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With J 
101 Ways to Build a Sierpinski Triangle 

--by Cliff Reiter 
Department of Mathematics 

Lafayette College; Easton, Pennsylvania 

A T  APL971 RAN A WORKSHOP on creating images withJ. The 
first exercise involved creating a Sierpinski Triangle. Ken 

~ Iverson commented that I seem to start everything I do 
with the Sierpinski Triangle as an example. I don't think that is 
true, but it does seem like a good idea. 
Thus, my first Quote Quad column 
on usingJ focuses on ways to create 
Sierpinski Triangles. Of course, this 
is really an excuse to discuss a 
bunch of J in a way that results in 
some interesting images. Many of 
these ideas may be familiar, but 
readers are encouraged to look for 
new points of view. You might note 
the usefulness of inverse functions, 
gerunds and extended integers and 
may even discover new uses of base- Cliff Reiter's APL97 workshop 
three representations. Did you know 
you don't have to "build" Sierpinski's Triangle? You can decide 
the value of each pixel from the pixel coordinates. 

Cliff Reiter and Nathan Carter at the APL97 "Chaos with Symmetry" exhibit 

Future columns planned include dot-by-dot creation of one 
of the fi'actal types from the APL97 exhibit "Chaos with Symme- 
try" [1] and another takes a look at creating "music" with J. 
While I often create fractals in my work with J, my goal for the 
"With]"  column is the illustration of J usage with fun examples 
from a variety of topics. 
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I will define what I mean by the Sierpinski Triangle by exam- 
ples that approximate it. Purists will want to take some sort of 
limit of the approximation process we will explore. Of course, 
they won't see their result. We will be able to see our finite 
approximations. Sometimes these are discrete matrices. Other 
times, lists of lit pixels or line segments. We won't worry about 
whether the Sierpinski Triangle will "open" toward the upper 
right or some other direction; nor will we worry about whether 
it is equilateral or not. This list of 101 ways is not meant to be 
complete. There are at least two rather different ways appearing 
in [8]. Remarkable connections with the tower of Hanoi are 
described in [13] but won't be considered here. Sierpinski's 
original paper [12] described a curve that, roughly speaking, 
intersects itself at every point. Our last "Way" constructs 
approximations to that curve. We look at matrix- and pixel-based 
constructions first. 

Way I: Juxtaposition 
We can readily create a matrix and juxtapose it above or 

beside itself. We say m, m gives m adjoined to itself and m, . m 
gives ra stitched to itself. 

]m=:3+i.22 
34 
56 

m,m 
34 
56 
34 
56 

m, .m 
3434 
5656 

Reflex, denoted by - ,  allows us to apply any dyadic verb 
(function) with identical arguments. That is, if f is a dyadic verb 
then f -  y is the same as y f y .  Thus we can stitch a matrix 
to itself using , . - m. One advantage of using that notation is 
that we only need to refer to the matrix once. Also observe below 
that padding with zeros occurs when a matrix is adjoined to 
another with different row lengths. 

3434 
5656 

m, 2581 
34000 
56000 
iiiii 
iiiii 

Two verbs listed in isolation comprise a hook; it results in a 
composition of the functions. Here a b =  : , , . - is a verb that 
adjoins a thing to the stitch of the thing with itself. The name 
" a b "  stands for above and beside. 
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ab m 
3400 
5600 
3434 
5656 

We can iteratively apply this verb. For example, a b  ^ : 3 denotes 
iterating a b  three times. This builds binary matrices that form a 
fractal triangular shape with zeros appearing in the upper right. 
Below, 1 denotes the vector with a single element 1. Adding the 
vector structure to that number is enough to get the matrix 
building started. Notice that triangular regions of zeros appear. 
The Sierpinski Triangle can be thought of as the fimiting image 
that appears as we take more iterations. 

ab , 1 
10 
11 

ab^:2,1 
i000 
Ii00 
I010 
Iiii 

ab^:3,1 
i0000000 
ii000000 
i0100000 
iiii0000 
i0001000 
II001100 
i0101010 
iiiiiiii 

ab^:4,1 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0  
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0  
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0  
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0  
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0  
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0  
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0  
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0  
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

We can save a larger version of this array usingJ bitmap crea- 
tion utilities. Below we create a palette and a matrix representing 
the array of indices into the palette giving the image and use the 
ut~ty wri tebmp8 from raster3, j s used in [8] to save the 
bitmap. One can also use the uni ty w r i  t e b m p  from b m p .  j s 
distributed withJ in the \ p a c k a g e s  \ g r a p h i c s  directory. 
Readers duplicating these images should run one of those 
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scripts. If r a s  t e r 3 .  j s has been run, you should be able to 
use the commands given here. I f b m p .  j s has been runt use the 
following as a guide to the small changes in syntax required: if 
p a l  is a palette and b is an array of indices giving the color of 
each pixel, the image file created with ( p a l  ; b )  w r i  t e b m p 8  

t e m p l ,  b m p '  ought to be equivalent to the file created by 
( b { 2 5 6  256 2 5 6 # . p a l )  w r i t e b m p  ' t e m p 2 . b m p '  

The first uses w r i t e b m p 8  from r a s t e r 3  . j  s and the 
second uses w r i  t e b m p  from b m p .  j s .  

We use a white and black palette when creating the bitmap. 
The first row of p a l  being 255  255  255  means that the 
Red Green and Blue components of the corresponding pixels are 
full on, yielding white. The 0 0 0 in the second row gives full 
off, yielding black. Hence, zeros in the array will correspond to 
white in the image and the ones will correspond to black. 

] p a 1 = : 2 5 5  255  2 5 5 , : 0  0 0 
255  255  255  

0 0 0 
b=:ab^ :9 ,I 
(pal;b) writebmp8 'sier_tri.bmp' 

Figure 1 shows the resulting image: 

Figure I: Sierpinski'sTriangle 

A classic modification of this scheme is to put a block of zeros 
in the center of a three-by-three juxtaposition of matrix blocks; 
iteration of this scheme gives the Sierpinski Carpet. This is 
shown in Figure 2. I like to ask my students to create tacit 
fimctions doing the block building required for this process. A 
spoiler is given below--but another question lurks beyond. The 
verb s 3 adjoins together three copies of its matrix argument. Do 
you see why? The verb s 3 0 does the same thing, but the middle 
block is made up of zeros. The verb 0"  0 is the zero function of 
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Figure 2: Sierpinski's Carpet 
rank 0. That is, every element of its input is replaced by zero. 
The verb s3 0 is created as a train of four verbs. This is a hook 
of a fork that can be read (left to right) as adjoin the matrix to zero 
matrix version of the matrix adjoined to the matrix. Note the ] 
denotes the identity function. Lastly, the verb s ¢  is a train of five 
verbs that can be read as stitch s 3 to s 3 0 to s 3. Readers new 
to J would do well to experiment with naming and seeing the 
result of various pieces of these verbs. 

0 0 
0 0 

34 
56 
00 
00 
34 
56 

s3::;, - 

zero=:O"O 
zero m 

s30=: , zero , ] 
s30 m 

sc =:s3 ,. s30 ,. 
sc^:2 ,i 

1 1 1 1 1 1 1 1 1  
1 0 1 1 0 1 1 0 1  
1 1 1 1 1 1 1 1 1  
1 1 1 0 0 0 1 1 1  
1 0 1 0 0 0 1 0 1  
1 1 1 0 0 0 1 1 1  
1 1 1 1 1 1 1 1 1  
1 0 1 1 0 1 1 0 1  
1 1 1 1 1 1 1 1 1  

s3 

b=:sc^:6 ,i 
(pal;b) writebmp8 'sier_car.bmp' 

10 

Once students have created a working tacit function, like so ,  I 
often ask them to see how short a version they can give. I have 
seen some remarkable solutions. Can you give a shorter defini- 
tion for zero that will work for this construction? 

Way 2: Binomial Coef~cient Function Tables 
The dyad ! can be used for computing binomial coefficients. 
When these are placed in an array using table building (also 
known as "outer product") via I / ,  Pascal's triangle appears. We 
may want to commute the arguments of ! as in ! - / to transpose 
the function table so that each row is the sum of the previous row 
with a shifted version of the previous row; this is closer to the 
traditional visual display of Pascal's triangle. 

i0 
3 ! 5 

0 1 2 3 4  
i i i i i  1 
0 1 2 3 4  5 
0013610 
0001410 
0 0 0 0 1  5 
0 0 0 0 0  1 

5 ! / 0 1 2 3 4 5  

!-/-i.8 
i0 0 0 0 000 
ii 0 0 0 000 
12 1 0 0 000 
13 3 1 0 000 
14 6 4 1 000 
151010 5 i00 
16152015 610 
172135352171 

Modulo two versions of Pascal's triangle give our Sierpinski 
Triangle matrix. 

2 ] !-/-i. 8 
i 0 0 0 0 0 0 0  
i i 0 0 0 0 0 0  
I 0 1 0 0 0 0 0  
i i i i 0 0 0 0  
i 0 0 0 1 0 0 0  
i i 0 0 1 1 0 0  
i 0 1 0 1 0 1 0  
i i i i i i i i  

Sadly, if one tries to create a 64-by-64 version of the Sierpinski 
Triangle this way, incorrect results appear because the coeffi- 
cients become too large for floating precision. Happily, we can 
compute the binomial coeffecients to arbitrary precision by using 
extended integers in J. These extended integers can be input 
using an "x"  suffix on the integer. Other integers are "pro- 
moted" to extended integers, as need be, in order to preserve the 
exact integers. Thus, 2 I ! - / - i .  6 4 x  would give a 64-by-64 
correct version the Sierpinski Triangle. Newer versions of J may 
not show the extended integer suffix x on output. 

APL Quote Quad 



30 I 63 
8.60778e17 

30 ! 63x 
860778005594247069x 

2]30 ! 63 
0 

2130 I 63x 
ix 

How might these images be generalized? A natural choice is 
to use other bases. A small example modulo 3 is given below and 
Figure 3 gives an image from the 81-by-81 case. Creating that 
figure took advantage of these exact integers and used gray scale 
for color coding. Can you duplicate the image? 

3[!-/-i.9 
i 0 0 0 0 0 0 0 0  
i i 0 0 0 0 0 0 0  
1 2 1 0 0 0 0 0 0  
i 0 0 1 0 0 0 0 0  
1 1 0 1 1 0 0 0 0  
1 2 1 1 2 1 0 0 0  
1 0 0 2 0 0 1 0 0  
1 1 0 2 2 0 1 1 0  
1 2 1 2 1 2 1 2 1  

The fractal dimension of Pascal's triangle modulo p is investi- 
gated in Reiter's paper [4] (no relation to me). Other generaliza- 
tions and examples can be found in [14]. In particular, creating 
these images for combinatorial numbers, such as Stirring 
Numbers [2], is a worthwhile and interesting exercise. 

Figure 3: Binomial Coefficients Modulo 3 

Way I0: Binary Matrix Arithmetic 
We can generate all the three-"digit" binary numbers using # : 
which denotes antibase. Each row in the result corresponds to a 
number. Transpose is denoted with [ :. The logical functions 
"or" and "and" are denoted + .  and * . respectively. Thus + .  / 

• .  denotes a logical matrix product that for each row and 
column determines whether there is a common lit position. 

]X=:#:i. 8 
000 
001 
010 
011 
i00 
i01 
ii0 
iii 

I :  x 
0 0 0 0 1 1 1 1  
0 0 1 1 0 0 1 1  
0 1 0 1 0 1 0 1  

X+./ *.l:x 
0 0 0 0 0 0 0 0  
0 1 0 1 0 1 0 1  
0 0 1 1 0 0 1 1  
0 1 1 1 0 1 1 1  
0 0 0 0 1 1 1 1  
0 1 0 1 1 1 1 1  
0 0 1 1 1 1 1 1  
0 1 1 1 1 1 1 1  

The logical matrix product given above gives the logical "not" of 
our Sierpinski Triangle opening to the lower right. Note no 
iterative process was used. The entries were computed direcdy 
from the binary form of their row and column indices. 

This suggests that it might be interesting to try base three 
forms for the indices. The matrix below shows the holes in the 
Sierpinski Carpet arising from the ones in that computation. For 
other variations of this, refer to [5,6,10,11] or try your own 
ideas. Of  course, using color in the images helps when there are 
more than two different array entries. 

Y=:3 3#:i.9 

Y+./ *.I:Y 
0 0 0 0 0 0 0 0 0  
0 1 2 0 1 2 0 1 2  
0 2 2 0 2 2 0 2 2  
0 0 0 1 1 1 2 2 2  
0 1 2 1 1 1 2 1 2  
0 2 2 1 1 1 2 2 2  
0 0 0 2 2 2 2 2 2  
0 1 2 2 1 2 2 1 2  
0 2 2 2 2 2 2 2 2  

pa12=:255 0 0,255 255 255, :0 255 0 
b=:Y +./ *. I: Y=: (5#3)#:i.3^5 
(pal2;b) writebmp8 'siercar2.bmp' 
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Note that "or" generalizes to gcd (greatest common divisor) and 
"and" generalizes to lcm (least common multiple) so that these 
are meaningful for nonbinary numbers. Base three also keeps the 
length of"101 Ways" to do something bearably short. 

Way H: One dimensional Finite Automata 
We next consider the function that tests whether or not an entry 
is equal to its neighbor. The function _ 1 & I • rotates a vector 
one element to the right wrapping the last item around to the first 
position. If we use this with not-equals - : in a hook we have a 
function that tests whether each element is not-equal to its left 
neighbor. Such a function is considered a finite automaton since 
the resuh at any position depends only on two neighboring 
values in the argument. 

]v=:l 1110011 
i i i i 0 0 1 1  

_l&l .v 
1 1 1 1 1 0 0 1  

v -: _l& I • v 

0 0 0 0 1 0 1 0  

auto =:-: _l&l • 

auto v 
0 0 0 0 1 0 1 0  

auto^: (i.8) 0=i.8 
1 0 0 0 0 0 0 0  
110 00 00 0 
10100 000 
11].10000 
1 0 0 0 1 0 0 0  
1 1 0 0 1 1 0 0  
10!,01010 
1 1 1 1 1 1 1 1  

We see we get the Sierpinski Triangle from iterating this 
function. Finite automata have been the subject of much recent 
study because of their complex behavior. For example, Figure 4 
shows a three-neighbor finite automata (Rule 135 from [8,9]) 
that has an interesting mix of structure and randomness, The 
array giving that image can be recreated with the following: 

perext:: {~ ] { . 
AUTO=: {- J&i#.\~@perext 
b:: (#:i35)&AUTO^: (i.128) ?. 12852 

We leave the details oftheJ code for automata of that type for the 
interested reader to pursue. 

Figure 4: An automaton with complex behavior 

Way 12: Not-Equals Scan 
Gerald Langlet [3] was a not-equals scan enthusiast. This func- 
tion can be thought of as giving the partial sums modulo 2. 
Iterating the not-equals scan function on a vector of ones gives 
the Sierpinski Triangle. 

v 
11110 011 

nes= : ~ : / \ 

nes v 
1 0 1 0 0 0 1 0  

nes^:(i.8) 851 
l l l l l l l l  
i 0 1 0 1 0 1 0  
i i 0 0 1 1 0 0  
i 0 0 0 1 0 0 0  
i i i i 0 0 0 0  
i 0 1 0 0 0 0 0  
I i 0 0 0 0 0 0  
i 0 0 0 0 0 0 0  

We can flip this matrix if we so desire in order to obtain the 
Sierpinski Triangle opening toward the upper right, but we can 
also run the process backward. Rather remarkably, the negative 
iterates can be computed sinceJ knows the inverse of not-equals 
scan. 
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8{.1 
i 0 0 0 0 0 0 0  

nes^:(-i.8) 8{.I 
i 0 0 0 0 0 0 0  
i i 0 0 0 0 0 0  
i 0 1 0 0 0 0 0  
i i i i 0 0 0 0  
i 0 0 0 1 0 0 0  
i i 0 0 1 1 0 0  
I 0 1 0 1 0 1 0  
i i i i i i i i  

Way 20: Deterministic Chaos Game 
The chaos game is usually described as an iterative process of 
moving from a current position midway toward a vertex ran- 
domly selected from a fixed finite list of vertices. While we will 
consider the probabilistic version in the next Way, in this Way 
we consider a deterministic version where we keep a list of all 
possible current positions. We consider a list of three vertices T 
and compute a table of all midpoints of points ofT with points ofT. 

]T=:0 0,0 i,:i 0 
0 0 
0 1 
1 0 

mid=:- :@+"i 
T mid/ T 

0 0 
00.5 

0.5 0 

00.5 
0 1 

0.5 0.5 

0.5 0 
0.5 0.5 

1 0 

We define dcg to be a function that creates that table, then uses 
adjoin insert , / to collapse the first axis, then uses n u b - .  to 
remove duplicates, and then uses / : - to sort the list of points 
for convenience. 

dcg=:/:-@:-.@: (,/)@: (mid/) 
T dcg^:2 T 
0 0 
0 0.25 
0 0.5 
0 0.75 
0 1 

0.25 0 
0.25 0.25 
0.25 0.5 
0.25 0.75 
0.5 0 
0.5 0.25 
0.5 0.5 

0.75 0 
0.75 0.25 

1 0 
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Figure 5: The determin(~ic Chaos Game 

Figure 5 shows several iterates of this process using supersize 
pixels. One can create a bitmap array of these positions using the 
virtual raster array utifities in v r a 3 .  j s from [8]. The following 
lines indicate how that might be done where the palette is the 
white and black palette defined in Way 1. 

vspixel 0.05+0.9* T dcg^:5 T 
vrashow '' 
(pal;vra) writebmp8 'dcgvra.bmp' 

In the above, we rescale points by 0.9 since vspixel doesn't 
allow coordinates to exacdy equal 1 and add 0.05 to give a 
margin. The command v r a s h o w  ' ' should display the image 
in the graphics window opened when v r a 3 .  j s was run and 
the last line saved the image with given file name. 

The image shows dots arranged in the general form of the 
Sierpinski Triangle and indeed that is what it approximates. 
However, if this image were turned into a binary array, it is 
natural to use an odd number of rows and columns so that this 
really is a different approximation than the binary array approxi- 
mations discussed in all the previous Ways. 

Way 21: ProbabHistic Chaos Game 
The probabilistic version of the chaos game proceeds by 
randomly selecting one of the three vertices and then moving 
halfway toward that vertex. In particular, { &T can be used to 
select a vertex from T given an index and 2@3 : can be used to 
randomly select the index. If this is only run a few thousand 
times, a shadowy version of the Sierpinski Triangle results. Here 
we show a few iterates of a point. Note that because of the 
random selections, the two experiments aren't duplicates. 
Hence, you shouldn't expect to duplicate the data given below. 
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peg= :mid {&T@(?@3:) 
pcg^: (i.6) 1 1 
1 1 
1 0.5 
3.. 0.25 

0 . 5  0.125 
0.7_ = , 0.0625 

0.87. = , 0.03125 
pcg^: (i.6) 1 

1 1 
0.5 0.5 

0.75 0.25 
0.375 0.625 

0.3.8:75 0. 8125 
0.09375 0.40625 

Way 22: Deterministic Iterated Function Systems 
Iterated function systems consist of lists of functions. When 
discussing generation of fractals with these, the functions in- 
volved are maps that take the fractal onto some subpart of the 
fractal. Consider our Sierpinski Triangle in Figure 1 where we 
imagine the corners being the vertices in T. We can see that the 
map that halves both coordinates, - : ,  would map the entire 
fractal onto the half size "triangular part" of the fractal in the 
lower left. Note that the holes would fine up. Likewise we could 
add one half to the x or y coordinates after halving and obtain the 
other two triangular parts appearing in the other corners. Thus 
we think of the Sierpinski Triangle as the union (or collage) of its 
image under those three maps. We create a list of those three 
maps as a gerund using tie " and apply all three functions to 
given data with evoke gerund " : 0. The fist of those three func- 
tions and the boxed form for that gerund are given in Table I. 

]ifs=:-:" (0 0.5&+@:-:)" (0.5 0&+@:-:) 

m 

@: @: 

Table I. An iterated function system with three functions 

difs=:ifs" :0"i 

difs T 
0 0 
0 0.5 

0.5 0 

00.5 
0 1 

0.5 0.5 

0.5 0 
0.5 0.5 

1 0 

difsx=: -.@: (/:-)@: (,/)@:difs 
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The function d i  f s x  can be used like d c g  in Way 20 to create 
the Sierpinski Triangle. 

Way I00: Probabilistic Iterated Function Systems 
While Way 22 gives all the points arising from the initial triangle 
T under the transformations in the iterated function system, it is 
adequate to just look at random iterates of any single general 
point. Below we can choose a random index and use agenda @. 
to apply just that function. As with our previous probabilistic 
method, we don't expect to be able to duplicate experiments. 
Plotting tens of thousands of points generated this way gives the 
Sierpinski Triangle. 

pifs =:if s@. (?@3:) 

pifs 0.5 0.5 
0.25 0.25 

pifs 0.5 0.5 
0.75 0.25 

pifs^: (i.4) 0.5 
0.5 0.5 

0.25 0.25 
0.125 0.625 

0.0625 0.8125 

0 . 5  

Try it. 

Way I01: Fractal Curve 
We noted in the introduction that the Sierpinski Triangle was 
originally described as a curve. The curve results from the 
iteration of a refinement scheme: each segment is replaced at 
each refinement by five segments according to the pattern in 
Figure 6. In that figure, the segment at top is replaced by the 
segments below. If we start with an equilateral triangle and refine 
each segment into five subsegments and repeat the process, the 
Sierpinski Triangle results as we will see. 

While the curve described here is different, the general 
construction style we will use for creating the curve follows [7,8]. 
First we define the monad " n o r "  that gives the left normal 
vector to a given vector. The function b u m p  gives a point 
displaced from the midpoint of a segment a suitable distance in 
the normal direction. The suitable distance is one so that 
equilateral triangles are formed. The functions b u m p 1  and 
bump2  give the two vertices offthe original segment that appear 
in the bottom of Figure 6. The matrix t r i  gives the vertices of 
a roughly equilateral initial triangle. 

nor=:l _l&*@:l. 
bump=:mid + (%:3r4)&*@nor@:- 
bumpl=: [ bump mid 
bump2=:mid bump ] 
tri=:0 0, i000 0,: 500 866 

Each segment is divided into new segments: the original left 
vertex, the midpoint, the first bump, the second bump, and then 
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Figure 6: Refinement of a segment into five segments 

back to the midpoint. We skip the last vertex since it will be 
produced from the refinement of the subsequent segment. The 
verb r e f i n e  applies the segment division to each neighboring 
pair of vertices of a given polygon and adjoins the items on the 
first axis yielding a single polygon with five times the number of 
vertices. 

segdiv=: [ , mid , bumpl , bump2 
0 0 segdiv 1 0 
0 0 

0.5 0 
0.25 0.433013 
0.75 0.433013 
0.5 0 

refine=:,/@(] segdiv"l (l&l .)) 

,: mid 

One can see the refinement of the triangle with refine tri. 

We can plot that polygon using g w i n 3 ,  j s from [8] and the 
commands below. 

sogwin 'curve' 

spoly refineA:4 tri 

Figure 7 shows that curve. 
Alternately, one can do the same plotting with p l o t .  j s 

from the J \ p a c k a g e s \ g r a p h i c s  directory using p l o t  
; / I  : (, { . )  r e f i n e A :  4 t r i .  See the tutorialflab for 
how to vary the plot. 

JUNE 1997 - -  VOLUME 27, NUMBER 4 

Figure 7: The Sierpinski Triangle as a curve 

Since the result of this refinement is a polygon, it is amusing 
to consider the "inside" of the polygon. If 0 0 0 is given as the 
left argument of s p o l y ,  the polygon will be filled with black, as 
in Figure 8. How many vertices does the polygon you plotted 
have? What happens if you displace the bumps less? More? • 

Figure 8: The interior of the Sierpinski Triangle 
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W e  want your  t h o u g h t s !  

Inside the wrapper of this issue is a Feedback Form, asking 
for your comments about APL Quote Quad and SIGAPL. 
What did you like about this issue? What did you dislike? 
What else should we be working on? We'd really like to 
hear from you. Can you please take a minute and fill out 
this form? If you no longer have the form,just mail your 
comments to the Executive Editor of APL Quote Quad (or 
via e-mail, to "Polivka@ACM.org") . . . .  Thankyou! 
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Reviews of the APL97 Conference 

T 
HE APL97 CONF~.RENCE, entitled Share Knowledge/Share 
Success, was held on 17-20 August 1997 in Toronto, 
Canada, and was hosted by the Toronto APL Special 

Interest Group. The venue was a combination of presentations, 
tutorials, and workshops. For the first time at an APL confer- 
ence, the proceedings and related materials were on a CD-ROM. 
There was no printed copy. A copy of the proceedings CD- 
ROM is available from The Toronto APL Special Interest Group 
(http://www.torontoapl.org). 

We asked several people for reviews of the conference, in 
order to get balanced viewpoints. Following this overview of the 
conference are four separate reviews, from: 

• Eugene McDonnell (from San Jose, California) 
• Timo Laurmaa (from Basle, Switzerland) 
• Roy C. Willitts (from Clarksburg, New Jersey) 
* Bob Brown (from Thetford Center, Vermont) 

We hope that you find the reviews to be as interesting as we did. 
We extend our thanks to Richard Procter and his staff in 

Toronto, for not only making the conference a success, but also 
for supplying each of the photos of APL97 used in these reviews. 

And for the benefit of those of you who were not able to 
attend the conference, we have also included a list of the papers 
that were presented at the conference. As you can see, it was a 
busy week! 

APL97 wrap-up message 
Thanks for Coming! 
Once again the worldwide APL community has shown how to 
Share Knowledge/Share Success, as our conference theme suggested. 

APL97 was an overwhelming success on many fronts. Total 
attendance was about 260 persons. Our plenary sessions, 
featuring Ian Sharp, founder of former software/timesharing 
giant I.P. Sharp Associates; and John Heinmiller, of actuarial 
software firm SS&C/Chalke, proved that APL has been and 
continues to be the secret weapon for success in the information 

technology industry. --Richard Procter 

Attendance Conference Chair 

APL97 Conference Registrations by Country: 

Austria . . . . . . . . . . .  2 
Canada . . . . . . . . .  110 
Denmark . . . . . . . .  12 
Finland . . . . . . . . .  10 
France . . . . . . . . . . .  5 
Germany . . . . . . . . .  6 
Italy . . . . . . . . . . . . .  3 
Japan . . . . . . . . . . . .  7 
Netherlands . . . . . . .  7 
Portugal . . . . . . . . . .  1 

Russia . . . . . . . . . . . .  2 
Saudi Arabia . . . . . .  2 
South Africa . . . . . . .  1 
Sweden . . . . . . . . . .  1 
Switzerland . . . . . . .  3 
UK . . . . . . . . . . . . . .  9 
USA . . . . . . . . . . .  82 

Total . . . . . . . . .  263 

APL Quote Quad 
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