
Second edition July 1998

Beginning J

Keith Smillie

J IS A GENERAL-PURPOSE programming
language developed by Kenneth Iver-
son, the originator of APL, and Roger
Hui. It is intended to be a modern
dialect of APL that will provide the
simplicity and generality of APL
while at the same time be readily and
inexpensively available on a variety of
computers and capable of being
printed on standard printers.

In this article we shall give a
brief introduction to J illustrated by a
discussion of the coupon collector's
problem which serves as a model for
collecting a complete set of prizes
included, one prize per package, in
products such as breakfast cereal.

Some simple examples
IN THE FOLLOWING dialogue the J ex-
pressions we enter are indented
whereas the responses from the com-
puter begin at the left margin:

3 + 5
8
 3 - 5
_2
 2 * 3
6
 15 % 6
2.5
 % 2.5
0.4
 % 15 % 6
0.4
 2 * 3 + 4
14
 (2 * 3) + 4
10

% 1 2 3 4
1 0.5 0.3333333 0.25
 +/ % 1 2 3 4
2.08333
 4 * +/ % 1 2 3 4
8.33333
 0.5 + 4 * +/ % 1 2 3 4
8.83333
 <.0.5 + 4 * +/% 1 2 3 4

8
>.0.5 + 4 * +/% 1 2 3 4

9
 i. 4
0 1 2 3
 >: i. 4
1 2 3 4
 pos=: >: @ i.
 pos 4
1 2 3 4

w=: 2.3 5 3.5 6
 w
2.3 5 3.5 6
 +/w
16.8
 #w
4
 +/w % #w
4.2
 (+/ % #)w
4.2

am=: +/ % #
 am w
4.2

+/ % # w
0.25

The J language
THE MAIN CHARACTERISTICS of J are
the following:
• The standard ASCII character set

is used.
• Primitives are represented by a

single character or a single char-
acter followed by a period or a
colon.

• The terminology of English
grammar is used rather than that
of programming languages.
Functions are referred to as verbs
whose arguments are called
nouns and pronouns instead of
constants and variables, and may
be modified by adverbs and con-
junctions. For example, the verb
+/ which gives the sum over a
list is derived from the verb +
plus by the adverb / insert. Also
@ is the conjunction atop which,
for example in the defined verb
pos , applies the verb on the left
after the verb on the right.

• Precedence amongst verbs is de-
termined by parentheses, and in

their absence the right argument
is the entire expression on the
right and the left argument is the
noun immediately on the left.
Adverbs and conjunctions take
precedence over verbs with the
left argument being the entire
verb phrase on the left.

• Negative numbers are indicated
by a preceding underbar _ which
is considered to be part of the
number as is, for example, the
decimal point. Also the decimal
point is necessarily preceded by at
least one digit so that, for exam-
ple, two-fifths as a decimal frac-
tion is represented as 0.4 .

• Most function symbols represent
one function when used with one
argument and another function
when used with two arguments.
For example, % represents the
monadic verb reciprocal and the
dyadic verb divided by, and /
represents the monadic adverb in-
sert and the dyadic adverb table.

• Nouns may be single items or
atoms, one-dimensional arrays or
lists, two-dimensional arrays or
tables, or arrays of higher dimen-
sion or reports. Thus the expres-
sion a + b is a valid sum as
long as a and b are compatible
arrays.

• Verbs may be defined in a func-
tional or tacit manner without
explicit arguments or control
structures. However, explicit
verbs may be defined where the
arguments are specified and
where the definition may extend
over several lines and involve
control structures similar to those
in conventional programming
languages.

• An uninterrupted sequence of
three verbs is known as a fork
and is a generalization of the no-
tation of conventional mathe-
matics where, for example, (f+g)x
represents the sum f(x)+g(x). An
example is the verb am for the
arithmetic mean.

Coupon collector's problem
THE COUPON collector's problem in-
volves sampling from a finite popula-
tion until all of the items are repre-
sented in the sample. This sampling
procedure, as was stated in the intro-
ductory comments, can serve as a
model for collecting a complete set of
prizes which are included in some
product.

If there are n different prizes, the
problem is equivalent to random sam-
pling with replacement from the first
n positive integers until all n integers
are represented in the sample. It is a
simple exercise in elementary prob-
ability theory to show that the average
sample size is "n times the sum of the
reciprocals of the first n positive inte-
gers". For example, if there are 4
prizes, then the average number of
purchases is 4 times the sum 1 plus
1/2 plus 1/3 plus 1/4, or 4 times
2.08333, or approximately 8.3.
Therefore, on the average 8 or 9 pur-
chases are required to collect all 4
prizes.

The corresponding calculations in
J were included in the examples given
previously and may be expressed as
follows if the verb pos is used:

pos 4
1 2 3 4
 % pos 4
1 0.5 0.3333333 0.25
 +/ % pos 4
2.08333
 4 * +/ % pos 4
8.33333
In general, if there are n prizes, the
expression for the average number of
purchases is

n * +/ % pos n ,
which for n equal to 10 is approxi-
mately 29.3 .

In order to simplify these calcu-
lations we shall define the monadic
verb

cc=: * +/ @: % @ pos
whose argument is a non-negative
integer giving the number of prizes
and whose result is the corresponding
expected value. The conjunction at @:

is used so that the sum is applied over
the list of reciprocals rather than to
each item in the list. For example,
cc 4 is 8.3 and cc 10 is 29.3 .
This verb has a two-verb sequence,
called a "hook", consisting of the
primitive verb * multiply and the
composed verb +/ @: % @ pos
"the sum of the reciprocals of the first
so many positive integers". Specifying
a value for the argument of cc gives
this value to both sides of the hook, so
that, for example, cc 4 is equivalent
to

4 * +/ @: % @ pos 4
which as we have seen is equal to
8.3 .

We also note the very reasonable
results that cc 1 is 1 and cc 0 is 0
since if there is only one prize it is
obtained with the first purchase and if
there are no prizes there is nothing to
purchase.

Tables
IN ADDITION to being able to compute
expected values for individual values
of the number of prizes, we might
wish to compute a table of expected
values over an arbitrary range of
number of prizes. This may be done
very simply, but first we must intro-
duce the dyadic adverb table / which
gives the table formed by inserting the
verb it modifies between all possible
pairs of items chosen from the two
arguments. For example, if u and v
are the lists 1 2 3 and 1 2 3 4 ,
respectively, then u+/v and u*/v
give portions of the addition and
multiplication tables which may be
displayed simply as

������������������������������������
v� � � �v� � � �vv� � � �v� � � �v
v� � � �v� � � �vv� � � �v� � � �v
v� � � �v� � � ��vv� � � �v� � � ��v
������������������������������������

by the expression
u (+/ ; */) v

where ; is the dyadic verb link. This
last expression is an example of a
dyadic fork and is equivalent to

(u +/ v) ; u */ v .

If we introduce the utility adverb
table , the details of which need not
concern us, which gives bordered ta-
bles, then the above addition table
may be displayed by the expression

u + table v
as

����������������������
v v� � � �vv v� � � �v
����������w����������w
v�v� � � �vv�v� � � �v
v�v� � � �vv�v� � � �v
v�v� � � �vv�v� � � �v
���������������������� .
We shall introduce the verb
rnd=: <.@(0.5&+) ,

where <. is the monadic verb floor
and & is the conjunction bond, which
rounds its non-negative argument to
the nearest integer, so that, for exam-
ple, cc 20 is 71.9548 , and
rnd cc 20 is 72 .

Now define the lists
rows=: 5 * i. 10

and
cols=: pos 5 ,

which have the values
0 5 10 15 20 25 30 35

40 45
and

1 2 3 4 5 ,
respectively. Then a table of expecta-
tions rounded to the nearest integer
for from 1 to 50 prizes is given by the
expression

rows (rnd@cc@+) table
cols

and is
��
v v � � � � �vv v � � � � �v
�����������������������w�����������������������w
v �v � � � � ��vv �v � � � � ��v
v �v �� �� �� �� ��vv �v �� �� �� �� ��v
v��v �� �� �� �� ��vv��v �� �� �� �� ��v
v��v �� �� �� �� ��vv��v �� �� �� �� ��v
v��v �� �� �� �� ��vv��v �� �� �� �� ��v
v��v��� ��� ��� ��� ���vv��v��� ��� ��� ��� ���v
v��v��� ��� ��� ��� ���vv��v��� ��� ��� ��� ���v
v��v��� ��� ��� ��� ���vv��v��� ��� ��� ��� ���v
v��v��� ��� ��� ��� ���vv��v��� ��� ��� ��� ���v
v��v��� ��� ��� ��� ���vv��v��� ��� ��� ��� ���v
��

Simulation
IN ORDER to simulate the coupon col-
lector's problem we shall require the
monadic verb roll ? for sampling with
replacement. The expression, ? n
gives a uniform random sample from
the population i. n , and, for exam-
ple, the expression ? 3 3 3 3
could have the value 0 1 2 1 .

The explicit monadic verb
ccsim defined by

ccsim=: 3 : 0
n=. y.
r=. i. 0
while. n > # ~. r do.

 r=. r, ?n
end.
>:r
)

simulates the coupon collector's
problem for an arbitrary number of
prizes. For example, ccsim 4 could
have the value

2 3 4 4 3 4 3 1
representing a simulation for four
prizes.

A few remarks on the structure of
this verb will be made. The first line
is the heading which defines ccsim
as a verb with a right argument y. .
In the definition we have the monadic
verb nub ~. which gives the unique
items in its argument, and the mo-
nadic verb tally # which gives the
number of items in its argument.
Thus, n is given the value of the right
argument which is the number of
prizes, the result r is first initialized
to an empty list and then repeatedly
has a random integer from i. n ap-
pended to it until all of the integers in
i. n are represented in its nub. The
last statement adds 1 to each item in
the final value of the list r .
 Repeated simulations for a given
number of prizes may be done with
the verb

ccs=: (#@ccsim)"0 @ #
and, for example,

s=. 10 ccs 3 ,
where s might have the value

4 3 5 3 3 3 4 7 8 8
would represent 10 simulations with

3 prizes. (We remark that # is the
dyadic verb copy so that 10 # 3
gives the list

3 3 3 3 3 3 3 3 3 3 ,
and the conjunction rank " is used to
apply the verb #@ccsim to each item
of the list.) The largest sample is
given by the expression >./s , where
>. is the dyadic verb larger of, and is
equal to 8. The mean sample size is
am s which is equal to 4.8 as com-
pared to an expected value of cc 3
which is 5.5 .

Frequencies
WE SHALL construct a frequency table
for the simulation with the range of
sample sizes in the first column and
corresponding frequencies in the sec-
ond with the range extending from 0
to the maximum sample size.

The range r for the list s of
sample sizes is given by

r=. 0, pos >./s
whichis equal to

0 1 2 3 4 5 6 7 8 .
The distribution of s over the range
relates its items to the range and is
given by the expression r =/ s
which gives a table of 0s and 1s with
a 1 indicating that the row range
value r is equal to the column value
s . This table may be meaningfully
displayed by the expression
r = table s which has the value

��
v v� � � � � � � � � �vv v� � � � � � � � � �v
����������������������w����������������������w
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � �v�v� � � � � � � � � �v� �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
v�v� � � � � � � � � �vv�v� � � � � � � � � �v
��

For example, the fifth row,
1 0 0 0 0 0 1 0 0 0 ,

indicates that the first and seventh
samples are of size 4. The row sums
of this table give the frequency of oc-
currence of each of the items in the

range, and we have that
+/"1 r =/ s

is the list of frequencies
0 0 0 4 2 1 0 1 2 .

The rank conjunction " is used to give
the row, rather than the column,
sums.

The desired frequency table is
given by the dyadic verb

frtab=: [,.fr
where

fr=: +/"1 @ (=/)
gives the frequencies. We note the use
of the dyadic verb stitch ,. in the
verb frtab to form a two-column
table from the lists for the range and
the frequencies. Thus the frequency
table is given by r frtab s which
we shall display in transposed form as

0 1 2 3 4 5 6 7 8
0 0 0 4 2 1 0 1 2

by the expression |: r frtab s ,
where |: is the monadic verb trans-
pose which interchanges rows and
columns.

Instead of finding the frequencies
over the range of sample sizes, we
may wish to limit the rows of the table
to those corresponding to non-zero
frequencies. This may be accom-
plished simply by the verb

nubtab=: ~. ,. nubfr ,
where

nubfr=: +/"1 @ =
gives the nub frequencies. The nu-
merical results of this section may be
summarized as

������������������
v� �v� �vv� �v� �v
v� �v� �vv� �v� �v
v� �v� �vv� �v� �v
v� �v� �vv� �v� �v
v� �v� �vv� �v� �v
v� �v vv� �v v
v� �v vv� �v v
v� �v vv� �v v
v� �v vv� �v v
������������������

by the expression
(r frtab s);nubtab sort s
where the utility verb sort gives the
items of the nub in sorted order.

J and graphics
A PLOTTING PACKAGE is available in J
for constructing a variety of different
graphics such as line and density
plots, bar and pie charts, and three-
dimensional surfaces. The following
is a bar chart showing the frequency
of sample sizes for 100 simulations
for 3 prizes.

In addition, the Windows 95/NT ver-
sions of J support OpenGL which is
an industry-standard software inter-
face to graphics hardware for use in
computer-aided design, medical im-
aging and film special effects.

J and Windows
J IS AVAILABLE for Windows 95/NT,
Macintosh and Unix platforms with
the same core J language on all ma-
chines. Windows systems combine
the language with a large collection of
utilities for simplifying the exchange
of objects with other Windows appli-
cations and with an application devel-
opment environment for the construc-
tion of graphical interfaces for J ap-
plications. All of the usual controls
such as push buttons, scroll bars, edit
boxes, etc. are available as well as
controls for Dynamic Data Exchange
(DDE), Object Linking and Embed-
ding (OLE) and Visual BASIC Ex-
tended (VBX).

The Windows form shown here
allows for the convenient use of some
of the J verbs developed in this arti-
cle. The user enters the number of
prizes and number of repetitions in
the appropriate boxes, selects either
the "Range" or "Nub" radiobutton
depending on whether the frequencies

over the whole range or only the nub
are wanted, and then presses the OK
button. The resulting frequency table
is displayed and is also given in the
global variable CCtable .

J and the World Wide Web
J IS A PRODUCT of Iverson Software
Inc., which continues to develop the
language, and is distributed by Strand
Software Systems. The current ver-
sion J4.01 may be downloaded from
the World Wide Web site
http://www.jsoftware.com and comes
with not only online help, tutorials
and demos but also with online full-
text versions of the several manuals
published by ISI which are also avail-
able in printed form. The Web site
contains also information about the
latest developments in J, a list of se-
lected J publications, and other items
of interest to users of J.

What is J?
J HAS BEEN USED in this article both as
a simple calculator and as a pro-
gramming language in the study of
the coupon collector’s problem. How-
ever it is used, J hides many of the
details that must be considered with

conventional languages. Writing in
1991 on the 25th anniversary of APL,
Kenneth Iverson remarked that "…
Although APL has been exploited
mostly in commercial programming, I
continue to believe that its most im-
portant use remains to be exploited: as
a simple, precise, executable notation
for the teaching of a wide range of
subjects." J as a modern dialect of
APL should be regarded similarly as a
notation that will illuminate compu-
tational methods and make them
conveniently executable on a com-
puter.

We shall let Roger Hui have the
last word on J: "I called the language
J because 'J' is easy to type."

Further reading
THE INDISPENSIBLE reference for
learning and using J is Kenneth Iver-
son's J Introduction and Dictionary
published by Iverson Software Inc.

Keith Smillie is Professor Emeritus of
Computing Science at the University
of Alberta, Edmonton, Alberta
T6G 2H1. His email address is
smillie@cs.ualberta.ca.

Coupon Collector's Problem

Sample Size

F
re

q
u

e
n

cy

1 2 3 4 5 6 7 8 9 10 11 12

5

10

15

20

25

30

35

