From Hieroglyphics to APL -
The Relentless Course of History

Homer Hartung

ABSTRACT

There are many historical parallels between older
developments of number systems and modern develop-
ments of computer languages. These indicate that APL
should ultimately develop a dominant position as the
best language to use for complex computer applica-
tions.

Records of ancient kingdoms and their rulers are
found in hieroglyphics. Some of these numbers for
populations, armies, herds, etc. The schemes used by
the ancient scribes were very simple. In ancient Egypt
only a small number of symbols were needed to
represent all numbers up to very large counts.

Have you every wondered why we don’t use the
simpler hieroglyphic representations? Probably not,
because we are taught elementary mathematics before
understanding the source of its symbols and procedures.
Thus, we are indoctrinated with the idea that our
representations of numbers were somehow decrecd by
the nature of the universe. Continued use of Roman
numerals on corperstones, monuments and the like,
however, testifies to the contrary.

If you stop and think about it, there would be
some advantages to going back to wider use of the
Roman numerals. We could do away with the of the
top row of keys on typewriters and terminals, and it
would be a lot easier to teach to young children for
simple counting tasks. You might worry that advanced
mathematics would be impossible, but that isn't neces-
sarily the case if we are smart enough. Consider old
man Euclid, who was pretty swilt in geometry even
without modcrn computing techniques - but then he
was 3 real genius!

R
A
EFFORT
A
R
Figure 1
COMPLEXITY OF PROBLEM

APL Quote Quad 15 3

The real pros and cons of number representations
can be illustrated graphicaly as in Figure 1.

This shows a schematic representation cf effort
expanded versus complexity of the problem. 'R’ stands
for Roman numerals and 'A’ for Arabic. In both cases,
there is an initial hump associated with the difficulty of
starting out. The hump for the ‘A’ curve is larger
because the Arabic numbers are based on ten new sym-
bols and rigid rules on evaluation by relative place-
ment. The hump for the ‘R’ curve is smaller because it
involves simple association of counts with familiar
letters. The 'R’ line is below the ‘A’ line when prob-
lems have a low degree of complexity. Tallies of bal-
lots for example, are certainly much easier wit an ‘R’
type system than with Arabic numerals. There is a
crossover point and a rapid divergence for increasing
complexity, however. It is hard to conceive of trying to
work logarithms using Roman numerals!

The history of number systems provides a strong
parallel with things that are now happening in the area
of computer programming languages. The concept of
programming languages is new with our present genera-
tion. The flirst one was FORTRAN, invented around
1953, and thousands of similar approaches have been
tried since then. A radical departure from the
FORTRAN-type of language was proposed in a book
entitled A Programming Language by Kenncth Iverson
in 1962. This introduced a notational scheme which
was an extension of matrix algebra. It was given the
abbreviation APL and introduced as a computer
language in 1969.

Except for APL, all computer languages invented
to date have been ad hoc adaptations of mathematical
notation such that it can be displayed easily with regu-
lar typewriter symbols. The assumption is that the
standard typewriter keyboard was also devised by God!
All such languages are analogous to the situation with
Roman numerals 2000 years ago - only familiar sym-
bols are used.

APL is now in the same situation as Arabic
numerals when they were [irst introduced to
Westerners - new and unfamiliar symbols are required.
Thus, I'igure 1 also represents the pros and cons of
APL versus other languages. The ‘A’ curve represents
relative effort in using APL to solve computational
problems while ‘R’ represents what we might call ‘regu-
lar’ programming languages with a standard keyboard.

The parallel extends to the fact that whatever we
first learn tends to seem easier and better. Children
are not conscious of the hump in the effort curve for
using Arabic numerals because they do not know
enough to question the rules of the game. Similarly,
people who start out learning APL as there first com-

17 March 1985



puter language don't have much trouble.

The history of mathematics reveals that the Ara-
bic numerals were around for many centuries before
they became accepted widely. Obviously when hiero-
glyphics are taught to children for counting it is tough
to switch them over to a superior but more complex
scheme. By the same token, we can expect that the
acceptance of APL as a widely used programming
language will come about gradually but relentlessly as
people make increasingly complex demands on com-
puter systems.

Imagine the fate of an accountant who might try
to keep books in Roman numerals because they are
easier to learn for hand tallies of inventory. The same
fate awaits programmers who insist on using regular
languages because they are easier for simple computing
tasks.

(These thoughts were picled up at APL83, par-
ticularly from Prof. D.B. Mclntyre.)

Philip Morris, USA
Research Center

" P.O. Box 26583
Richmond, VA 23261
U.S.A.

Processing Multiple Files

J. Rueda

Abasatract.

Problems faced by an APL user in dealing with
multiple files are explained, and a new approach to
solve them based on [inite-machine techniques is
described.

The Problem.

One reason for short development times for pro-
grams in APL is the workspace concept. Many times,
in fact, we don’t need to write any function; we can
review the data available in the workspace by just
naming it. Unfortunately, when the amount of data
grows we are no longer able to use this facility because
the main storage memory is still a limited resource in
many of today’s computers.

As an example, suppose that we have an applica-
tion that deals with N different sets of data. Initially
we can keep them in N matrices in our workspace, but
when the size of a set grows sulficiently we have to
migrate its matrix to a direct-access file; in this natural
way, we arrive at the problem that we deal with;

APL Quote Quad 153

managing multiple random-access files (from an APL
environment).

Present Solutlons.

The inability of APL to manage files is usually
solved with auxiliary processors that perform the 1/0
operations.

Typically one variable for each file that will be
processed is shared, and if direct access is required, it is
a common practice to share 2 variables, one to be used
as control, where the record number or key to be pro-
cessed is specified, and another where the real informa-
tion is transferred.

To solve the general problem of manipulating
several liles simultaneously we can follow two different
approaches:

1. To share and retract two variables each time that
a flile has to be accessed.

To initially share a set of 2XN variables where
N is the number of [iles to be used.

[

The first solution is easy to implement but it is
inconvenient, since four extra operations have to be
done each time a single record is accessed:

Share variables
Open the file
Close the file
Retract variables.

The CPU-time required for opening and closing [files
depends very much on the operating system under
which APL is running. For most APL implementa-
tions, the time spent establishing a shared variable is
long. Thus this solution, although simple to imple-
ment, is very slow. Here is a typical function to read a
file using this approach;

V Z«N READ1 F;CTL:DAT
1] A F FILE ID
[2] AN RECORD NUMBER
(3l A : KEEP THE A.P. ID
[u] DAT<F

[5] Z« [OSVO 2 3 p'DATCTL'
[5] CTL<N
[7] Z<DAT
v
Figure 1
18 March 1985



