Introducing a new column for APL Quote Quad:

With J

101 Ways to Build a Sierpinski Triangle

—by Cliff Reiter
Department of Mathematics
Lafayette College; Easton, Pennsylvania

ﬁ‘ T APL97 I RAN A WORKSHOP on creating images with J. The

first exercise involved creating a Sierpinski Triangle. Ken
Iverson commented that I seem to start everything I do

with the Sierpinski Triangle as an example. I don’t think that is
true, but it does seem like a good idea.
Thus, my first Quote Quad column
on using J focuses on ways to create
Sierpinski Triangles. Of course, this
is really an excuse to discuss a
bunch of J in a way that results in
some interesting images. Many of
these ideas may be familiar, but
readers are encouraged to look for
new points of view. You might note
the usefulness of inverse functions,
gerunds and extended integers and

may even discover new uses of base-  Cliff Reiter's APL97 workshop
three representations. Did you know

you don’t have to “build” Sierpinski’s Triangle? You can decide
the value of each pixel from the pixel coordmates.

Cliff Reiter and Nathan Carter at the APL97 “Chaos with Symmetry” exhibit

Future columns planned include dot-by-dot creation of one
of the fractal types from the APL97 exhibit “Chaos with Symme-
try” [1] and another takes a look at creating “music” with J.
While I often create fractals in my work with J, my goal for the
“With J” column is the illustration of J usage with fun examples
from a variety of topics.

8

I will define what I mean by the Sierpinski Triangle by exam-
ples that approximate it. Purists will want to take some sort of
limit of the approximation process we will explore. Of course,
they won’t see their result. We will be able to see our finite
approximations. Sometimes these are discrete matrices. Other
times, lists of lit pixels or line segments. We won’t worry about
whether the Sierpinski Triangle will “open” toward the upper
right or some other direction; nor will we worry about whether
it is equilateral or not. This list of 101 ways is not meant to be
complete. There are at least two rather different ways appearing
in [8]. Remarkable connections with the tower of Hanoi are
described in [13] but won’t be considered here. Sierpinski’s
original paper [12] described a curve that, roughly speaking,
intersects itself at every point. Our last “Way” constructs
approximations to that curve. We look at matrix- and pixel-based
constructions first.

Way [I: Juxtaposition

We can readily create a matrix and juxtapose it above or
beside itself. We say m, m gives m adjoined to itself and m, .m
gives m stitched to itself.

Jm=:3+1.2 2

nwuow Ul w
O\ > OV >

U W
oY >
U~
o S

Reflex, denoted by ~, allows us to apply any dyadic verb
(function) with identical arguments. That s, if f is a dyadic verb
then f~ yisthesameas v f v .Thuswe can stitch a matrix
to itself using , .~ m. One advantage of using that notation is
that we only need to refer to the matrix once. Also observe below
that padding with zeros occurs when a matrix is adjoined to
another with different row lengths.

, .~ M
4
6

N >

3
5

urw

m,2 5$1

[l e AN VS
[l el AW
PP OO~
PR OO
PP OO

Two verbs listed in isolation comprise a hook; it results in a
composition of the functions. Here ab=: , , .~ is a verb that
adjoins a thing to the stitch of the thing with itself. The name
“ab” stands for above and beside.

APL Quote Quad



ab=:,, .~
ab

T uTw
o OV i
UTwoo
abkoog

We can iteratively apply this verb. For example, aba : 3 denotes
iterating ab three times. This builds binary matrices that form a
fractal triangular shape with zeros appearing in the upper right.
Below , 1 denotes the vector with a single element 1. Adding the
vector structure to that number is enough to get the matrix
building started. Notice that triangular regions of zeros appear.
The Sierpinski Triangle can be thought of as the limiting image
that appears as we take more iterations.

ab ,1

e
P o

o]
>
N
[

A e
RORO

RrRrooUo
RPoooO.

o))

RPRERERPRRPRRPERR
RORPRORORO
RrPRPrOoOORrRrRrRrOOUD
f—\ooon—-ooo->-
r—w——w—u—toooow
o—-on—\ooooo;—l
PRroooooo
rOoOoooDOoOOoO

>
S

PRRPRRPRREREPRPRPRPRPRPRRPR
PORPORORPORORORLRORO
PRPROORRPROORROORRLROOD
HPOOOHOOOHROOOHOOO «w
PRPRPRPRPOOCOORPRPRHFROOOCO
RPORPOOOOOROROOOOOR
RPRPOOOOOORRPROOOOOO
POOOOOOOROOOOOOO
PRERRPRPPRPPPOOO0O0O0O0OO0
HFORPORPROHOOOOOOOOO
PFRPOOPRPHROOO0OO0OO0OO0OODOO
HOOOROOOOODOOOOOO
PPPPOOOODODOOOOCOOO
PORPOO0OO0OO0O0O0OO0O00OO0OOO
PROCO0O0O0O00DO0DOOOOO
HOOOODOODODOODOOOOO

We can save a larger version of this array using ] bitmap crea-
tion utilities. Below we create a palette and a matrix representing
the array of indices into the palette giving the image and use the
utility writebmp8 from raster3 . js used in [8] to save the
bitmap. One can also use the utility wri tebmp from bmp. js
distributed with ] in the \packages\graphics directory.
Readers duplicating these images should run one of those

JunE 1997 — VOLUME 27, NUMBER 4

scripts. If raster3 . js has been run, you should be able to
use the commands given here. If bmp . j s has been run, use the
following as a guide to the small changes in syntax required: if
pal is a palette and b is an array of indices giving the color of
each pixel, the image file created with (pal;b) writebmp8
'templ.bmp' ought to be equivalent to the file created by
(b{256 256 256#.pal) writebmp 'temp2.bmp'.

The first uses writebmp8 from raster3.js and the
second uses writebmp frombrp.js.

We use a white and black palette when creating the bitmap.
The first row of pal being 255 255 255 means that the
Red Green and Blue components of the corresponding pixels are
full on, yielding white. The 0 0 0 in the second row gives full
off, yielding black. Hence, zeros in the array will correspond to
white in the image and the ones will correspond to black.

lpal=:255 255 255,:0 0 0
255 255 255
0 0 0
b=:abar:9 ,1
(pal;b) writebmp8 'sier_tri.bmp'

Figure 1 shows the resulting image:

b

>

X
S

-

Sk
S
b
N
b

N
S Bh S
Bk Sk S Eh Bh B B,

Figure‘ I Siérpinski's Triangle

>

ddd

A classic modification of this scheme is to put a block of zeros
in the center of a three-by-three juxtaposition of matrix blocks;
iteration of this scheme gives the Sierpinski Carpet. This is
shown in Figure 2. I like to ask my students to create tacit
functions doing the block building required for this process. A
spoiler is given below—but another question lurks beyond. The
verb 53 adjoins together three copies of its matrix argument. Do
you see why? The verb s3 0 does the same thing, but the middle
black is made up of zeros. The verb 0" 0 is the zero function of

9



Figure 2: Sierpinski's Carpet
rank 0. That is, every element of its input is replaced by zero.
The verb s30 is created as a train of four verbs. This is a hook
of a fork that can be read (left to right) as adjoin the matrix to zero
matrix version of the matrix adjoined to the matrix. Note the ]
denotes the identity function. Lastly, the verb sc is a train of five
verbs that can be read as stitch s3 to 530 to s3. Readers new
to ] would do well to experiment with naming and seeing the
result of various pieces of these verbs.

s3=:,,~
zero=:0"0
Zero m
00
00
s30=: , zero , |
s30 m
3 4
5 6
00
00
3 4
56
sc=:83 ,. s30 ,. s3
sca:2 ,1
111111111
101101101
111111111
111000111
101000101
111000111
111111111
101101101
111111111

b=:sca:6 ,1
(pal;b) writebmp8 'sier_car.bmp'

10

Once students have created a working tacit function, like sc, I
often ask them to see how short a version they can give. I have
seen some remarkable solutions. Can you give a shorter defini-
tion for zero that will work for this construction?

Way 2: Binomial Coefficient Function Tables

The dyad ! can be used for computing binomial coefficients.
When these are placed in an array using table building (also
known as “outer product”) via ! /, Pascal’s triangle appears. We
may want to commute the arguments of ! asin !~/ to transpose
the function table so that each row is the sum of the previous row
with a shifted version of the previous row; this is closer to the
traditional visual display of Pascal’s triangle.

315
10
0123451/01234%5
11111 1
01234 5
0013686 10
00014 10
00001 5
00000 1
\~/~1.8
10 0 0 O O0OO
11 0 0 0 00060
12 1 0 06 000
13 3 1 6 00060
14 6 4 1 00060
151010 5 100
16152015 610
17 21 35352171

Modulo two versions of Pascal’s triangle give our Sierpinski
Triangle matrix.

2|1~/~1.8

0

PRRERRRRR
RPoORORORO
MR OoORROO—
RPooOoORrROOO
RPRRPRROOO
HOoOrRrOODOOO
RPRroOODOOO
PoOOoOoO0OOO

Sadly, if one tries to create a 64-by-64 version of the Sierpinski
Triangle this way, incorrect results appear because the coeffi-
cients become too large for floating precision. Happily, we can
compute the binomial coeffecients to arbitrary precision by using
extended integers in J. These extended integers can be input
using an “x” suffix on the integer. Other integers are “pro-
moted” to extended integers, as need be, in order to preserve the
exact integers. Thus, 2| ! ~/~1.64x would give a 64-by-64
correct version the Sierpinski Triangle. Newer versions of | may
not show the extended integer suffix x on output.

APL Quote Quad



30 ! 63
8.60778el7
30 ! 63x
860778005594247069x
2|30 ! 63
0
2130 ' 63x%
1x

How might these images be generalized? A natural choice is
to use other bases. A small example modulo 3 is given below and
Figure 3 gives an image from the 81-by-81 case. Creating that
figure took advantage of these exact integers and used gray scale
for color coding. Can you duplicate the image?

311~/~1.9
1000000O00O0
110000000
121000000
100100000
110110000
121121000
100200100
110220110
121212121

The fractal dimension of Pascal’s triangle modulo p is investi-
gated in Reiter’s paper [4] (no relation to me). Other generaliza-
tions and examples can be found in [14]. In particular, creating
these images for combinatorial numbers, such as Stirling
Numbers [2], is a worthwhile and interesting exercise.

Figure 3: Binomial Coefficients Moduio 3

JunE 1997 — VoLUME 27, NUMBER 4

Way [0: Binary Matrix Arithmetic

We can generate all the three-“digit” binary numbers using # :

which denotes antibase. Each row in the result corresponds to a

number. Transpose is denoted with | :. The logical functions

“or” and “and” are denoted +. and * . respectively. Thus +. /
* . denotes a logical matrix product that for each row and

column determines whether there is a common lit position.

]

I
+#
-
0 o]

PRRPRRPOOOO
PROOKRRFROO
RPOROFORFRONX

OO 0O
= O O
OI—‘OT
P oM
SO
= OoOPF
O

X +./

*

cooco0OoO0OOO
POoORORORO
FRPOoORRFROO
PRPRPRORRRO
PRPRROOOO
PRl RROR O
PFRPRPRRPRPOO:
PRRRPRPRRPRO—R R

The logical matrix product given above gives the logical “not” of
our Sierpinski Triangle opening to the lower right. Note no
iterative process was used. The entries were computed directly
from the binary form of their row and column indices.

This suggests that it might be interesting to try base three
forms for the indices. The matrix below shows the holes in the
Sierpinski Carpet arising from the ones in that computation. For
other variations of this, refer to {5,6,10,11] or try your own
ideas. Of course, using color in the images helps when there are
more than two different array entries.

Y=:3 3#:1.9

Y +./ . *

<

[eNoNoRoRleoNoReNoNol
NRONRPONRKFO
MDNONMDMDODNMNDO
MNMNNRPRPRPPRLROOO
NPRPNNRFRPRRPRPNDRO
NNNRFRPRPRPRPRPDNDNDO
MNNNMMDNDNOOO:
NENNMRPNNPREP O—
L\J[\)[\)[\)t\)[\)[\)[\)o"

pal2=:255 0 0,255 255 255,:0 255 0
b=:Y +./ . *. |: Y=: (5#3)#:1.3A5
(pal2;b) writebmp8 'siercar2.bmp'

11



Note that “or” generalizes to ged (greatest common divisor) and
“and” generalizes to lcm (least common multiple) so that these
are meaningful for nonbinary numbers, Base three also keeps the
length of “101 Ways” to do something bearably short.

Way /I: One dimensional Finite Automata

We next consider the function that tests whether or not an entry
1s equal to its neighbor. The function _1&| . rotates a vector
one element to the right wrapping the last item around to the first
position. If we use this with not-equals ~ : in a hook we have a
function that tests whether each element is not-equal to its left
neighbor. Such a function is considered a finite automaton since
the result at any position depends only on two neighboring
values in the argument.

Jv=:11110011
11110011

_1&|.v

11111001
v ~: _1&|. v

00001010

auto=:~: _1&].

auto v
00001010

autoa: (1i.8) 0=i.8
10000000
11000000
10100000
11110000
10001000
11001100
10101010
11111111

We see we get the Sierpinski Triangle from iterating this
function. Finite automata have been the subject of much recent
study because of their complex behavior. For example, Figure 4
shows a three-peighbor finite automata (Rule 135 from [8,9])
that has an interesting mix of structure and randomness, The
array giving that image can be recreated with the following;

perext=:{: , 1 , {.
AUTO=: {~ 3&(#.\)@perext

b=: (#:135) &AUTOA: (1.128) 2. 12842

We leave the details of the ] code for automata of that type for the

interested reader to pursue.

12

Figure 4. An automaton with complex behavior

Way 12: Not-Equals Scan

Gerald Langlet [3] was a not-equals scan enthusiast. This func-
tion can be thought of as giving the partial sums modulo 2.
Iterating the not-equals scan function on a vector of ones gives
the Sierpinski Triangle.

v
11110011

nes=:~:/\

nes v

10100010
nesaA: (1.8) 8%1
11111111
10101010
11001100
1000100080
11110000
10100000
11000000
10000000

We can flip this matrix if we so desire in order to obtain the
Sierpinski Triangle opening toward the upper right, but we can
also run the process backward. Rather remarkably, the negative
iterates can be computed since | knows the inverse of not-equals
scan.

APL Quote Quad



=
(]
(]

PORPRPOOOOOR-O
~

8{.1

RPRRRRRP PR
FORORORO
RPRPOORRPOOD O™
HOOO!—‘OOOU; o
PPN OO0O0O ~O
N
roocooo0o0oO

Way 20: Deterministic Chaos Game

The chaos game is usually described as an iterative process of
moving from a current position midway toward a vertex ran-
domly selected from a fixed finite list of vertices. While we will
consider the probabilistic version in the next Way, in this Way
we consider a deterministic version where we keep a list of all
possible current positions. We consider a list of three vertices T
and compute a table of all midpoints of points of T with points of T.

]T=:0 0,0 1,:1 0

R oo
OO

UlTo o
(@)
ul

oo

5
0.5 0.
1

[oRVNe]

We define dcg to be a function that creates that table, then uses
adjoin insert , / to collapse the first axis, then uses nub ~. to
remove duplicates, and then uses / : ~ to sort the list of points
for convenience.

dcg=:/:~@:~.@: (,/)@: (mid/)
dcga:2 T
0
0.25
0.5
0.75

1

0
0.25
0.5
0.75
0
0.25
0.5
0
0.25
0

QOO0

OO O o o

e NN
RUuvuUuUUuUTUuoooOOoOOH

<O
~3 3

JUNE 1997 — VOLUME 27, NUMBER 4

. a

EEn

LN B B

nEMNSD

as LN ]

Ban amae

E S a B " mas

" EE " @ ENE

LIS - .

LN BN ] LI B )

L B B BN ) "nanxw

" R a=n a A e

as na 2 m =

asm Ewa amn LN BN

LN BN BN BN BN | 2 8 5 BN EERAM

B 8 NN WE S EENENENNS

L N ] a8

amm “-nm

A E RS LI B AN

[ IR BN BN BN [ B B BN BN

e | e aa ns

= a3 n " R 2 s a LI BN

" E R & RSB EN 4 E N BEAASB

A s mERAOSR - A s s aEENERS

an ns aan aa

. aw " am - aan LN B ]

LB B BN ] L B BN a s ae = n o8

E S mESN s & ax0n s easnm # nw s =
LI na -n LIS | - n L | am L N ]
" E @ " == a =N L BN B nEaB " asn LI A AN
4 E W RSN NYAARENE SN FAARNEANNENEFEESE SR ADN
N E E A2 NS E NN ES A NS S S Y ESESSEESAESSE AR AR
Figure 5: The deterministic Chaos Game

Figure 5 shows several iterates of this process using supersize
pixels. One can create a bitmap array of these positions using the
virtual raster array utilities in vra3 . js from [8]. The following
lines indicate how that might be done where the palette is the
white and black palette defined in Way 1.

vspixel 0.05+0.9*> T dcga:5 T
vrashow '

(pal;vra) writebmp8 'dcgvra.bmp'

In the above, we rescale points by 0.9 since vspixel doesn’t
allow coordinates to exactly equal 1 and add 0.05 to give a
margin. The command vrashow ' ' should display the image
in the graphics window opened when vra3 . js was run and
the last line saved the image with given file name.

The image shows dots arranged in the general form of the
Sierpinski Triangle and indeed that is what it approximates.
However, if this image were turned into a binary array, it is
natural to use an odd number of rows and columns so that this
really is a different approximation than the binary array approxi-
mations discussed in all the previous Ways.

Way 2/: Probabilistic Chaos Game

The probabilistic version of the chaos game proceeds by
randomly selecting one of the three vertices and then moving
halfway toward that vertex. In particular, {&T can be used to
select a vertex from T given an index and ?@3 : can be used to
randomly select the index. If this is only run a few thousand
times, a shadowy version of the Sierpinski Triangle results. Here
we show a few iterates of a point. Note that because of the
random selections, the two experiments aren’t duplicates.
Hence, you shouldn’t expect to duplicate the data given below.

13



pcg=:mid {&T@(?@3:)
pcga: (i.6) 1 1

1 1
1 0.5
1 0.25
0.5 0.125
0.75 0.0625

0.875 0.03125
pcga:(i.6) 1 1

1 1

0.5 0.5
0.75 0.25
0.375 0.625
0.1875 0.8125

0.09375 0.40625

Way 22: Deterministic Iterated Function Systems
Iterated function systems consist of lists of functions. When
discussing generation of fractals with these, the functions in-
volved are maps that take the fractal onto some subpart of the
fractal. Consider our Sierpinski Triangle in Figure 1 where we
imagine the corners being the vertices in T. We can see that the
map that halves both coordinates, - :, would map the entire
fractal onto the half size “triangular part” of the fractal in the
lower left. Note that the holes would line up. Likewise we could
add one half to the x or y coordinates after halving and obtain the
other two triangular parts appearing in the other corners. Thus
we think of the Sierpinski Triangle as the union (or collage) of its
image under those three maps. We create a list of those three
maps as a gerund using tie ~ and apply all three functions to
given data with evoke gerund ~ : 0. The list of those three func-
tions and the boxed form for that gerund are given in Table I.

lifg=:-:"(0 0.5&+@:-:) (0.5 0&+@:-:)

@: @:

o[ o)

+

Table I. An iterated function system with three functions

difs=:ifs :0"1

difs T

0 0

0 0.5
0.5 0

Uuo o

5
1
5
5 0
0.5 0.5
1 0

difsx=: ~.@:(/:~)@:(,/)@:difs

14

The function d1 £ sx can be used like dcg in Way 20 to create
the Sierpinski Triangle.

Way 100: Probabilistic Iterated Function Systems
While Way 22 gives all the points arising from the initial triangle
T under the transformations in the iterated function system, it is
adequate to just look at random iterates of any single general
point. Below we can choose a random index and use agenda @.
to apply just that function. As with our previous probabilistic
method, we don’t expect to be able to duplicate experiments.
Plotting tens of thousands of points generated this way gives the
Sierpinski Triangle.

pifs=:ifse. (?@3:)

pifs 0.5 0.5

0.25 0.25
pifs 0.5 0.5
0.75 0.25
pifsa:(i.4) 0.5 0.5
0.5 0.5
0.25 0.25
0.125 0.625

0.0625 0.8125
Tryt.

Way /0I: Fractal Curve

We noted in the introduction that the Sierpinski Triangle was
originally described as a curve. The curve results from the
iteration of a refinement scheme: each segment is replaced at
each refinement by five segments according to the pattern in
Figure 6. In that figure, the segment at top is replaced by the
segments below. If we start with an equilateral triangle and refine
each segment into five subsegments and repeat the process, the
Sierpinski Triangle results as we will see.

While the curve described here is different, the general
construction style we will use for creating the curve follows [7,8].
First we define the monad “noxr” that gives the left normal
vector to a given vector. The function bump gives a point
displaced from the midpoint of a segment a suitable distance in
the normal direction. The suitable distance is one so that
equilateral triangles are formed. The functions bumpl and
bump?2 give the two vertices off the original segment that appear
in the bottom of Figure 6. The matrix tri gives the vertices of
a roughly equilateral initial triangle.

nor=:1 _1&x@:|.

bump=:mid + (%:3r4) &*@nor@: -
bumpl=:[ bump mid
bump2=:mid bump ]

tri=:0 0, 1000 0,: 500 866

Each segment is divided into new segments: the original left
vertex, the midpoint, the first bump, the second bump, and then

APL Quote Quad



Figure 6: Refinement of a segment into five segments

back to the midpoint. We skip the last vertex since it will be
produced from the refinement of the subsequent segment. The
verb ref ine applies the segment division to each neighboring
pair of vertices of a given polygon and adjoins the items on the
first axis yielding a single polygon with five times the number of
vertices.

segdiv=:[ , mid , bumpl , bump2 ,: mid
0 0 segdiv 1 0
0 0
0.5 0
0.25 0.433013
0.75 0.433013
0.5 0
refine=:, /@(] segdiv"l (1&].))

One can see the refinement of the triangle with refine tri.
We can plot that polygon using gwin3. j s from [8] and the
commands below.

sogwin 'curve’
spoly refinea:4 tri

Figure 7 shows that curve.

Alternately, one can do the same plotting with plot.js
from the ] \packages\graphics directory using plot
i/1: (,{.) refinea: 4 tri. See the tutorialflab for
how to vary the plot.

JUNE 1997 — VoLuME 27, NUMBER 4

Figure 7. The Sierpinski Triangle as a curve

Since the result of this refinement is a polygon, it is amusing
to consider the “inside” of the polygon. If 0 0 0 is given as the
left argument of spoly, the polygon will be filled with black, as
in Figure 8. How many vertices does the polygon you plotted
have? What happens if you displace the bumps less? More? =

Figure 8: The interior of the Sierpinski Triangle

Acknowledgements

The support of Lafayette College and the provision of work and
living space by the University of Waterloo and K. E. Iverson
during the sabbatical leave during which this was written are
greatly appreciated.

15



References

[1] N.Carter, R. Eagles, S. Grimes, A. Hahn, and C. Reiter,
Chaos with Symmetry: Reflections on an Exhibition,
Proceedings of the APL97 International Conference on
APL, CD-ROM, Toronto, Ontario, August 17-20,
(1997).

[2] K. Iverson, Concrete Math Companion, Iverson Soft-
ware Inc, Toronto (1995).

[3] G. Langlet, The APL Theory of Human Vision, APL
Quote Quad, 25 1 (1994) 105-121.

[4] A.Reiter, Determining the Dimension of Fractals Gen-
erated by Pascal’s Triangle, The Fibonacci Quarterly,
312 (1993) 112-120.

[5] C. Reiter, Fractals and Generalized Inner Products,
Chaos, Solitons & Fractals, 3 6 (1993) 695-713.

[6] C.Reiter, Sierpinski Fractals and GCDs, Computers &
Graphics, 18 6 (1994) 885-891.

[7] C. Reiter, “Fractals RYIJ”, Vector, 11 2 (1994) 86-104.

[8] C. Reiter, Fractals, Visualization and |, Iverson Soft-
ware, Inc., Toronto (1995).

[9] C.Reiter, Infix, Cut and Finite Automata, APL Quote
Quad, 25 4 (1995) 162-170.

[10] J. Shallit, Fractals, Recreation, and APL, APL Quote
Quad 18 3 (1988) 24-32.

[11] J. Shallit and J. Stolfi, Two Methods for Generating
Fractals, Computers & Graphics, 13 2 (1989) 185-191.

[12] W. Sierpinski (1915), Sur une Courbe Cantorienne
dont tout Point est un Point de Ramification, Comptes
Rendus Académie des Sciences, 160 (1915) 302-305.

[13] I Stewart, Four Encounters with Sierpinski’s Gasket,
The Mathematical Intelligencer, 17 1 (1995) 52-64.

[14] M. Sved, Divisibility—With Visibility, The Mathemati-
cal Intelligencer, 10 2 (1988) 56-64.

CUiff Reiter teaches math at Lafayette College when he isn’t wandering
around the Adirondacks. He can be reached at “reiterc@lafayette.edu”.

We want your thoughts!

Inside the wrapper of this issue is a Feedback Form, asking
for your comments about APL Quote Quad and SIGAPL.
What did you like about this issue? What did you dislike?
What else should we be working on? We’d really like to
hear from you. Can you please take a minute and fill out
this form? If you no longer have the form, just mail your
comments to the Executive Editor of APL Quote Quad (or
via e-mail, to “Polivka@ACM.org”). ... Thank you!

16

COVER STORY

Reviews of the APL97 Conference

HE APL97 CONFERENCE, entitled Share Knowledge/Share
Success, was held on 17-20 August 1997 in Toronto,

Canada, and was hosted by the Toronto APL Special
Interest Group. The venue was a combination of presentations,
tutorials, and workshops. For the first time at an APL confer-
ence, the proceedings and related materials were on a CD-ROM.
There was no printed copy. A copy of the proceedings CD-
ROM is available from The Toronto APL Special Interest Group
(http://www.torontoapl.org).
We asked several people for reviews of the conference, in
order to get balanced viewpoints. Following this overview of the
conference are four separate reviews, from:

¢ Eugene McDonnell (from San Jose, California)
* Timo Laurmaa (from Basle, Switzerland)

¢ Roy C. Willitts (from Clarksburg, New Jersey)
¢ Bob Brown (from Thetford Center, Vermont)

We hope that you find the reviews to be as interesting as we did.

We extend our thanks to Richard Procter and his staff in
Toronto, for not only making the conference a success, but also
for supplying each of the photos of APL97 used in these reviews.

And for the benefit of those of you who were not able to
attend the conference, we have also included a list of the papers
that were presented at the conference. As you can see, it was a
busy week!

APL97 wrap-up message

Thanks for Coming!
Once again the worldwide APL, community has shown how to
Share Knowledge/Share Success, as our conference theme suggested.

APL97 was an overwhelming success on many fronts. Total
attendance was about 260 persons. Our plenary sessions,
featuring Ian Sharp, founder of former software/timesharing
giant I.P. Sharp Associates; and John Heinmiller, of actuarial
software firm SS&C/Chalke, proved that APL has been and
continues to be the secret weapon for success in the information
technology industry.

—Richard Procter
Attendance Conference Chair
APL97 Conference Registrations by Country:
Austria ........... 2 Russia ............ 2
Canada ......... 110 Saudi Arabia ...... 2
Denmark ........ 12 South Africa ....... 1
Finland ......... 10 Sweden .......... 1
France ........... 5 Switzerland ....... 3
Germany ......... 6 UK ...t 9
Italy ............. 3 USA ........... 82
Japan ...l 7 —_—
Netherlands ....... 7 Total ......... 263
Portugal .......... 1

APL Quote Quad



