
F r o m H i e r o g l y p h i c s to A P L -
T h e R e l e n t l e s s C o u r s e of' FI i s tory

Hom~" lfa~ung

A B S T R A C T

There are many b~.storical parallels between older
developments of number systems and modern develop-
ments of compute r languages. These indicate tha t APL
should ul t imately develop a dominant position as the
best language to use for complex compute r applica-
tions.

Records of ancient kingdoms and their rulers are
found in hieroglyphics. Some of these numbers for
populations, armies, herds, etc. The schemes used by
the ancient scribes were very simple. In ancient Egyp t
only a small number of symbols were needed to
represent all numbers up to very large counts.

Have you every wondered why we don ' t use the
simpler hieroglyphic representations? Probably not,
because we are taught e lementary ma themat i c s before
understanding the source of its symbols and procedures.
Thus, we are indoctr inated with the idea tha t our
representat ions of numbers were somehow decreed by
the nature of the universe. Continued use or Roman
numerals on cornerstones, monuments and the like,
however, testifies to the contrary .

If you stop and think about it, there would be
some advantages to going back to wider use of the
Roman numerals. We could do away with the of the
top row of keys on typewriters and terminals, and it
would be a lot easier to teach to young children for
simple counting tasks. You might worry tha t advanced
mathemat ic s would be impossible, but tha t isn' t neces-
sarily the cMe if we are s m a r t enough. Consider old
man Euclid, who was pre t ty swift in geometry even
without modern comput ing techniques - but then he
was a real genius!

E F F O R T
A

R

Figure 1
C O M P L E X I T Y OF P R O B L E M

The real pros and cons of number representat ions
can be i l lustrated graphicaly as in Figure 1.

This shows a schematic representat ion cf effort
expanded versus complexi ty of the problem. 'R ' s tands
for R o m a n numerals and 'A ' for Arabic. In both cases,
there is an initial hump associated with the difficulty of
s tar t ing out. The hump for the 'A ' curve is larger
because the Arabic numbers are based on ten new sym-
bols and rigid rules on evaluat ion by relative place-
ment . The hump for the 'R ' curve is smaller because it
involves simple association of counts with familiar
letters. The 'R ' line is below the 'A ' line when prob-
lems have a low degree of complexity. Tallies of bal-
lots for example, are certainly much easier wit an 'R '
type system than with Arabic numerals. There is a
crossover point and a rapid divergence for increasing
complexity, however. I t is hard to conceive of trying to
work logari thms using R o m a n numerals!

The history of number systems provides a strong
parallel with things tha t are now happening in the area
of compute r p rogramming languages. The concept of
p rogramming languages is new with our present genera-
tion. The first one was F O R T R A N , invented around
1953, and thousands of similar approaches have been
tried since then. A radical depar ture from the
F O R T R A N - t y p e of language was proposed in a book
entitled A Programming Language by Kenneth Iverson
in 1962. This introduced a nota t ional scheme which
was an extension of matr ix algebra. It was given the
abbreviat ion APL and introduced as a computer
language in 1969.

Except for APL, all compute r languages invented
to date have been ad hoc adapta t ions of ma themat i ca l
nota t ion such tha t it can be displayed easily with regu-
lar typewri ter symbols. The assumption is tha t the
s tandard typewri ter keyboard was also devised by God!
All such languages are analogous to the si tuation with
R o m a n numerals 2000 years ago - only familiar sym-
bols are used.

AFL is now in the same si tuation as Arabic
numerals when they were first introduced to
Westerners - new and unfamiliar symbols are required.
Thus, Figure 1 also represents the pros and cons of
APL versus other languages. The 'A ' curve represents
relative effort in using APL to solve computa t iona l
problems while 'R ' represents what we might call ' regu-
lar ' p rogramming languages with a s tandard keyboard.

The parallel extends to the fact tha t whatever we
first learn tends to seem easier and bet ter . Children
are not conscious of the hump in the effort curve for
using Arabic numerals because they do not know
enough to question the rules of the game. Similarly,
people who s ta r t out learning APL as there first corn-

APL Quote Quad 15 3 17 l ~ r c h 1985

puter language don ' t have much trouble.

The history of m a t h e m a t i c s reveals t h a t the Ara-
bic numera ls were around for m a n y centur ies before
they became accepted widely. Obviously when hiero-
glyphics are t a u g h t to children for count ing it is tough
to switch t h e m over to a superior bu t more complex
scheme. By the same token, we can expect t ha t the
accep tance of A P L as a widely used p r o g r a m m i n g
language will come abou t gradual ly bu t relentlessly as
people m a k e increasingly complex d e m a n d s on com-
puter sys tems.

Imagine the fate of an a c c o u n t a n t who migh t t ry
to keep books in R o m a n numera l s because they are
easier to learn for hand tallies or inventory . The same
fate awai ts p r o g r a m m e r s who insist on using regular
languages because they are easier for s imple comput ing
tasks.

(These though t s were picked up a t APL83, par-
t icularly f rom Prof . D.B. Mclntyre .)

Phil ip Morris, USA
Research Cente r

• P.O. Box 26583
Richmond, VA 23261
U.S.A.

P r o c e s s i n g M u l t i p l e F i l e s

J'. Rucdu

AbstF~t .
Prob l ems raced by an APL user in dealing with

mul t ip le riles are explained, and a new approach to
solve t hem based on f ini te-machine techniques is
described.

T h e P r o b l e m .

One reason for shor t deve lopmen t t imes for pro-
g r ams in A P L is the workspace concept . Many t imes,
in Tact, we d o n ' t need to wri te any function; we can
review the d a t a avai lable in the workspace by jus t
naming it. Unfor tuna te ly , when the a m o u n t of d a t a
grows we are no longer able to use this Facility because
the main s to rage m e m o r y is still a l imited resource in
m a n y or t oday ' s compute r s .

As an example , suppose t h a t we have an applica-
tion t ha t deals wi th N different sets of da ta . Initially
we can keep them in /q mat r ices in our workspace , bu t
when the size of a set grows sufficiently we have to
m ig ra t e its m a t r i x to a direct-access file; in this na tu ra l
way, we arr ive a t the p rob lem tha t we deal with;

manag ing mult iple r andom-access riles (from an A P L
envi ronment) .

P r e s e n t S o l u t i o n s .

The inabili ty of A P L to m a n a g e files is usually
solved with auxil iary processors t h a t pe r fo rm the I / O
opera t ions .

Typica l ly one var iable For each file t ha t will be
processed is shared, and ff d i rect access is required, it is
a c o m m o n prac t ice to share 2 var iables , one to be used
as control , where the record n u m b e r or key to be pro-
cessed is specified, and ano ther where the real in forma-
tion is t ransfer red .

T o solve the general p rob lem of man ipu la t ing
several files s imul taneous ly we can Follow two dif ferent
approaches :

1. T o shaJre and r e t r ac t two var iables each t ime t h a t
a rile hM to be accessed.

2. T o initially share a set of 2 x N var iables where
N is the n u m b e r of files to be used.

T h e first solut ion is easy to i m p l e m e n t bu t it is
inconvenient , since four ex t r a opera t ions have to be
done each t ime a single record is accessed:

1. Share var iables

2. Open the file

3. Close the file

4 R e t r a c t variables .

The C P U - t i m e required for opening and closing files
depends very much on the opera t ing sys t em under
which APL is running. Fo r m o s t A P L imp lemen ta -
tions, the t ime spent establ ishing a shared var iable is
long. Thus this solution, a l though s imple to imple-
ment , is very slow. Here is a typical funct ion to read a
~ile using this approach;

V Z÷Iq READ1 F ; C T L ; D A T
[1] A F : F I L E _rD
[2] R N : RECORD NUMBER
[3] . : KEEP THE A.P. ID
[it] DAT÷F
[5] Z÷ DSVO 2 3 p W DATCTL ,
[G] C T L ÷ i f
[7] Z + D A T

q

Figure 1

A P L Quo te Quad 15 3 18 March 1985

