

I : x
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

X+./ *.l:x
0 0 0 0 0 0 0 0
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 1 1 1 0 1 1 1
0 0 0 0 1 1 1 1
0 1 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 1 1 1 1 1 1

The logical matrix product given above gives the logical "not" of
our Sierpinski Triangle opening to the lower right. Note no
iterative process was used. The entries were computed direcdy
from the binary form of their row and column indices.

This suggests that it might be interesting to try base three
forms for the indices. The matrix below shows the holes in the
Sierpinski Carpet arising from the ones in that computation. For
other variations of this, refer to [5,6,10,11] or try your own
ideas. Of course, using color in the images helps when there are
more than two different array entries.

Y=:3 3#:i.9

Y+./ *.I:Y
0 0 0 0 0 0 0 0 0
0 1 2 0 1 2 0 1 2
0 2 2 0 2 2 0 2 2
0 0 0 1 1 1 2 2 2
0 1 2 1 1 1 2 1 2
0 2 2 1 1 1 2 2 2
0 0 0 2 2 2 2 2 2
0 1 2 2 1 2 2 1 2
0 2 2 2 2 2 2 2 2

pa12=:255 0 0,255 255 255, :0 255 0
b=:Y +./ *. I: Y=: (5#3)#:i.3^5
(pal2;b) writebmp8 'siercar2.bmp'

JUNE 1997 - - VOLUME 27, NUMBER 4 11

Note that "or" generalizes to gcd (greatest common divisor) and
"and" generalizes to lcm (least common multiple) so that these
are meaningful for nonbinary numbers. Base three also keeps the
length of"101 Ways" to do something bearably short.

Way H: One dimensional Finite Automata
We next consider the function that tests whether or not an entry
is equal to its neighbor. The function _ 1 & I • rotates a vector
one element to the right wrapping the last item around to the first
position. If we use this with not-equals - : in a hook we have a
function that tests whether each element is not-equal to its left
neighbor. Such a function is considered a finite automaton since
the resuh at any position depends only on two neighboring
values in the argument.

]v=:l 1110011
i i i i 0 0 1 1

_l&l .v
1 1 1 1 1 0 0 1

v -: _l& I • v

0 0 0 0 1 0 1 0

auto =:-: _l&l •

auto v
0 0 0 0 1 0 1 0

auto^: (i.8) 0=i.8
1 0 0 0 0 0 0 0
110 00 00 0
10100 000
11].10000
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
10!,01010
1 1 1 1 1 1 1 1

We see we get the Sierpinski Triangle from iterating this
function. Finite automata have been the subject of much recent
study because of their complex behavior. For example, Figure 4
shows a three-neighbor finite automata (Rule 135 from [8,9])
that has an interesting mix of structure and randomness, The
array giving that image can be recreated with the following:

perext:: {~] { .
AUTO=: {- J&i#.\~@perext
b:: (#:i35)&AUTO^: (i.128) ?. 12852

We leave the details oftheJ code for automata of that type for the
interested reader to pursue.

Figure 4: An automaton with complex behavior

Way 12: Not-Equals Scan
Gerald Langlet [3] was a not-equals scan enthusiast. This func-
tion can be thought of as giving the partial sums modulo 2.
Iterating the not-equals scan function on a vector of ones gives
the Sierpinski Triangle.

v
11110 011

nes= : ~ : / \

nes v
1 0 1 0 0 0 1 0

nes^:(i.8) 851
l l l l l l l l
i 0 1 0 1 0 1 0
i i 0 0 1 1 0 0
i 0 0 0 1 0 0 0
i i i i 0 0 0 0
i 0 1 0 0 0 0 0
I i 0 0 0 0 0 0
i 0 0 0 0 0 0 0

We can flip this matrix if we so desire in order to obtain the
Sierpinski Triangle opening toward the upper right, but we can
also run the process backward. Rather remarkably, the negative
iterates can be computed sinceJ knows the inverse of not-equals
scan.

12 APL Quote Quad

8{.1
i 0 0 0 0 0 0 0

nes^:(-i.8) 8{.I
i 0 0 0 0 0 0 0
i i 0 0 0 0 0 0
i 0 1 0 0 0 0 0
i i i i 0 0 0 0
i 0 0 0 1 0 0 0
i i 0 0 1 1 0 0
I 0 1 0 1 0 1 0
i i i i i i i i

Way 20: Deterministic Chaos Game
The chaos game is usually described as an iterative process of
moving from a current position midway toward a vertex ran-
domly selected from a fixed finite list of vertices. While we will
consider the probabilistic version in the next Way, in this Way
we consider a deterministic version where we keep a list of all
possible current positions. We consider a list of three vertices T
and compute a table of all midpoints of points ofT with points ofT.

]T=:0 0,0 i,:i 0
0 0
0 1
1 0

mid=:- :@+"i
T mid/ T

0 0
00.5

0.5 0

00.5
0 1

0.5 0.5

0.5 0
0.5 0.5

1 0

We define dcg to be a function that creates that table, then uses
adjoin insert , / to collapse the first axis, then uses n u b - . to
remove duplicates, and then uses / : - to sort the list of points
for convenience.

dcg=:/:-@:-.@: (,/)@: (mid/)
T dcg^:2 T
0 0
0 0.25
0 0.5
0 0.75
0 1

0.25 0
0.25 0.25
0.25 0.5
0.25 0.75
0.5 0
0.5 0.25
0.5 0.5

0.75 0
0.75 0.25

1 0

JUNE 1997 -- VOLUME 27, NUMBER 4

• • m

• m m m

| | • m | m

• m i a m i •

• | m R

• m n u l l

• •m • • m m •

• w a n n u n • m |

n m n m m m m m m m n m m m

• m U i m m m U m e a i m m •

mm

• n u n

nn n u n u

m m ! m m m m |

mm | ! |m

• mmm r im | n u n

n m | | | m m | | m | | u |

w a l t H a m n n m m m m a | m

am H i mm

• mmm i l l D a B

me m u l l l a i n m u m m

n a B m m m m m m m m n m m m m m m

am am H I i N H i I I I I

• a i m i n l i l l m m • I l l m m m m m m

| i m m | i a | m | | | | | U | | | n | | | | U i m | | | B | H

| i | a m m a n a | a a a a i | | a a | | | m a a a | l a l | a |

Figure 5: The determin(~ic Chaos Game

Figure 5 shows several iterates of this process using supersize
pixels. One can create a bitmap array of these positions using the
virtual raster array utifities in v r a 3 . j s from [8]. The following
lines indicate how that might be done where the palette is the
white and black palette defined in Way 1.

vspixel 0.05+0.9* T dcg^:5 T
vrashow ''
(pal;vra) writebmp8 'dcgvra.bmp'

In the above, we rescale points by 0.9 since vspixel doesn't
allow coordinates to exacdy equal 1 and add 0.05 to give a
margin. The command v r a s h o w ' ' should display the image
in the graphics window opened when v r a 3 . j s was run and
the last line saved the image with given file name.

The image shows dots arranged in the general form of the
Sierpinski Triangle and indeed that is what it approximates.
However, if this image were turned into a binary array, it is
natural to use an odd number of rows and columns so that this
really is a different approximation than the binary array approxi-
mations discussed in all the previous Ways.

Way 21: ProbabHistic Chaos Game
The probabilistic version of the chaos game proceeds by
randomly selecting one of the three vertices and then moving
halfway toward that vertex. In particular, { &T can be used to
select a vertex from T given an index and 2@3 : can be used to
randomly select the index. If this is only run a few thousand
times, a shadowy version of the Sierpinski Triangle results. Here
we show a few iterates of a point. Note that because of the
random selections, the two experiments aren't duplicates.
Hence, you shouldn't expect to duplicate the data given below.

13

peg= :mid {&T@(?@3:)
pcg^: (i.6) 1 1
1 1
1 0.5
3.. 0.25

0 . 5 0.125
0.7_ = , 0.0625

0.87. = , 0.03125
pcg^: (i.6) 1

1 1
0.5 0.5

0.75 0.25
0.375 0.625

0.3.8:75 0. 8125
0.09375 0.40625

Way 22: Deterministic Iterated Function Systems
Iterated function systems consist of lists of functions. When
discussing generation of fractals with these, the functions in-
volved are maps that take the fractal onto some subpart of the
fractal. Consider our Sierpinski Triangle in Figure 1 where we
imagine the corners being the vertices in T. We can see that the
map that halves both coordinates, - : , would map the entire
fractal onto the half size "triangular part" of the fractal in the
lower left. Note that the holes would fine up. Likewise we could
add one half to the x or y coordinates after halving and obtain the
other two triangular parts appearing in the other corners. Thus
we think of the Sierpinski Triangle as the union (or collage) of its
image under those three maps. We create a list of those three
maps as a gerund using tie " and apply all three functions to
given data with evoke gerund " : 0. The fist of those three func-
tions and the boxed form for that gerund are given in Table I.

]ifs=:-:" (0 0.5&+@:-:)" (0.5 0&+@:-:)

m

@: @:

Table I. An iterated function system with three functions

difs=:ifs" :0"i

difs T
0 0
0 0.5

0.5 0

00.5
0 1

0.5 0.5

0.5 0
0.5 0.5

1 0

difsx=: -.@: (/:-)@: (,/)@:difs

14

The function d i f s x can be used like d c g in Way 20 to create
the Sierpinski Triangle.

Way I00: Probabilistic Iterated Function Systems
While Way 22 gives all the points arising from the initial triangle
T under the transformations in the iterated function system, it is
adequate to just look at random iterates of any single general
point. Below we can choose a random index and use agenda @.
to apply just that function. As with our previous probabilistic
method, we don't expect to be able to duplicate experiments.
Plotting tens of thousands of points generated this way gives the
Sierpinski Triangle.

pifs =:if s@. (?@3:)

pifs 0.5 0.5
0.25 0.25

pifs 0.5 0.5
0.75 0.25

pifs^: (i.4) 0.5
0.5 0.5

0.25 0.25
0.125 0.625

0.0625 0.8125

0 . 5

Try it.

Way I01: Fractal Curve
We noted in the introduction that the Sierpinski Triangle was
originally described as a curve. The curve results from the
iteration of a refinement scheme: each segment is replaced at
each refinement by five segments according to the pattern in
Figure 6. In that figure, the segment at top is replaced by the
segments below. If we start with an equilateral triangle and refine
each segment into five subsegments and repeat the process, the
Sierpinski Triangle results as we will see.

While the curve described here is different, the general
construction style we will use for creating the curve follows [7,8].
First we define the monad " n o r " that gives the left normal
vector to a given vector. The function b u m p gives a point
displaced from the midpoint of a segment a suitable distance in
the normal direction. The suitable distance is one so that
equilateral triangles are formed. The functions b u m p 1 and
bump2 give the two vertices offthe original segment that appear
in the bottom of Figure 6. The matrix t r i gives the vertices of
a roughly equilateral initial triangle.

nor=:l _l&*@:l.
bump=:mid + (%:3r4)&*@nor@:-
bumpl=: [bump mid
bump2=:mid bump]
tri=:0 0, i000 0,: 500 866

Each segment is divided into new segments: the original left
vertex, the midpoint, the first bump, the second bump, and then

APL Quote Quad

>

l
>

>
Figure 6: Refinement of a segment into five segments

back to the midpoint. We skip the last vertex since it will be
produced from the refinement of the subsequent segment. The
verb r e f i n e applies the segment division to each neighboring
pair of vertices of a given polygon and adjoins the items on the
first axis yielding a single polygon with five times the number of
vertices.

segdiv=: [, mid , bumpl , bump2
0 0 segdiv 1 0
0 0

0.5 0
0.25 0.433013
0.75 0.433013
0.5 0

refine=:,/@(] segdiv"l (l&l .))

,: mid

One can see the refinement of the triangle with refine tri.

We can plot that polygon using g w i n 3 , j s from [8] and the
commands below.

sogwin 'curve'

spoly refineA:4 tri

Figure 7 shows that curve.
Alternately, one can do the same plotting with p l o t . j s

from the J \ p a c k a g e s \ g r a p h i c s directory using p l o t
; / I : (, { .) r e f i n e A : 4 t r i . See the tutorialflab for
how to vary the plot.

JUNE 1997 - - VOLUME 27, NUMBER 4

Figure 7: The Sierpinski Triangle as a curve

Since the result of this refinement is a polygon, it is amusing
to consider the "inside" of the polygon. If 0 0 0 is given as the
left argument of s p o l y , the polygon will be filled with black, as
in Figure 8. How many vertices does the polygon you plotted
have? What happens if you displace the bumps less? More? •

Figure 8: The interior of the Sierpinski Triangle

Acknowledgements
The support of Lafayette College and the provision of work and
living space by the University of Waterloo and K. E. Iverson
during the sabbatical leave during which this was written are
greatly appreciated.

15

References

[1] N. Carter, R. Eagles, S. Grimes, A. Hahn, and C. Reiter,
Chaos with Symmetry: Reflections on an Exhibition,
Proceedings of the APL97 International Conference on
APL, CD-ROM, Toronto, Ontario, August 17-20,
(][997).

[2] K. Iverson, Concrete Math Companion, Iverson Soft-
ware Inc, Toronto (1995).

[3] G. Langlet, The APL Theory of Human Vision, APL
Quote Quad, 25 1 (1994) 105-121.

[4] A. Reiter, Determining the Dimension of Fractals Gen-
erated by Pascal's Triangle, The Fibonacci Quarterly,
3I 2 (1993) 112-120.

[5] C. Reiter, Fractals and Generalized Inner Products,
Chaos, Solitons & Fractals, 3 6 (1993) 695-713.

[6] C. Reiter, Sierpinski Fractals and GCDs, Computers &
Graphics, 18 6 (1994) 885-891.

[7] C. Reiter, "Fractals RYIJ", Vector, 11 2 (1994) 86-104.

[8] C. Reiter, Fractals, Visualization and J, Iverson Soft-
ware, Inc., Toronto (1995),

[9] C,. Reiter, Infix, Cut and Finite Automata, APL Quote
Quad, 25 4 (1995) 162-170.

[10] J. Shallit, Fractals, Recreation, and APL, APL Quote
Quad 18 3 (1988) 24-32.

[11] J. Shallit andJ. Stolfi, Two Methods for Generating
Fractals, Computers & Graphics, 13 2 (1989) 185-191.

[12] W. Sierpinski (1915), Sur une Courbe Cantorienne
dont tout Point est un Point de Ramification, Comptes
Rendus Acadtmie des Sciences, 160 (1915) 302-305.

[13] I. Stewart, Four Encounters with Sierpinski's Gasket,
The Mathematical Intelligencer, 17 1 (1995)52-64.

[14] M. Sved, Divisibility--With Visibility, The Mathemati-
cal Intelligencer, 10 2 (1988) 56-64.

Cliff Reiter teaches math at Lafayette College when he isn't wandering
around the Adirondacks. He can be reached at "reiterc@lafayette. edu"

W e want your t h o u g h t s !

Inside the wrapper of this issue is a Feedback Form, asking
for your comments about APL Quote Quad and SIGAPL.
What did you like about this issue? What did you dislike?
What else should we be working on? We'd really like to
hear from you. Can you please take a minute and fill out
this form? If you no longer have the form,just mail your
comments to the Executive Editor of APL Quote Quad (or
via e-mail, to "Polivka@ACM.org") Thankyou!

16

Reviews of the APL97 Conference

T
HE APL97 CONF~.RENCE, entitled Share Knowledge/Share
Success, was held on 17-20 August 1997 in Toronto,
Canada, and was hosted by the Toronto APL Special

Interest Group. The venue was a combination of presentations,
tutorials, and workshops. For the first time at an APL confer-
ence, the proceedings and related materials were on a CD-ROM.
There was no printed copy. A copy of the proceedings CD-
ROM is available from The Toronto APL Special Interest Group
(http://www.torontoapl.org).

We asked several people for reviews of the conference, in
order to get balanced viewpoints. Following this overview of the
conference are four separate reviews, from:

• Eugene McDonnell (from San Jose, California)
• Timo Laurmaa (from Basle, Switzerland)
• Roy C. Willitts (from Clarksburg, New Jersey)
* Bob Brown (from Thetford Center, Vermont)

We hope that you find the reviews to be as interesting as we did.
We extend our thanks to Richard Procter and his staff in

Toronto, for not only making the conference a success, but also
for supplying each of the photos of APL97 used in these reviews.

And for the benefit of those of you who were not able to
attend the conference, we have also included a list of the papers
that were presented at the conference. As you can see, it was a
busy week!

APL97 wrap-up message
Thanks for Coming!
Once again the worldwide APL community has shown how to
Share Knowledge/Share Success, as our conference theme suggested.

APL97 was an overwhelming success on many fronts. Total
attendance was about 260 persons. Our plenary sessions,
featuring Ian Sharp, founder of former software/timesharing
giant I.P. Sharp Associates; and John Heinmiller, of actuarial
software firm SS&C/Chalke, proved that APL has been and
continues to be the secret weapon for success in the information

technology industry. --Richard Procter

Attendance Conference Chair

APL97 Conference Registrations by Country:

Austria 2
Canada 110
Denmark 12
Finland 10
France 5
Germany 6
Italy 3
Japan 7
Netherlands 7
Portugal 1

Russia 2
Saudi Arabia 2
South Africa 1
Sweden 1
Switzerland 3
UK 9
USA 82

Total 263

APL Quote Quad

m _

